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Strong Normalization Theorem for a
Constructive Arithmetic with Definition by
Transfinite Recursion and Bar Induction

OSAMU TAKAKI

Abstract We prove the strong normalization theorem for the natural deduc-
tion system for the constructive arithmetic TRDB (the system with Definition
by Transfinite Recursion and Bar induction), which was introduced by Yasugi
and Hayashi. We also establish the consistency of this system, applying the
strong normalization theorem.

1 Introduction The main result of this paper is the strong normalization theorem
for the natural deduction system for the constructive arithmetic TRDB. This system
is a renewal version of the system ASOD (Analytic System especially designed for
Ordinal Diagrams) which was introduced by Yasugi in [3]. In ASOD, Yasugi suc-
ceeded in constructing an accessibility proof of ordinal diagrams (see [3] and [4]).
Yasugi and Hayashi [5] also have studied functional interpretations of proofs formal-
ized in TRDB (see [3], [5], and [6]). For such studies, the normalizability of a proof
formalized in TRDB is important.

The proof of the main result is based on [5] and on the proof of the strong nor-
malization theorem for HA by Troelstra in [2]. For example, using degrees defined
similarly to those in [5], we define reducibility sets similarly to the strong validity
predicate in [2]. However, since a reducibility set in this paper consists of deduc-
tions whose consequences are closed formulas, there arises new difficulty in dealing
with the reducibility of a deduction. The difficulty arises essentially from the infer-
ence rule: definition by transfinite recursion. We think that, in order to settle the dif-
ficulty, it is necessary to study a relation between the reducibility of a deduction �

(whose consequence is a closed formula) and that of a deduction �′ obtained from
� by substituting closed terms for free variables which are not eigenvariables. (See
Lemma 3.19, Lemma 3.22 and Remark 3.21.) These lemmas are most crucial in our
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proof of the main result. Our proof would be applied to prove the strong normal-
ization theorem for other systems with definition by transfinite recursion (and/or bar
induction).

This paper consists of three sections: in Section 2, we define TRDB and degrees
which give an order on TRDB-formulas; in Section 3, we prove the strong normal-
ization theorem of reductions (of TRDB-deductions) defined in the same section; in
Section 4, applying the strong normalization theorem, we establish the consistency
of TRDB and prove the existence property and the disjunction property of TRDB.

Notation 1.1 In Section 2, we define TRDB as the system formalized by the nat-
ural deduction system.

1. Lower case alphabets x, . . . , a, . . . , t, . . . denote terms. In particular, a, b, c, x, y
and z denote variables. Upper case alphabets A, . . . , A[t], . . . denote formulas.
Greek alphabets �,�,�, . . . denote (natural) deductions. �t, . . . �x, . . . denote fi-
nite sets of terms.

2. Given a deduction �, Cnsq(�) denotes the consequence of �. [A] denotes a
live assumption of a deduction. We do not write explicitly the label of an as-
sumption.

3. We define subdeductions of a deduction as follows: if � is a deduction of the
form

.... �1

A1 · · ·
.... �n

An

A R
,

then the set consisting of � and all subdeductions of �i (i = 1, . . . , n) forms the
set of all subdeductions of �.

4. Let � be a deduction with Cnsq(�) = A, and let � be a deduction having a
live assumption of the form [A]. Then �[�/A] denotes the deduction obtained
from � by substituting � for the live assumption [A].

5. We assume that variables in a deduction are denoted by different alphabets from
each other so far as is possible. �[�t/�x] denotes the deduction obtained from a de-
duction � by substituting a term ti for a free variable xi in the consequence of �

(i = 1, . . . , n), where �x denotes x1, . . . , xn and �t denotes t1, . . . , tn. �[�s/�y] de-
notes the deduction obtained from � by substituting a term si for a free variable
yi in a live assumption of � (i = 1, . . . , m), where �y denotes y1, . . . , ym and �s
denotes s1, . . . , sm. For example, if � is a deduction of the form

[∀x(0 = 1 + x)]
0 = 1 + z ∀-E [(Sy > 0)]

(0 = 1 + z) ∧ (Sy > 0)
∧-I

0 = 1 + z ∧-E
,

then

�[n/z ] =
[∀x(0 = 1 + x)]

0 = 1 + n ∀-E [(Sy > 0)]
(0 = 1 + n) ∧ (Sy > 0)

∧-I

0 = 1 + n ∧-E
,
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�[m/y] =
[∀x(0 = 1 + x)]

0 = 1 + z ∀-E [(Sm > 0)]
(0 = 1 + z) ∧ (Sm > 0)

∧-I

0 = 1 + z ∧-E
.

(We mostly follow [2], but there are some terminologies which are used in different
context from those in [2]. Such terminologies are explicitly defined in this paper.)

2 TRDB In this section, we define the system TRDB, which is defined in [5] and
[6]. This system, in particular the language of this, seems to be highly specialized.
The reason is that TRDB is defined so that one can use the system directly for for-
malizing accessibility proofs and can construct functional interpretations of formal-
ized accessibility proofs (see [3], [5], and [6]). However, in this paper, these special
properties of TRDB are not important except the two inference rules: definition by
transfinite recursion and bar induction. Therefore, the reader, who is interested not
in accessibility proofs but in the strong normalization theorem for constructive arith-
metics, may consider TRDB as HA with definition by transfinite recursion and bar
induction. (However, the reader should notice the special logical symbol ρ, which is
introduced only for technical reasons. See Remark 2.2 (5).)

In what follows, a word ‘integer’ means ‘non-negative integer’.

Definition 2.1 Preceding to the definition of TRDB, we specify a primitive recur-
sive well-ordered set I (= (I,<I )). We identify the domain set I with the set of all
integers.

Symbols

1. Countably many n-ary variables, where n is an integer
2. Function constants for primitive recursive functions in function parameters
3. A designated unary function constant c
4. Predicate constants for primitive recursive predicates in function parameters
5. A special predicate constant H
6. Logical symbols ∧,∨,⊃,∀ and ∃
7. A special logical symbol ρ

Terms

1. Variables and function constants
2. If f is an n-ary term and if t1, t2, . . . , tn are 0-ary terms, then f (t1, t2, . . . , tn)

is a 0-ary term. We often call 0-ary terms number terms.
3. If t is a number term and if x1, x2, . . . , xn are number variables, then λx1λx2

. . . λxn.t is an n-ary term, where λ is the lambda abstraction.

Formulas

1. If p is an n-ary predicate constant and t1, . . . , tn are appropriate terms, then
p(t1, . . . , tn) is an atomic formula. In particular, if s and t are number terms,
then H(s, t) is an atomic formula.

2. If A and B are formulas, then A ∧ B, A ∨ B, A ⊃ B, and ∀xA are formulas,
where x is a variable.
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3. If A is a formula, then ∃xA is a formula, where the variable x in A is 0-ary and
it does not occur in any H in A.

4. Let = denote a 2-ary predicate constant expressing the equality of integers;
let 0 and 1 denote 0-ary function constants expressing the integers 0 and 1 re-
spectively; and let <I denote a 2-ary predicate constant expressing the order
of I . Then ρ(( j <I i ⊃ H( j, s)) ∧ (( j <I i ⊃ 0 = 1) ⊃ 0 = 1)) is a formula,
where i, j, and s are arbitrary number terms. We abbreviate this formula by
ρ( j <I i; H( j, s)).

Axioms and inference rules

1. TRDB contains inference rules of constructive logics formulated in natural de-
ductions as usual: introduction rules ∧-I,∨-I,⊃-I,∀-I,∃-I; elimination rules
∧-E,∨-E,⊃-E,∀-E,∃-E,⊥-E. (‘⊥’ means 0 = 1, see Definition 3.3 (3) in
the next section.)

2. TRDB contains axioms and inference rules on constants of PRA2 (primitive
recursive arithmetic with function variables). (See [2] and Girard [1].) We give
these axioms and inference rules as follows.

2.1. For any number terms t and t′,

t = t,

....
t = t′

....
P[t]

P[t′] ,

where P[t] denotes an atomic formula.
2.2. For any number terms t, t′, and ti (i = 1, . . . , n),

....
0 = St
0 = 1 ,

....
St = St′

t = t′ , In
i (t1, . . . , ti, . . . , tn) = ti,

where S denotes a function constant expressing the successor function,
and In

i (i ≤ n) denotes a function constant expressing the n-place projec-
tion function.

2.3. Let PRFn denote the set of all n-ary primitive recursive functions in func-
tion parameters. Let F be the element of PRFn+1 obtained from a G ∈
PRFm and a Ki ∈ PRFn (i = 1, . . . , m) by functional composition:

F(x1, . . . , xn) = G(K1(x1, . . . , xn), . . . , Km(x1, . . . , xn)).

If f , g, and ki denote function constants expressing F, G, and Ki respec-
tively, then for any number terms ti (i = 1, . . . , n), u j ( j = 1, . . . , m), and
v,

....
g(u1, . . . , um) = v

....
k1(t1, . . . , tn) = u1 · · ·

....
km(t1, . . . , tn) = um

f (t1, . . . , tn) = v
.

2.4. Let F be the element of PRFn+1 obtained from a K ∈ PRFn and a G ∈
PRFn+2 by primitive recursion:

F(x1, . . . , xn, 0) = K(x1, . . . , xn),
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F(x1, . . . , xn, Sx) = G(x1, . . . , xn, x, F(x1, . . . , xn, x)).

If f , k, and g denote function constants expressing F, K, and G respec-
tively, then for any number terms ti (i = 1, . . . , n), t, u, and v,

....
k(t1, . . . , tn) = u

f (t1, . . . , tn, 0) = u ,

....
f (t1, . . . , tn, t) = u

....
g(t1, . . . , tn, t, u) = v

f (t1, . . . , tn, St) = v
.

2.5. If f denotes a function constant expressing a characteristic function of an
n-ary primitive recursive predicate in function parameters expressed by a
predicate constant p, then for any number terms ti (i = 1, . . . , n),

....
f (t1, . . . , tn) = 0

p(t1, . . . , tn)
,

....
p(t1, . . . , tn)

f (t1, . . . , tn) = 0
.

3. Well-foundedness of the set I
4. Monotone and elementary bar induction: proceeding to the definition of this

inference rule, we give definitions as the following paragraphs.
Let R[a] be a formula, where a is a 0-ary variable, and let R[a] contain neither
any quantifier, any H, nor any variable except a. Such a formula is said to be
elementary.
We consider a bijective function � from finite sequences of integers onto inte-
gers. It is well known that � can be defined primitive recursively. We fix such
a bijection � which is defined primitive recursively.
Let R[a] be an elementary formula. Then R[a] is said to be monotone if R[a]
satisfies the following conditions (i) and (ii).

(i) For any infinite sequence f , there exists an integer n such that R[ f �n]
holds, where f �n denotes a number term expressing the integer assigned
to the finite sequence 〈 f (0), f (1), . . . , f (n − 1)〉 by �.

(ii) For any infinite sequence f and for any integer n, R[ f �n] implies R[ f �m]
for any m > n.

Let ∗ denote a 2-ary primitive recursive function constant satisfying the fol-
lowing: a ∗ b expresses the integer assigned to 〈a1, . . . , an, b〉 by �, where
〈a1, . . . , an〉 is the finite sequence to which � assigns a. We give an inference
rule called a BI-rule as follows:

....∀z(R[z] ⊃ A[z])

....∀z(∀xA[z ∗ x] ⊃ A[z])
A[t] BI ,

where A[a] is an arbitrary formula, R[a] is an arbitrary monotone formula and
t is an arbitrary number term.

5. Definition by transfinite recursion TRD(G,I ): Preceding to the definition of
this inference rule, we fix a formula G[a, b, H[a]], where a and b are 0-ary
free variables, so that G satisfies the following conditions.
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(i) No free variable occurs in G except a or b.

(ii) No H occurs in G except in a subformula of the form ρ( j <I a; H( j, s)),
where j and s are some number terms.

(iii) No scope of an ∃-quantifier in G contains an H.

Here G[a, b, H[a]] is understood to denote a formula substituted for an abstract
formula H[a] of the form

{x, y}ρ((x <I a; H(x, y))).

We give inference rules called H-rules as follows:

....
G[i, t, H[i]]

H(i, t) H-I ,

....
H(i, t)

G[i, t, H[i]] H-E ,

where i and t are arbitrary number terms.
6. ρ-elimination:

....
ρ( j <I i; H( j, s))

( j <I i ⊃ H( j, s)) ∧ (( j <I i ⊃ 0 = 1) ⊃ 0 = 1)
ρ-E ,

where i, j, and s are arbitrary number terms.
Note that ρ-introduction is not defined as an inference rule in TRDB.

Remark 2.2

1. TRDB is specified with a certain formula G and a certain primitive recursive
ordered set I . So, TRDB should be written as TRDB(G,I ) to be precise.

2. Let TRDB− be the system obtained from TRDB by removing the inference
rule TRG(G,I ) and the axiom for the well-foundedness of I . Since the bar in-
duction defined in Definition 2.1 (4) implies the mathematical induction, every
formula provable in HA is provable in TRDB−.

3. In this paper, we confine ourselves to the case where the order type of I is
smaller than ε0. So we can remove the axiom for the well-foundedness of I ,
since it is provable in HA.

4. When a term t is substituted for a variable x in a formula, t must have the same
arity as that of x. In what follows, we assume that the above condition is satis-
fied whenever one considers such a substitution.

5. ρ( j <I i; H( j, s)) and ρ-E entail the following restriction: no deduction �
contains an inference rule

....
j <I i ⊃ H( j, s)

....
( j <I i ⊃ 0 = 1) ⊃ 0 = 1

( j <I i ⊃ H( j, s)) ∧ (( j <I i ⊃ 0 = 1) ⊃ 0 = 1)....

∧-I ,

where the conclusion of the ∧-I occurs in a formula G[i, t, H[i]] contained in
�. The reason why ρ( j <I i; H( j, s)) and ρ-E are introduced in the definition
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of TRDB is only that TRDB should satisfy the above restriction. In fact, except
the restriction, there is no essential difference between TRDB and that without
ρ( j <I i; H( j, s)) and ρ-E. The restriction essentially has an effect only on
Proposition 2.4 (2).

We shall define a degree of a formula of TRDB. The definition is taken after the de-
gree of a type-form in [5].

Definition 2.3

1. For a primitive recursive well-ordered set I (= (I,<I )) which we assume in
defining TRDB, we define I ∗ = (I∗,<∗) as follows:

I∼ = {i∼ ; i ∈ I} ; I∗ = I ∪ I∼ ∪ {∞} ; i <∗ i∼ <∗ j <∗ ∞ when i <I j.

Moreover, we define I∗ = (I∗,<∗) so that I∗ = ωI ∗
, where we identify I ∗ with

the ordinal type of itself.
2. Let A be an H-formula, that is, a formula which contains the predicate constant

H. Let H denote an occurrence of the predicate constant H in A. Then we define
r(H; A) (∈ I∗) as the following conditions.

(i) Suppose that H is an occurrence in a subformula of A which is of the form
ρ( j <I i; H( j, s)).

(i-1) If i is closed, then r(H; A) = i;

(i-2) If i contains a variable, then r(H; A) = ∞.

(ii) Suppose that H occurs in a subformula of the form H( j, s) and that H does
not satisfy (i).

(ii-1) If j is closed, then r(H; A) = j∼;

(ii-2) If j contains a variable, then r(H; A) = ∞.

3. Let A0 be a formula, and let A be an occurrence of a subformula in A0. Then
we define the degree of A in A0 denoted by d(A; A0) (∈ I∗) as follows:

(i) if A is an atomic formula except an H-formula, d(A; A0) = 1;

(ii) d(B ∧ C; A0) = max(d(B; A0), d(C; A0))+ 1, where B and C are occur-
rences in B ∧ C;

(iii) d(B ∨ C; A0) = max(d(B; A0), d(C; A0))+ 1, where B and C are occur-
rences in B ∨ C;

(iv) d(B ⊃ C; A0) = max(d(B; A0), d(C; A0)) + 1, where B and C are oc-
currences in B ⊃ C;

(v) d(∀xB[x];A0)= d(B[x];A0) + 1, where B[x] is an occurrence in ∀xB[x];

(vi) d(∃xB[x];A0) = d(B[x];A0) + 1, where B[x] is an occurrence in ∃xB[x];

(vii) d(ρ( j <I i; H( j, s)); A0) =
d(( j <I i ⊃ H( j, s)) ∧ (( j <I i ⊃ 0 = 1) ⊃0 = 1); A0) + 1,

where ( j <I i ⊃ H( j, s))∧(( j <I i ⊃ 0 = 1) ⊃0 = 1) is an occurrence in
ρ( j <I i; H( j, s));

(viii) d(H( j, s); A0) = ωr(H;A0), where H is an occurrence in H( j, s).

Put d(A0) = d(A0; A0), and call this the degree of A0.
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Proposition 2.4

1. Let G[i, t, H[i]] be the formula which determines the axiom TRD(G,I ). If i is
closed, then d(G[i, t, H[i]]) <∗ d(H(i, t)).

2. Let A be a closed formula derived from a formula B by an introduction rule.
Then d(B) <∗ d(A).

Proof:

1. By Definitions 2.1 and 2.3, d(H(i, t)) = ωi∼ and d(G[i, t, H[i]]) = ωi · m + n
for some integers m and n. Thus d(G[i, t, H[i]]) <∗ d(H(i, t)) holds by Defi-
nition 2.3.

2. (i) Suppose that A (= B ∧ C) is derived from closed formulas B and C by a
∧-I. By Definition 2.3 (2), r(H; B) = r(H; A) for any H in B, and r(H;C) =
r(H; A) for any H in C. Therefore, by Definition 2.3 (3), d(B) and d(C) are
smaller than d(A).
(ii) All other cases can be proved the same way as (i), using the above (1). �

3 Strong normalization theorem for TRDB In this section, we define reductions
of TRDB-deductions, and we show that every deduction is strongly normalizable for
these reductions.

Definition 3.1 A deduction � is said to be elementary if � has neither any live
assumption, any ∀-rule, any ∃-rule, any H-rule, any ρ-E, any BI-rule, nor any free
variable.

Remark 3.2 For any elementary formula R which is closed and true, there exists
an elementary deduction whose consequence is R. For any elementary formula R
which is closed and true, we fix an elementary deduction 	R whose consequence is
R.

Definition 3.3 For any deduction �, we define the contraction of � in the follow-
ing (1) – (6). We let ‘� −→ �’ mean that � is contracted to �.

1. If � is an axiom or a live assumption, then � is not contracted.
2. If � has a logical inference rule as the last inference rule, then we follow Defi-

nition 4.1.3. in [2], that is, we give the contraction of � as follows.
2.1. Proper contraction:

.... �1

A1

.... �2

A2

A1 ∧ A2
∧-I

Ai
∧-E →

.... �i

Ai ;

[A]/.... �

B
A ⊃ B

⊃ -I

.... 


A
B

⊃ -E →

.... 


A.... �

B ;

.... 


A[a]
∀xA[x]

∀-I

A[t]
∀-E →

.... 
[t/a]

A[t] ;

.... �

Ai

A1 ∨ A2
∨-I

[A1]/
.... 
1

B

[A2]/
.... 
2

B

B
∨-E →

.... �

Ai.... 
i

B ;

.... �

A[t]
∃xA[x]

∃-I

[A[a]]/ .... 


B
B

∃-E →

.... �

A[t].... 
[t/a]

B .
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Here i =1 or 2.
2.2. Permutative contraction:

.... �

A1 ∨ A2

[A1]/
.... 
1

B

[A2]/
.... 
2

B

B
∨-E

.... �1

C1 · · ·

.... �n

Cn

D
R →

.... �

A1 ∨ A2

[A1]/
.... 
1

B

.... �1

C1 · · ·

.... �n

Cn

D
R

[A2]/
.... 
2

B

.... �1

C1 · · ·

.... �n

Cn

D
R

D
∨-E ;

.... �

∃xA[x]

[A[a]]/
.... 


B
B

∃-E

.... �1

C1 · · ·

.... �n

Cn

D
R →

.... �

∃xA[x]

[A[a]]/
.... 


B

.... �1

C1 · · ·

.... �n

Cn

D
R

D
∃-E

.

Here R is an elimination rule; B is the major premise of R; n = 0, 1 or 2.

2.3. Immediate simplification:
.... �

A1 ∨ A2

.... 
1

B

.... 
2

B
B ∨-E →

.... 
i

B
;

.... �

∃xB[x]

.... 


B
A ∃-E →

.... 


B
.

Here 
i and 
 have no live assumption which is discharged by the last in-
ference rule of �. Such an elimination is said to be redundant.

3. If � has a ⊥-E as the last inference rule, then � is contracted as follows:

.... �

0 = 1
A ∧ B

⊥-E →

.... �

0 = 1
A

⊥-E

.... �

0 = 1
B

⊥-E

A ∧ B
∧-I

,

.... �

0 = 1
A ∨ B

⊥-E →

.... �

0 = 1
A

⊥-E

A ∨ B
∨-I

,

.... �

0 = 1
A ⊃ B

⊥-E →

.... �

0 = 1
B

⊥-E

A ⊃ B
⊃ -I

,

.... �

0 = 1
∀xA[x]

⊥-E →

.... �

0 = 1
A[x]

⊥-E

∀xA[x]
∀-I

,

.... �

0 = 1
∃xA[x]

⊥-E →

.... �

0 = 1
A[0]

⊥-E

∃xA[x]
∃-I

.

4. If � has an H-E as the last inference rule, then we give the contraction of � as
follows: .... �

G[i, t, H[i]]
H(i, t) H-I

G[i, t, H[i]] H-E →
.... �

G[i, t, H[i]].

5. If � has a BI-rule as the last inference rule and if � is of the form
.... �

∀z(R[z] ⊃ A[z])

.... 


∀z(∀xA[z ∗ x] ⊃ A[z])
A[t] BI

,

where t is closed, then � satisfies the following properties (5.1) and (5.2).
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5.1. If R[t] is true, then

� →

.... �

∀z(R[z] ⊃ A[z])
R[t] ⊃ A[t] ∀-E

.... 	R[t]

R[t]
A[t]

⊃ -E
,

where 	R[t] is the deduction fixed as in Remark 3.2.
5.2. If R[t] is false, then

� →

.... 


∀z(∀xA[z ∗ x] ⊃ A[z])
∀xA[t ∗ x] ⊃ A[t]

∀-E

.... �

∀z(R[z] ⊃ A[z])

.... 


∀z(∀xA[z ∗ x] ⊃ A[z])
A[t ∗ a]

BI

∀xA[t ∗ x]
∀-I

A[t]
⊃ -E.

6. Otherwise, any deduction cannot be contracted.

Definition 3.4

1. Suppose that 
 is a subdeduction of a deduction �, � is a deduction with 
 →
�, and that � is the deduction obtained from � by replacing 
 by �. Then
we say that � is (one-step-) reduced to �. The last inference rule of the above
deduction 
 is called the reduction point of � � �, where � � � means that
� is one-step-reduced to �.

2. If there exists a finite sequence of deductions such that � = �0 � · · · � �n =
�, then we say that � is reduced to �. � �� � means that � is reduced
to � or � = �. If {�n}n<M (0 < M ≤ ω) is a sequence such that �0 = �

and ∀n (n + 1 < M =⇒ �n � �n+1), then we call this sequence a reduction
sequence of �.

Definition 3.5 A deduction � is said to be strongly normalizable if every reduction
sequence of � is finite. � ∈ SN means that � is strongly normalizable. If there exists
a deduction � such that � �� � and if there is no deduction to which � is reduced,
then we call � a normal form of �.

We will subsequently prove the strong normalizability in TRDB.

Theorem 3.6 Any deduction in TRDB is strongly normalizable.

Preceding the proof, we give definitions and results. Using induction on the structure
of a deduction, we establish the following definition.

Definition 3.7 For any deduction �, � is said to be closed if � satisfies the fol-
lowing conditions.

1. If � consists only of a live assumption [A] or an axiom A, then A is a closed
formula.

2. If � is of the form .... �

A[a]
∀xA[x] ∀-I ,
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then

.... �[t/a]

A[t] is closed for any closed term t.

3. If � is of the form
.... �

∃xB[x]

[B[b]]/.... �

A
A ∃-E ,

then � is closed and

[B[t]].... �[t/b]

A is closed for any closed term t.

4. If � is not of the form in (1) – (3) and if � is of the form

.... �1

A1 · · ·
.... �n

An

A R ,

then A is a closed formula and �i is a closed deduction for any i ≤ n.

Definition 3.8 Let � be a deduction, and let a be a free variable contained in �. If
a is not an eigenvariable for any inference rule in �, then a is said to be strictly free
in �.

Lemma 3.9

1. If � is a closed deduction, then there is not any strictly free variable in �, in
particular, Cnsq(�) and all live assumptions of � are closed formulas.

2. For any deduction �, there exists a closed deduction � obtained from � by
substituting suitable closed terms for all strictly free variables in �. We call �

a closure of �.
3. If � and � are closed deductions, and if � has a live assumption which is

of the form [Cnsq(�)], then �[�/Cnsq(�)] is a closed deduction, where
�[�/Cnsq(�)] is the deduction obtained from � by substituting � for the live
assumption [Cnsq(�)].

4. If � is closed and � � �, then � is closed.

Proof: Using induction on the structure of �, this lemma can be proved easily. �

Lemma 3.10

1. Let � and � be deductions with � � �. Then any strictly free variable in �

is not an eigenvariable for any inference rule in �.
2. Let � and � be deductions with � � �, let a be a strictly free variable in �,

let �[t/a] be the deduction obtained from � by substituting a term t for a, and
let �∗ be the deduction to which �[t/a] is reduced by the same reduction as
� � �. Then �∗ is the deduction obtained from � by substituting t for a.

3. Let � be a deduction, let a be a strictly free variable in �, and let �[t/a] be
the deduction obtained from � by substituting a term t for a. If �[t/a] ∈ SN,
then � ∈ SN.
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Proof: (1) is trivial. (2) can be proved easily by induction on the structure of �.
Let {�i}i<M be a reduction sequence of �. By (2) in this lemma, there exists a re-
duction sequence {�i[t/a]}i<M where �i[t/a] is the deduction obtained from �i by
substituting the term t for the free variable a. So, M is finite. �

Lemma 3.11 If every closed deduction is strongly normalizable, then so is every
deduction.

Proof: Let � be a deduction. We prove � ∈ SN by induction on the number k of
strictly free variables in �.

(i) If k = 0, then � ∈ SN since � is a closed deduction by Lemma 3.9 (2).
(ii) Suppose k > 0. Let �[t/a] be the deduction obtained from � by substituting

a closed term t for a strictly free variable a in �. By the induction hypothesis,
�[t/a] ∈ SN. Therefore, � ∈ SN by Lemma 3.10 (3). �

Definition 3.12 (Troelstra [2]) Let {Si}i≤n be a sequence of (occurrences of) for-
mulas in a deduction �. This sequence is called a segment if it satisfies the following
conditions.

(i) S1 is not the conclusion of an ∃-E or a ∨-E.
(ii) If i < n, then Si is the minor premise of an ∃-E or a ∨-E whose conclusion is

Si+1.
(iii) Sn is not the minor premise of an ∃-E or a ∨-E.

If there is a segment {Si}i≤n such that Sn = Cnsq(�), we call this an end segment of
�. If a deduction � does not end with an I-rule, � is said to be neutral.

We define a reducibility for a deduction, referring to Definition 4.1.9. in [2] and Def-
inition 5.2. in [5].

Definition 3.13 For any closed formula A, we define a reducibility set Red(A)

which is a set of deductions whose consequence is A. The definition of � ∈ Red(A)

is primarily given by transfinite induction on the degree of A; for deductions � with
A = Cnsq(�) of fixed complexity, the definition of � ∈ Red(A) takes the form of a
generalized inductive definition.

1. Suppose that � is of the form

.... �1

A1 · · ·
.... �n

An

A R-I ,

where R-I is an introduction rule. Then � ∈ Red(A) if � satisfies the following
conditions (1.1) – (1. 4).

1.1. If R is ∧, ∨, or H, then �1 ∈ Red(A1), . . . ,�n ∈ Red(An).
1.2. If � is of the form

[B]/.... �1

C
B ⊃ C

⊃ -I ,
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then �1[�/B] ∈ Red(C) for any deduction � with � ∈ Red(B).
1.3. If � is of the form

.... �1

B[b]
∀xB[x] ∀-I ,

then �1[t/b] ∈ Red(B[t]) for any closed term t.
1.4. If � is of the form

.... �1

B[t]
∃xB[x] ∃-I ,

then �1[t/t] ∈ Red(B[t]) for any closure t of t.

2. Suppose that � is neutral. Then � ∈ Red(A) if � satisfies the following con-
ditions (2.1) – (2.3).

2.1. For any deduction � with � � �, � ∈ Red(A).
2.2. If � is of the form

.... 


A1 ∨ A2

[A1]/.... �1

A

[A2]/.... �2

A
A ∨-E ,

then � satisfies the following: (∨1) 
 ∈ SN; (∨2) �1,�2 ∈ Red(A); (∨3)
for any 
1 with 
 �� 
1 and for any 
2 which is a subdeduction imme-
diately above an end segment of 
1 with Cnsq(
2) = Ai, �i[
2/Ai] ∈
Red(A).

2.3. If � is of the form
.... 


∃xB[x]

[B[b]]/.... �

A
A ∃-E ,

then � satisfies the following: (∃1) 
 ∈ SN; (∃2) � ∈ Red(A); (∃3) for
any 
1 with 
 �� 
1 and for any 
2 which is a subdeduction immedi-
ately above an end segment of 
1 with Cnsq(
2) = B[t], �[t/b][
2/B[t]]
∈ Red(A).

For a deduction �, � ∈ Red means that � ∈ Red(A) for some closed formula A. �

is said to be reducible if � ∈ Red.

Proposition 3.14 The reducibility set Red is well defined.

Proof: It can be proved by transfinite induction over the definition of Red, using
Proposition 2.4. �

Lemma 3.15 For any deductions � and �, the following properties hold.

(CR 1) � ∈ Red implies � ∈ SN.
(CR 2) If � ∈ Red and � � �, then � ∈ Red.
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Proof: The proof goes similarly to that of Lemma 4.1.12. and to that of Theorem
4.1.13. in [2]. We prove this lemma by transfinite induction over the definition of
Red.

Case 1 (CR 1): Suppose that � ∈ Red.

1. If � is of the form .... �1

A[a]
∀xA[x] ∀-I ,

then �1[t/a] ∈ Red(A[t]) for any closed term t. Since d(A[t]) <∗ d(∀A[x]),
�1[t/a] ∈ SN by the induction hypothesis. By Lemma 3.10 (3), �1 ∈ SN.
Therefore, � ∈ SN because the last inference of � is an introduction.

2. If � has an introduction rule except ∀-I, then the proof goes similarly to that
of (1).

3. If � is neutral, then ∀�(� � � =⇒ � ∈ Red). Then it holds that ∀�(� �

� =⇒ � ∈ SN) by the induction hypothesis. So � ∈ SN.

Case 2 (CR 2): Suppose that � � � and � ∈ Red.

1. If � is of the form .... �1

A[a]
∀xA[x] ∀-I ,

then � is of the form .... �1

A[a]
∀xA[x] ∀-I ,

where �1 � �1. By the definition of the reducibility, �1[t/a] ∈ Red for any
closed term t. By the induction hypothesis, �1[t/a] ∈ Red for any closed term
t. Therefore � ∈ Red by the definition.

2. If � has an introduction rule except ∀-I, then the proof goes similarly to that
of (1).

3. If � is neutral, then this result holds trivially. �

If � ∈ SN, we can construct a well-founded tree T� consisting of reduction sequences
of �. For any node t in T , the number of branches of t is finite, and hence, as is well
known, T is a finite tree. So, for any deduction � with � ∈ SN we let ν(�) denote
the number of nodes in T�.

Lemma 3.16 Let � be a deduction of the form

.... �1

A1 · · ·
.... �n

An

A R ,

where A is a closed formula and R is not an introduction rule nor a BI-rule. Then �

is reducible if the following conditions are satisfied.

(i) �1, . . . ,�n ∈ SN.
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(ii) If R is either a ∧-E, an ⊃ -E, a ∀-E, a ⊥-E or an H-E, then �1, . . . ,�n ∈ Red.

(iii) If R is a ∨-E, then � satisfies Definition 3.13 (2.2).

(iv) If R is an ∃-E, then � satisfies Definition 3.13 (2.3).

Proof: The proof goes similarly to that of Lemma 4.1.16. in [2]. To a deduction �

satisfying the above conditions, we assign an induction value (α, β, γ, δ) as follows:

(a) α is the degree o Cnsq(�);

(b) β = ν(�1) if R is an elimination rule; β = 0 otherwise;

(c) γ is the number of inference rules of �1 if R is an elimination rule; γ = 0 oth-
erwise;

(d) δ is the sum of ν(�1), . . . , ν(�n).

Let ≺ be the lexicographical order on the induction values. We prove the lemma by
induction on the order ≺. By the conditions (iii) and (iv), it suffices to show that

∀�(� � � =⇒ � ∈ Red(A)).

We deal only with the case where R is an H-E. All other cases can be proved in the
same way as in the proof of Lemma 4.1.16. in [2].

1. Suppose that � is of the form

.... �1

H(i, t)
G[i, t, H[i]] H-E ,

and that � is of the form
.... �1

H(i, t)
G[i, t, H[i]] H-E ,

where �1 � �1. Since �1 ∈ Red, �1 ∈ Red by (CR 2) in Lemma 3.15. Let
ε (= (α, β, γ, δ)) be the induction value of �, and let ε′ (= (α′, β′, γ ′, δ′)) be
the induction value of �. Then ε′ ≺ ε since α = α′ and β′ < β. Therefore, by
the induction hypothesis, � ∈ Red.

2. Suppose that the following scheme holds,

� =

.... �1

H(i, t)
G[i, t, H[i]] H-E =

.... 


G[i, t, H[i]]
H(i, t) H-I

G[i, t, H[i]] H-E ,

and that � = 
. Since �1 ∈ Red, � ∈ Red by Definition 3.13 (1.1). �

Lemma 3.17 Every elementary deduction is reducible.

Proof: It suffices to show the following proposition P .
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P : Let � be a closed deduction with live assumptions [A1], . . . , [An], which
has neither any ∀-rule, any ∃-rule, any H-rule, any ρ-E, nor any BI-rule, and
let �i (i = 1, . . . , n) be a reducible deduction with Cnsq(�i) = Ai. Then
�[�1/A1, . . . ,�n/An] is reducible, where �[�1/A1, . . . ,�n/An] is the de-
duction obtained from � by substituting �1, . . . ,�n for [A1], . . . , [An].

Using induction on the structure of � and Lemma 3.16, we can show P easily. �

Lemma 3.18 Let � be a deduction of the form
.... �1

∀z(R[z] ⊃ A[z])

.... �2

∀z(∀xA[z ∗ x] ⊃ A[z])
A[t] BI ,

where A[t] is a closed formula. Then � is reducible if �1 and �2 are reducible.

Proof: We fix formulas R[a] and A[a], where R[a] is a monotone formula (see Def-
inition 2.1 (4)) and A[a] does not contain any free variable except a. Let A [s] denote
the following unary predicate, where s ranges over finite sequences of integers.

A [s]: For any closed term t expressing the integer assigned to s by the bijection
� fixed in Definition 2.1 (4), for any reducible deduction � with Cnsq(�) =
∀z(R[z] ⊃ A[z]) and for any reducible deduction � with Cnsq(�) =
∀z(∀xA[z ∗ x] ⊃ A[z]), a deduction �t of the form

.... �

∀z(R[z] ⊃ A[z])

.... �

∀z(∀xA[z ∗ x] ⊃ A[z])
A[t] BI

is reducible.

Since ∀sA [s] implies our result, we show ∀sA [s]. Let R [s] be a unary predicate,
where s ranges over finite sequences of integers, such that R [s] is equivalent to R[t]
for any finite sequence of integers s and for any closed term t expressing the integer
assigned to s by �. By using (informal) bar induction on s, in order to show ∀sA [s],
it suffices to establish the following properties.

Hyp 1: ∀ f ∃nR [ f �n].
Hyp 2: ∀ f ∀n (R [ f �n] =⇒ ∀m > l R [ f �m]).
Hyp 3: ∀s (R [s] =⇒ A [s]).
Hyp 4: ∀s (∀nA [s∗n] =⇒ A [s]).

Here, s∗n denotes the finite sequence 〈s1, . . . , sm, n〉 for any finite sequence s (=
〈s1, . . . , sm〉) and any integer n. Since Hyp 1 and Hyp 2 are obvious from the con-
dition of the monotone formula R[a], we show Hyp 3 and Hyp 4.

Case 1 (Hyp 3): Suppose that R [s] is true. Then R[t] is true for any closed term t
corresponding to s. We prove that �t ∈ Red by induction on ν(�) + ν(�).

3.1. Suppose ν(�) + ν(�) = 0. For any deduction 
 with �t � 
, 
 is of the
form .... �

∀z(R[z] ⊃ A[z])
R[t] ⊃ A[t] ∀-E

.... 	R[t]

R[t]
A[t]

⊃ -E .
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Since 	R[t] is an elementary deduction (see Definition 3.3 (5.1)), 	R[t] is re-
ducible by Lemma 3.17. So, by Lemma 3.16, 
 ∈ Red. Therefore, �t ∈ Red
by Definition 3.13.

3.2. Suppose ν(�) + ν(�) > 0. For any deduction 
 with �t � 
, 
 is either in
(3.1) or of the form

.... �′

∀z(R[z] ⊃ A[z])

.... �′

∀z(∀xA[z ∗ x] ⊃ A[z])
A[t] BI ,

where (� � �′ and � = �′) or (� = �′ and � � �′). If 
 is of the form in
(3.1), the proof goes the same way as in (3.1). Otherwise, 
 ∈ Red follows from
the induction hypothesis on ν(�) + ν(�). Therefore, �t ∈ Red. By (3.1) and
(3.2) in this lemma, we have shown that A [s].

Case 2 (Hyp 4): Suppose ∀nA [s∗n]. Let t be a closed term corresponding to s. We
prove that �t ∈ Red by induction on ν(�) + ν(�).

4.1. Suppose ν(�) + ν(�) = 0. Let 
 be a deduction with � � 
. 
 is either of
the same form as in (3.1) or is of the form


 =

.... �

∀z(∀xA[z ∗ x] ⊃ A[z])
∀xA[t ∗ x] ⊃ A[t] ∀-E

.... (�t)[t∗a/t]

A[t ∗ a]
∀xA[t ∗ x] ∀-I

A[t]
⊃ -E .

If 
 is of the same form as in (3.1), the proof goes the same way as in (3.1).
Otherwise, by the hypothesis ∀nA [s∗n], (�t)[t′/t] ∈ Red for any integer n and
for any closed term t′ corresponding to s∗n. By Definition 3.13 (1.3), and by
Lemma 3.16, 
 ∈ Red. Therefore, �t ∈ Red.

4.2. ν(�) + ν(�) > 0. The proof goes the same way as in (3.2).
By (4.1) and (4.2) in this lemma, we can show A [s]. �

Lemma 3.19 Let � be a deduction whose consequence is closed, and let a be a
strictly free variable in �. If �[t/a] ∈ Red for any closed term t, then � ∈ Red.
Here, �[t/a] is the deduction obtained from � by substituting t for a.

Proof: We consider a deduction � which satisfies the following condition (i) or
(ii): (i) � ∈ Red; (ii) Cnsq(�) is closed and there exists a strictly free variable a
in � such that �[t/a] ∈ Red for any closed term t. Such a deduction � is said
to be prereducible. To a prereducible deduction �, we assign an induction value
ε(�) = (α, β, γ) as follows:

1. α is the degree of Cnsq(�);
2. β = ν(�);
3. γ is the number of inference rules of �.

Note that since �[t/a] ∈ SN by (CR 1), � ∈ SN by Lemma 3.10 (3). Let ≺ be the
lexicographical order of the induction values. We prove that every prereducible de-
duction is reducible by induction on the order ≺.
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1. Suppose that � is not neutral.

1.1 Suppose that � is of the form

[B]/.... �

C
B ⊃ C

⊃ -I .

Since �[t/a] ∈ Red,�[t/a][
/B] ∈ Red for any closed term t and for any

 ∈ Red(B). Since ε(�[
/B]) ≺ ε(�), �[
/B] ∈ Red by the induction
hypothesis. So, � ∈ Red.

1.2 Suppose that � is of the form

.... �

B[s]
∃xB[x] ∃-I .

1.2.1 If s does not contain a as a free variable, then (�[t/a])[s/s] = (�[s/s])

[t/a] and (�[t/a])[s/s] ∈ Red for any closed term t and for any clo-
sure s of s. Since ε(�[s/s]) ≺ ε(�), and by the induction hypothesis,
�[s/s] ∈ Red for any closure s of s. So, � ∈ Red.

1.2.2 Suppose that s contains a as a free variable in s. For the term s (=
s[a]), let s[a] denote a term obtained from s by substituting closed
terms for all free variables except a. If s[t] denotes (s[a])[t/a] and
s[t] denotes (s[a])[t/a], then (�[t/a])[s[t]/s[t]] ∈ Red for any closed
term t and for any s[a], since �[t/a] ∈ Red for any closed term t.
In this case, (�[t/a])[s[t]/s[t]] = (�[s[a]/s])[t/a] = �[s[t]/s]. Therefore,
�[s/s] ∈ Red for any closure s of s. So, � ∈ Red.

1.3 The other cases where � is not neutral can be proved in the same way as
in (1.1) and (1.2) in this lemma.

2. Suppose that � is neutral.

2.1 We show ∀�(� � � =⇒ � ∈ Red). Let � be a deduction with � � �.
If a is a strictly free variable in �, then a is not an eigenvariable in �

by Lemma 3.10 (1). For any closed term t, �[t/a] can be obtained from
�[t/a] by the same reduction as � � �. So, by (CR 2), �[t/a] ∈ Red
for any closed term t. Since ε(�) ≺ ε(�), � ∈ Red by the induction hy-
pothesis.

2.2 Suppose that � is of the form

.... �

∃xB[x]

[B[b]]/.... �

A
A ∃-E .

We show the following: (∃1) � ∈ SN; (∃2) � ∈ Red(A); (∃3) for any
�1 such that � �� �1 and for any�2 which is a subdeduction im-
mediately above an end segment {Si}i≤n of �1 with Cnsq(�2) = B[s],
�[s/b][�2/B[s]] ∈ Red(A).
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Proof of (∃1): Since � ∈ SN, � ∈ SN.

Proof of (∃2): Since ε(�) ≺ ε(�), � ∈ Red by the induction hypo-
thesis.

Proof of (∃3): We fix �1, �2 and {Si}i≤n, and let �1 be of the form

.... 
n−1

Cn−1 · · ·

.... 
1

C1 · · ·

.... �2

B[s]
S1

∃-I · · ·
S2

Q1-E
....

Sn−1 · · ·
Sn

Qn−1-E ,

where n ≥ 1 and Qi-E is either a ∨-E or an ∃-E for any 1 ≤ i < n.
Note that Si has the same form as ∃xB[x] for any i ≤ n. Let 
 be a
deduction obtained from � by replacing � by �1, and let 
∗ be a de-
duction obtained from 
 by (n − 1 times) permutative contractions along
{S1, . . . , Sn}. Then

� �� 
 �� 
∗,

and 
∗ is of the form

.... 
n−1

Cn−1 · · ·

.... 
1

C1 · · ·

.... �2

B[s]
S1

∃-I

[B[b]]/.... �

A
A ∃-E · · ·

A
Q1-E

....
A · · ·

A
Qn−1-E .

If a is a strictly free variable in �, then a is not an eigenvariable in 
∗ by
Lemma 3.10 (1), and hence, a is not an eigenvariable in �[s/b][�2/B[s]].
Let t be a closed term. Since �[t/a] ∈ Red, 
∗[t/a] ∈ Red by (CR 2). So,
�[s/b][�2/B[s]][t/a] ∈ Red by (CR 2) and Definition 3.13 (2.3). There-
fore, since ε(�[s/b][�2/B[s]]) ≺ ε(
∗) � ε(
) � ε(�), �[s/b][�2/B[s]] ∈
Red by the induction hypothesis.

2.3 If � has a ∨-E as the last inference rule, then the proof goes similarly to
that of (2.2) in this lemma. �

Lemma 3.20 Let � be a deduction whose consequence is closed, and let �a (=
a1, . . . , an) be strictly free variables in �. Then � ∈ Red whenever �[�t/�a] ∈ Red
for any closed terms �t (= t1, . . . , tn), where �[�t/�a] denotes the deduction obtained
from � by substituting ti for ai (i = 1, . . . , n).

Proof: Using induction on n, we can easily show this lemma from Lemma 3.19. �
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Remark 3.21 Let � be a deduction whose consequence is closed, and let �x be the
set of all strictly free variables in �. By Lemma 3.20, in order to show � ∈ Red, it
suffices to find a subset �a of �x such that �[�t/�a] ∈ Red for any closed terms �t. Applying
this property, we show the following lemma.

Lemma 3.22 Let � be a closed deduction which has live assumptions [A1], . . . ,
[An]. If �i (i = 1, . . . , n) is a deduction such that Cnsq(�i) = Ai and �i ∈ Red,
then �[�1/A1, . . . ,�n/An] is reducible.

Proof: We prove this lemma by induction on the structure of �.

1. If � consists only of a live assumption [A] or an axiom A, then it is immediate.
2. If � is not neutral, then it follows immediately from Definition 3.13 (1).
3. Suppose that � is neutral and that � has a rule R as the last inference rule.

3.1. If R is a BI-rule, then it follows immediately from Lemma 3.18.
3.2. Suppose that � is of the form

.... �

∃xB[x]

[B[b]]/.... �

A
A ∃-E .

Let �∗ = �[�1/A1, . . . ,�n/An], and let �∗ = �[�1/A1, . . . ,�n/An].
By Lemma 3.16, in order to show �[�1/A1, . . . ,�n/An] ∈ Red, it suf-
fices to show the following: (∃1) �∗ ∈ SN; (∃2) �∗ ∈ Red(A); (∃3)
for any �1 such that �∗ �� �1 and for any �2 which is a subdeduc-
tion immediately above an end segment of �1 with Cnsq(�2) = B[s],
�∗[s/b][�2/B[s]] ∈ Red(A).

Proof of (∃1): By the induction hypothesis, �∗ ∈ Red. Therefore,
�∗ ∈ SN by (CR 1).

Proof of (∃2): Let [B[b]] be the live assumption of � discharged by
the last inference rule ∃-E of �. Since b is the eigenvariable of the
last inference rule ∃-E of �, b is not an eigenvariable in � or �∗. By
Definition 3.13, �[t/b] is a closed deduction for any closed term t, where
�[t/b] is the deduction obtained from � by substituting t for the free vari-
able b in the live assumption [B[b]]. Therefore, by the induction hypothe-
sis, �[t/b] satisfies this lemma. So, �[t/b][�1/A1, . . . ,�n/An] ∈ Red for
any closed term t. Since �[t/b][�1/A1, . . . ,�n/An] = �∗[t/b], �∗[t/b] ∈
Red for any closed term t. Therefore, by Lemma 3.20, �∗ ∈ Red.

Proof of (∃3): By (CR 2), and by Definition 3.13 (2.3), �2[s/s] ∈ Red
for any closure s of s, whereas for the closed term s, �[s/b] is the closed
deduction. Therefore, by the induction hypothesis, �[s/b] satisfies this
lemma. So, �∗[s/b][�2[s/s]/B[s]] ∈ Red for any closure s of s. Since any
free variable in the term s is not an eigenvariable in �∗[s/b][�2/B[s]], by
Lemma 3.20, �∗[s/b][�2/B[s]] ∈ Red.
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3.3. If R is a ∨-E, then the proof goes similarly to that of (3.2).

3.4. If R is the other rule, then it follows immediately from Lemma 3.16. �

Proof of the strong normalization theorem: By Lemma 3.22, every closed deduc-
tion is reducible. So every closed deduction is strongly normalizable by (CR 1). By
Lemma 3.11, every deduction is strongly normalizable. �

Remark 3.23 In [5], Yasugi and Hayashi introduced the term-system TRM (the
system of TeRM). TRM consists of parametric types called type-forms and terms
called term-forms, which are used to carry out a certain abstraction of computation to
proofs formalized in TRDB. The authors of [5] also proved the strong normalization
theorem of type-forms and term-forms in TRM. In order to prove the strong normal-
ization theorem for TRM, the authors of [5] needed a kind of restriction: R -strategy
and ρ-strategy for reductions of type-forms; B-strategy and σ-strategy for reductions
of term-forms. However, the proof in this paper needs neither.

It is known that the reductions in Definition 3.3 do not satisfy the Church-Rosser prop-
erty. In fact, the immediate signification of ∨-E can make a deduction reduce in two
ways (see [2]). We can, however, avoid this shortcoming by applying a suitable re-
striction, for instance, removing immediate signification of ∨-E. If we confine our-
selves to such a case, the Church-Rosser property holds in TRDB.

Lemma 3.24 Let � be any deduction, and let � and � satisfy � �� � and
� �� �. Then there exists a deduction 
 such that � �� 
 and � �� 
.

Proof: The proof goes the same way as the well-known method. �
From this lemma, we immediately obtain the following theorem.

Theorem 3.25 For any deduction � in TRDB, � is uniquely normalized to a de-
duction.

4 Consistency of TRDB In this section, we establish the consistency of TRDB,
using the strong normalization theorem, Theorem 3.6, and paths used to establish the
consistency of HA in [2]. We also prove the existence property and the disjunction
property of TRDB, using the strong normalization theorem and the paths.

Definition 4.1 (Troelstra [2])

1. For a deduction �, a finite sequence {Ai}i≤n consisting of (occurrences of) for-
mulas in � is called a path of � if it satisfies the following conditions.

(i) A1 is either a live assumption, an axiom, an assumption discharged by an
⊃-I, or the conclusion of a BI-rule.

(ii) For any i < n, Ai is neither Cnsq(�), the minor premise of any ⊃-E, any
premise of any BI-rule, the major premise of any ∨-E which is redundant,
nor the major premise of any ∃-E which is redundant.

(iii) For any i < n, if Ai is not the major premise of an ∨-E or an ∃-E, then
Ai+1 is a formula that occurs immediately below Ai in �.
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(iv) For any i < n, if Ai is the major premise of a ∨-E or an ∃-E, then Ai+1

is one of the assumptions discharged by the elimination.

(v) An is either Cnsq(�), the minor premise of an ⊃-E, one of the premises
of a BI-rule, the major premise of a ∨-E which is redundant, or the major
premise of an ∃-E which is redundant.

2. A path of � whose end formula is Cnsq(�) is called an end path of �.

For a path {Ai}i≤n, if there exists an i (≤ n) such that Ai is either the conclusion or a
premise of an inference R, then we say that {Ai}i≤n contains R.

For any deduction �, we let �N denote a normal form of a closure of �, and let
rB (�) denote the number of end paths of � whose initial formulas are conclusions
of BI-rules.

Lemma 4.2 Let � be a deduction whose consequence is an atomic formula except
an H-formula. Then rB (�N ) = 0.

Proof: Suppose that �N has an end path {Ai}i≤n such that A1 is the conclusion of
a BI-rule. Then there exists a BI-rule B such that �N is of the following form

.... �

∀z(Ri(z) ⊃ Ai[z])

.... 


∀z(∀xAi[z ∗ x] ⊃ Ai[z])
A[t] B

.... �

Cnsq(�N )

and that A1 is the conclusion A[t] of B . If t is a closed term, then �N is not a normal
form since B is a reduction point of �N . So, t contains a free variable. By Lemma
3.9 (4), �N is a closed deduction. So, t contains an eigenvariable for a ∀-I or an ∃-E
by Lemma 3.9 (1). Since A[t] occurs below B , t does not contain any eigenvariable
for ∃-E. So, t must contain an eigenvariable for a ∀-I. However, {Ai}i≤n does not
contain any introduction rule, because � is a normal form and Cnsq(�N ) is an atomic
formula except an H-formula. This yields a contradiction. �

Lemma 4.3 Let � be a deduction. For any end path {Ai}i≤n of �N which does not
contain any ∀-I rule, A1 is not the conclusion of a BI-rule.

Proof: The proof goes the same way as Lemma 4.2. �

Definition 4.4 Let A be an atomic formula except an H-formula. Then A is said
to be absurd if A satisfies the following:

TRDB − (BI + TRD(G,I )) � A ⊃ 0 = 1.

Theorem 4.5 TRDB is consistent.

Proof: Let � be a deduction whose consequence is 0 = 1. By Lemma 4.2, no end
path of �N contains a BI-rule or an introduction rule. Therefore, there exists an end
path whose initial formula A1 satisfies the following conditions.
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(i) A1 is not any assumption discharged by a ⊃-I.

(ii) A1 contains an H-formula or an absurd formula, that is, A1 is not an axiom
formula.

So, �N has at least one live assumption, and hence, � has at least one live assump-
tion. �

Theorem 4.6 (The existence property and the disjunction property of TRDB)

1. If a closed formula ∃xA[x] is provable in TRDB, then there exists a closed term
t such that A[t] is provable in TRDB.

2. If a closed formula A ∨ B is provable in TRDB, then A or B is provable in
TRDB.

Proof: (1) Let � be a deduction which has a closed formula ∃xA[x] as the conse-
quence, and let � have no live assumption. Then �N also has ∃xA[x] as the conse-
quence and also has no live assumption. We show that �N has an introduction rule
as the last inference rule.

(i) Since the consequence of �N is not an atomic formula, �N is not an axiom.
Since the conclusion of every inference rule defined in Definition 2.1 (2.1) –
(2.5) is an atomic formula, the last inference rule of �N is either a logical in-
ference rule, a ⊥-E, a BI-rule, an H-I, an H-E or ρ-E.

(ii) The consequence of �N is a closed formula, the last inference rule is not a BI-
rule.

(iii) Suppose that �N has an elimination rule except a ∨-E or an ∃-E, as the last in-
ference rule. Then every end path contains no introduction rule. So, by Lemma
4.3, rB (�N ) = 0. So, for any end path {Ai}i≤n, A1 is an axiom formula. How-
ever, in this case, A1 is an absurd formula or an H-formula whenever A1 is an
atomic formula. This yields a contradiction.

(iv) Suppose that �N has a ∨-E or an ∃-E rule as the last inference rule. Then the
subdeduction � of �N , whose consequence is the major premise of the last in-
ference rule of �N , has neither any ∨-E nor any ∃-E as the last inference rule.
Note that � is a closed deduction and a normal form, whose consequence is
a closed formula of the form ∃yB[y] or B ∨ C. By (i) – (iii), � has an intro-
duction rule as the last inference rule. Since �N is a normal form, it yields a
contradiction.

By (i) – (iv), �N has an introduction rule as the last inference rule. Since the outer-
most logical symbol of the consequence of �N is an ∃-quantifier, the last inference
rule is an ∃-I. Moreover, since �N is a closed deduction, there exists a closed term t
such that A[t] is provable with the subdeduction obtained from �N by removing the
last inference rule.

(2) The proof goes the same way as (1). �
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