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A Syntactic Approach to
Maksimova’s Principle of Variable Separation

for Some Substructural Logics

H. NARUSE, BAYU SURARSO, and H. ONO

Abstract Maksimova’s principle of variable separation says that if proposi-
tional formulasA1 ⊃ A2 andB1 ⊃ B2 have no propositional variables in com-
mon and if a formulaA1 ∧ B1 ⊃ A2 ∨ B2 is provable, then eitherA1 ⊃ A2 or
B1 ⊃ B2 is provable. Results on Maksimova’s principle until now are obtained
mostly by using semantical arguments. In the present paper, a proof-theoretic
approach to this principle in some substructural logics is given, which analyzes
agiven cut-free proof of the formulaA1 ∧ B1 ⊃ A2 ∨ B2 and examines how the
formula is derived. This analysis will make clear why Maksimova’s principle
holds for these logics.

1 Introduction In her paper [8] (see also [10]), Maksimova proved a theorem on
some relevant logics, includingR andE, which implies the following:

Suppose that propositional formulasA1 ⊃ A2 and B1 ⊃ B2 have no proposi-
tional variables in common. If a formulaA1 ∧ B1 ⊃ A2 ∨ B2 is provable, then
eitherA1 ⊃ A2 or B1 ⊃ B2 is provable.

When the above property holds for a given logicL, we saythatMaksimova’s prin-
ciple of variable separation(or simplyMaksimova’s principle) holds forL. (In this
case,L is said to beMaksimova-completein Chagrov and Zakharyaschev [4].) In [8],
she gave also an example of a relevant logic for which Maksimova’s principle doesn’t
hold. Some relationships among Maksimova’s principle, the disjunction property and
Halldén-completeness for intermediate logics are studied in [4]. An algebraic char-
acterization of Maksimova’s principle is given in [11].

Most of the results on Maksimova’s principle obtained so far are proved by us-
ing semantical methods. In the present paper, by using a syntactic method, we will
show that Maksimova’s principle holds for many of the basic substructural logics,
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all of which are extensions of the logicFL which has no structural rules. First, we
will show Maksimova’s principle for logics without weakening. By using the same
idea but slightly modifying the proof, we will next show Maksimova’s principle for
logics with weakening. We will show Maksimova’s principle also for some distribu-
tive substructural logics including the relevant logicsR+, RW+ andTW+, in which
the distributive law betweenadditiveconjunctions and disjunctions holds. Although
we will discuss here only Maksimova’s principle for some propositional logics, the
proof can be naturally extended to their predicate extensions. All the results on Mak-
simova’s principle shown in the present paper except that forR+ are new.

The basic calculusFL is, roughly speaking, the system obtained from the se-
quent calculusLJ for the intuitionistic logic by deleting all ofLJ’s structural rules.
The language ofFL consists of logical constantst, f,�, and⊥, logical connectives
⊃,∧,∨, and∗ (multiplicative conjunctionor fusion). (We can dispense with�, as it
can be defined by⊥ ⊃ ⊥.) To make the present paper self-contained, we will give
here the definition ofFL.

Definition 1.1 For consistency of notation throughout the present paper, we as-
sume that any sequent inFL is of the form A1; . . . ; Am → B wherem ≥ 0 and B
may be empty. Also, different from the notation in Ono [14], we will use the con-
stant symbolst and f instead of 1 and 0.

FL consists of the following initial sequents:

Initial sequents

1. A → A,

2. �;⊥;� → C,

3. � → �,

4. → t,
5. f →,

and the following rules of inference:

Cut rule
� → A �; A;� → C

�;�;� → C

Rules for logical constants

�;� → C
�; t;� → C

(tw)
� →

� → f
( f w)

Rules for logical connectives

�; A → B
� → A ⊃ B

(→⊃)
� → A �; B;� → C
�; A ⊃ B;�;� → C

(⊃→)

� → A
� → A∨ B

(→ ∨1)
� → B

� → A∨ B
(→ ∨2)
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�; A;� → C �; B;� → C
�; A∨ B;� → C

(∨ →)

� → A � → B
� → A∧ B

(→ ∧)

�; A;� → C
�; A∧ B;� → C

(∧1 →)
�; B;� → C

�; A∧ B;� → C
(∧2 →)

� → A � → B
�;� → A∗ B

(→ ∗)
�; A; B;� → C
�; A∗ B;� → C

(∗ →) .

Sequent calculiFLw, FLc, andFLe are defined to be the systems obtained fromFL
by adding the following weakening, contraction, and exchange rules, respectively:

�;� → C
�; A;� → C

(w →)
� →

� → C
(→ w)

�; A; A;� → C
�; A;� → C

(con)
�; B; A;� → C
�; A; B;� → C

(ex) .

We will use any combination of suffixese, c, andw to denote the calculus obtained
from FL by adding structural rules corresponding to these suffixes. For instance,
FLew denotes the systemFL with both the exchange and the weakening rules. For
more information on substructural logics introduced here, see, for example, Ono [13]
and [14]. Since all logics discussed in this paper are formulated as sequent calculi,
we will sometimes identify a sequent calculus with the logic determined by it. We
can prove the following theorems. (See Ono and Komori [15] and[13].)

Theorem 1.2 Cut elimination theorem holds forFL, FLe, FLw, FLew, FLec, and
FLecw.

Theorem 1.3 Craig’s interpolation theorem holds forFL, FLe, FLw, FLew, FLec,

andFLecw.

Note here that the cut elimination theorem doesn’t hold forFLc, as shown in Bayu
Surarso and Ono [3].

2 Maksimova’s principle for logics without weakening To explain the idea of our
proof of Maksimova’s principle, in this section we will discuss Maksimova’s prin-
ciple for the substructural logics without weakening. As shown in the next section,
more complicated arguments will be necessary to show Maksimova’s principle for
logics with weakening.Throughout this section, we assume that our language does
not contain any propositional constant. This assumption will eliminate nonessential
complications in expressing our main theorem (Theorem2.3) in this section, since
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the weakening rule becomes admissible for some particular constants, for example,
the rule(tw) for the constantt. In the following,S(A) denotes the set of subformulas
of a formulaA.

Lemma 2.1 Suppose that formulas A1 ⊃ A2 and B1 ⊃ B2 have no propositional
variables in common. If� → D is asequent satisfying the following three conditions

1. all formulas occurring in the sequent are subformulas of either A1 ∧ B1 or
A2 ∨ B2,

2. at least one of them belongs to S(A1) ∪ S(A2),
3. at least one of them belongs to S(B1) ∪ S(B2),

then it is not provable inFLec.

Proof: To the contrary, suppose that� → D is provable. Then there must be a cut-
free proof� in FLec whose endsequent is� → D. It is easily seen that in any appli-
cation of a rule of inference in�, if the lower sequent satisfies the above three condi-
tions then at least one of its upper sequents must also satisfy these conditions. Notice
here that this holds for any application of either(→ ∗) or (⊃→) since its principal
formula must be a member of the setS(A1) ∪ S(A2) ∪ S(B1) ∪ S(B2). So, at least
one of initial sequents of� must satisfy these three conditions. But, clearly no initial
sequent can satisfy all of these conditions. Clearly, the above argument doesn’t hold
when we have the weakening rule. �

Corollary 2.2 Suppose that A1 ⊃ A2 and B1 ⊃ B2 have no propositional variables
in common and thatL is any one ofFL, FLe andFLec. If � is a cut-free proof inL
of a sequent� → D such that

(∗) all formulas in it are subformulas of either A1 ∧ B1 or A2 ∨ B2, and at least
one of them belongs to S(A1) ∪ S(A2),

then every sequent in� satisfies also (∗). Moreover, no applications of the following
rules of inference appear in�.

�; B1;� → E
�; A1 ∧ B1;� → E

(∧2 →)
� → A1 � → B1

� → A1 ∧ B1
(→ ∧)

�; A2;� → E �; B2;� → E
�; A2 ∨ B2;� → E

(∨ →)
� → B2

� → A2 ∨ B2
(→ ∨2) .

Proof: Wecan show that

for any applicationI of rules of inference in�, if the lower sequent ofI
satisfies condition (∗) then the upper sequent also satisfies (or both of its
upper sequents satisfy) condition (∗).

This can be proved without difficulty, except in the case whereI is either(→ ∗) or
(⊃→). Suppose thatI is an application of(→ ∗) of the following form.

� → D � → E
�;� → D ∗ E

.
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By the subformula property, the formulaD ∗ E must be either inS(A1)∪ S(A2) or in
S(B1)∪ S(B2). Suppose that the latter holds. Then, bothD andE belong toS(B1)∪
S(B2). By our assumption, some formulas in�;� belong toS(A1) ∪ S(A2). Hence,
either� → D or � → E satisfies all of three conditions in Lemma2.1and thus it is
not provable. This is a contradiction. Thus,D ∗ E, and hence bothD andE belong
to S(A1) ∪ S(A2). Therefore, the above statement holds in this case. Similarly, we
can show that this holds also for(⊃→). Thus, every sequent in� also satisfies (∗).

Now suppose that any one of the applications stated in Corollary 2.2 appears in
�. Then, by what we have shown in the above, its upper sequent(s) must satisfy (∗).
On the other hand, (at least one of) the upper sequent(s) contains eitherB1 or B2.
Then the sequent, which is of course provable, satisfies all three of the conditions in
Lemma2.1. This is a contradiction. �

Theorem 2.3 Maksimova’s principle holds forFL, FLe, andFLec. More precisely,
suppose that formulas A1 ⊃ A2 and B1 ⊃ B2 have no propositional variables in com-
mon. Then the following hold for each logic in the above.

1. If a sequent A1 ∧ B1 → A2 ∨ B2 is provable, then either A1 → A2 or
B1 → B2 is provable.

2. If a sequent A1 ∧ B1 → A2 is provable, then the sequent A1 → A2 is
provable.

3. If a sequent A1 → A2 ∨ B2 is provable, then the sequent A1 → A2 is
provable.

Proof: Suppose that the sequentA1 ∧ B1 → A2 ∨ B2 is provable in the logicL,
whereL is any one ofFL, FLe, andFLec. Clearly, it is not an initial sequent. So
we can assume that its cut-free proof� in L (and consequently inFLec) is of the
following form, whereI is a rule of inference other than exchange and contraction.

...
A1 ∧ B1; . . . ; A1 ∧ B1 → A2 ∨ B2

( I )

(some exchanges and contractions)

A1 ∧ B1 → A2 ∨ B2

Then,I must be one of the following rules of inference;(∧1 →), (∧2 →), (→ ∨1),
and(→ ∨2). Suppose thatI is (∧1 →). That is,

A1 ∧ B1; . . . ; A1; . . . ; A1 ∧ B1 → A2 ∨ B2

A1 ∧ B1; . . . ; A1 ∧ B1; . . . ; A1 ∧ B1 → A2 ∨ B2
(∧1 →) .

Here, the left side of the upper sequent ofI contains only oneA1 and others areA1 ∧
B1. Then by Corollary2.2, the proof of the upper sequent and hence the whole proof
doesn’t contain any application of the following rules of inference:

�; B1;� → E
�; A1 ∧ B1;� → E

(∧2 →)
� → A1 � → B1

� → A1 ∧ B1
(→ ∧)

�; A2;� → E �; B2;� → E
�; A2 ∨ B2;� → E

(∨ →)
� → B2

� → A2 ∨ B2
(→ ∨2) .
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It means that when an occurrence of the formulasA1 ∧ B1 andA2 ∨ B2 is introduced
in the proof�, it must be introduced only by rules of the following form:

�; A1;� → E
�; A1 ∧ B1;� → E

(∧1 →)
� → A2

� → A2 ∨ B2
(→ ∨1) .

(Note that theseA1 ∧ B1 and A2 ∨ B2 may be introduced in several places in�.)
Now, we replace first all occurrences ofA1 ∧ B1 by A1 and of A2 ∨ B2 by A2 in �,
and then remove every redundant application that occurs by this replacement. The
figure thus obtained is in fact a proof inL whose endsequent isA1 → A2. When I
is any one of the other rules, by using the similar argument we can get the proof of
eitherA1 → A2 or B1 → B2. �
As we mentioned at the beginning of the present section, it is necessary to modify
Theorem2.3 slightly when our language contains propositional constants. For in-
stance, it is easy to see that the sequentp∧ (r ∧ t) → q ⊃ q is provable inFL, where
t is the propositional constant introduced in Section 1 andp, q, andr are mutually
distinct constants. On the other hand,p → q ⊃ q is not provable in it. Thus, Case 2
of Theorem2.3doesn’t hold in the present form.

3 Maksimova’s principle for logics with weakening When we have weakening,
the situation becomes different from what we mentioned in the previous section. For
instance,p → ¬p∨ (q ⊃ q) is provable inFLw, as shown by the following.

q → q
→ q ⊃ q (→⊃)

→ ¬p∨ (q ⊃ q)
(→ ∨)

p → ¬p∨ (q ⊃ q)
(w →) .

The sequentp → ¬p is not provable in it (cf. the third case of Theorem2.3). So it
will be necessary to modify the statement of the principle of variable separation. Ba-
sically, our proof of Maksimova’s principle for logics without weakening still works.
So, when a cut-free proof of a sequentA1 ∧ B1 → A2 ∨ B2 is given, from the end-
sequent upward in the proof we will search for such an application of rules by which
eitherA1 ∧ B1 or A2 ∨ B2 is introduced, that is, the last application of either(∧ →)

whose principal formula isA1 ∧ B1, or (→ ∨) whose principal formula isA2 ∨ B2.
WhenL is one of logics without weakening discussed in Section 2, ifA1 ∧ B1 is ob-
tained fromA1 by an application of(∧ →) thenA2 ∨ B2 must be obtained fromA2

but not fromB2, by an application of(→ ∨), as shown in Corollary2.2. Hence, we
can transform the original proof into a proof with the endsequentA1 → A2, by re-
placing all occurrences ofA1 ∧ B1 by A1 and ofA2 ∨ B2 by A2, respectively.

But this argument doesn’t work well for logicswith weakening, since the weak-
ening rule may cause various possibilities. To avoid this, we will consider a cut-free
proof of the sequentA1; B1 → A2 ∨ B2, instead of that ofA1 ∧ B1 → A2 ∨ B2, since
the provability of the former sequent follows from the provability of the latter by us-
ing weakening rule (though the converse doesn’t always hold). Then we can focus
our attention only on when and howA2 ∨ B2 will be introduced. The previous argu-
ment seems to work well except the case where(∨ →) is applied beforeA2 ∨ B2 is
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introduced, or more precisely, there exists an application of(∨ →) below the appli-
cation of(→ ∨) whose principal formula isA2 ∨ B2. In such a caseA2 ∨ B2 will
appear in differentbranchesin the proof, and therefore it might be obtained fromA2

in one place but fromB2 in other places. If this happens, then it is impossible to re-
place the formulaA2 ∨ B2 by only one ofA2 andB2 throughout the proof, preserving
the correctness of the proof. In the following, however, we will show that such an ap-
plication of(∨ →) is avoidable.

In this section, we suppose that our language may contain some propositional
constants. We note that when we have the weakening rule, constants 0 and 1 are logi-
cally equivalent to⊥ and�, respectively. The following lemma is proved as a special
case of Craig’s interpolation theorem given in [15] (Theorem 2.4).

Lemma 3.1 Let�,�, and� be finite sequences of formulas and E be a formula.
Suppose that the sequence� and the sequence�,�, E have no propositional vari-
ables in common. Then for each calculusFLw, FLew, and FLecw, if the sequent
�;�;� → E is provable then either� → or �;� → E is provable.

Lemma 3.2 Let L be any one ofFLw, FLew, andFLecw. Suppose that A1 ⊃ A2

and B1 ⊃ B2 have no propositional variables in common and that� (and�) is an ar-
bitrary finite (possibly empty) sequence of subformulas of A1 (and B1, respectively).
If the sequent�;� → A2 ∨ B2 is provable inL, then

1. there exists a cut-free proof of this sequent inL which has no applications
of (∨ →) to sequents with A2 ∨ B2 on the right-hand side,

2. either�;� → A2 or �;� → B2 is provable inL.

Proof: Wewill prove our lemma forFLw. By a slight modification of the proof, we
can prove it for other cases. Let� be a cut-free proof of the sequent�;� → A2 ∨ B2.
We will prove our lemma using the induction on the heightn of �. Whenn = 1,
�;� → A2 ∨ B2 must be an initial sequent. But this happens only when⊥ occurs in
the sequence�,�. Then replacingA2 ∨ B2 by A2, wewill get a sequent�;� → A2,
which is still an intial sequent. Thus, we have (2). Clearly, this proof satisfies (1).

Next suppose thatn > 1. Since� is a cut-free proof, if a sequent in it has
A2 ∨ B2 on the right-hand side then its left-hand side must always be of the form
�∗;�∗, where�∗ and�∗ are finite (possibly empty) sequences of subformulas of
A1 andB1, respectively. Now, letI be the last inference in�. We suppose first that
the principal formula ofI is A2 ∨ B2. Then I must be one of(→ w), (→ ∨1) and
(→ ∨2). Obviously, (1) is satisfied in this case, since the upper sequent is one of the
following; �;� → , �;� → A2 and�;� → B2. Neither of them hasA2 ∨ B2 on
the right-hand side. Thus (1) holds. Also, (2) follows immediately.

Suppose next that the principal formula ofI is not A2 ∨ B2 and moreover that
I is not (∨ →). Then, the upper sequent (or only one of the upper sequents whenI
is (⊃→)) is of the form�†;�† → A2 ∨ B2, where�† and�† are finite (possibly
empty) sequences of subformulas ofA1 andB1. Then, by the hypothesis of induction,
this sequent has a cut-free proof which has no applications of(∨ →) to sequents with
A2 ∨ B2 on the right-hand side. SinceI is not(∨ →), (1) holds. Also, by the hypoth-
esis of induction, either�†;�† → A2 or �†;�† → B2 is provable. By applyingI
to either of them, we can get the proof of either�;� → A2 or �;� → B2.
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Finally suppose thatI is (∨ →). Without loss of generality, we can assume that
� is of the form�1; A′ ∨ A′′;�2 (and henceA′ ∨ A′′ is a subformula ofA1) such that
A′ ∨ A′′ is the principal formula ofI . Then the inferenceI will be of the following
form:

�1; A′;�2;� → A2 ∨ B2 �1; A′′;�2;� → A2 ∨ B2

�1; A′ ∨ A′′;�2;� → A2 ∨ B2
(∨ →) .

By the hypothesis of induction, both of the upper sequents have proofs which have no
applications of(∨ →) to sequents havingA2 ∨ B2 on the right-hand side. Also, either
�1; A′;�2;� → A2 or�1; A′;�2;� → B2 is provable, and either�1; A′′;�2;� →
A2 or �1; A′′;�2;� → B2 is provable. When� → B2 is provable, then by apply-
ing (w →) repeatedly, we have�1; A′ ∨ A′′;�2;� → B2. So, by(→ ∨2) we get
�1; A′ ∨ A′′;�2;� → A2 ∨ B2. Thus, both (1) and (2) hold. Next suppose that
� → B2 is not provable. When�1; A′;�2;� → B2 is provable, then�1; A′;�2 →
must be provable by Lemma3.1, and hence�1; A′;�2;� → A2 is provable, by us-
ing weakening. But, since either�1; A′;�2;� → A2 or �1; A′;�2;� → B2 is
provable by our assumption,�1; A′;�2;� → A2 must be provable in either case.
Similarly, we can show that�1; A′′;�2;� → A2 is provable. So, applying(∨ →),
we get�1; A′ ∨ A′′;�2 → A2. Note that in this application of(∨ →), the right-hand
side of the sequent isA2, not A2 ∨ B2. So,�1; A′ ∨ A′′;�2;� → A2 ∨ B2 follows
from this. Hence, both (1) and (2) also hold in this case. �
Using these lemmas, we have the following theorem on Maksimova’s principle for
logics with weakening in a stronger form.

Theorem 3.3 Suppose that A1 ⊃ A2 and B1 ⊃ B2 have no propositional variables
in common. Then the following hold forFLw, FLew, andFLecw.

1. If a sequent A1 ∗ B1 → A2 ∨ B2 is provable, then either A1 → A2 or B1 →
B2 is provable.

2. If a sequent A1 ∗ B1 → A2 is provable, then either A1 → A2 or B1 → is
provable.

3. If a sequent A1 → A2 ∨ B2 is provable, then either A1 → A2 or → B2 is
provable.

Proof: We will give a proof of (1). It is clear thatA1 ∗ B1 → A2 ∨ B2 is provable
if and only if A1; B1 → A2 ∨ B2 is provable. TakingA1 andB1 for � and�, respec-
tively, in Lemma3.2, wehave that eitherA1; B1 → A2 or A1; B1 → B2 is provable.
Then, by Lemma3.1(and then by applying the weakening rule, if necessary), either
A1 → A2 or B1 → B2 is provable. Similarly, we can prove our theorem for (2) and
(3). �

Corollary 3.4 Maksimova’s principle holds forFLw, FLew, andFLecw. More pre-
cisely, suppose that A1 ⊃ A2 and B1 ⊃ B2 have no propositional variables in com-
mon. Then the following holds for each logic in the above.

1. If a sequent A1 ∧ B1 → A2 ∨ B2 is provable, then either A1 → A2 or B1 →
B2 is provable.

2. If a sequent A1 ∧ B1 → A2 is provable, then either A1 → A2 or B1 → is
provable.
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3. If a sequent A1 → A2 ∨ B2 is provable, then either A1 → A2 or → B2 is
provable.

Proof: When we have the weakening,A1 ∗ B1 → A1 ∧ B1 is provable. So our corol-
lary follows immediately from Theorem3.3. �
Wehave discussed Maksimova’s principle for various intuitionistic substructural log-
ics, that is, substructural logics obtained from the intuitionistic logic by deleting some
of structural rules. But our method works well also for the classical substructural log-
ics. LetGL be Girard’s linear logic (without exponentials). Also letGLc andGLw be
logics obtained fromGL by adding the contraction and the weakening, respectively.
Then we have the following.

Theorem 3.5 Maksimova’s principle holds forGL, GLc, andGLw.

4 Adding the distributive law In this and the next sections, we will discuss Maksi-
mova’s principle for the positive relevant logicsR+ andRW+ and also for the logics
DBCC andDBCK introduced in [15]. A common feature among them is that the
following distributive law

A∧ (B∨ C) → (A∧ B) ∨ (A∧ C)

holds in all of them. In fact, the logicsDBCC andDBCK can be obtained fromFLw

andFLew, respectively, by adding the distributive law as initial sequents.
In Dunn [5] and Giambrone [7], sequent systemswithout the cut rulefor R+ and

RW+ are introduced and discussed. Also, Slaney introduced in [16] sequent systems
without the cut ruleLLDBCC andLLDBCK for DBCC andDBCK, respectively.

In the following, we will give a definition of these systems, but in a slightly mod-
ified form. We will take the same set of logical connectives as that introduced in§1.
On the other hand, we will take no logical constants for bothR+ andRW+, and take
only the logical constant⊥ for the other distributive logics. First, we will introduce
structures, which are calledbunchesin [16], recursively as follows:

1. any formula is a structure;
2. for n ≥ 2, if Xi is a structure fori = 1, . . . , n, then both sequences

(X1, . . . , Xn) and(X1; . . . ; Xn) are structures.

Structures of the form(X1, . . . , Xn)—and of the form(X1; . . . ; Xn)—are said to be
extensional(andintensional, respectively). Each structureXi is called animmediate
constituentof (X1, . . . , Xn) and(X1; . . . ; Xn). For simplicity’s sake, we assume that
no immediate constituents of an extensional (and an intensional) structure are exten-
sional (and intensional, respectively). (Thus, a structure of the form(X; (Y; Z); W)

will be identified with the structure(X;Y; Z; W).) In other words, extensional struc-
tures and intensional structures will appear alternately in a given structure. We will
omit parentheses when no confusions will occur.

Intuitively, a structureA1, . . . , An (andA1; . . . ; An) expresses the formulaA1 ∧
· · ·∧ An (andA1 ∗ · · · ∗ An, respectively). In the following, capital lettersX, Y, andZ,

and so on, with or without subscripts will denote structures.Substructuresof a given
structureZ can be defined in the usual way. Sometimes, we will pay special attention
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to a particular occurrence of a substructureX of Z. Insuch a case, the occurrenceX is
called astructure-occurrenceof X (in Z) which is indicated. An expression such as
�(X) will be used for denoting a structure with an indicated structure-occurrence of
X in it. Sequents in the following calculi are expressions of the formX → A, where
X is a structure (possibly empty) andA is a formula.

Now, we will introduce a sequent systemLDFL for the basic distributive logic
DFL as follows.

Initial sequents

1. A → A
2. ⊥ →

Structural rules for extensional structures

�(Y, X) → C
�(X, Y) → C

(E − ex)
�(X) → C

�(X, Y) → C
(E − weak)

�(X, X) → C
�(X) → C

(E − con) .

Rules for logical connectives

X; A → B
X → A ⊃ B

(→⊃)
X → A �(B) → C
�(A ⊃ B; X) → C

(⊃→)

X → A
X → A∨ B

(→ ∨1)
X → B

X → A∨ B
(→ ∨2)

�(A) → C �(B) → C
�(A∨ B) → C

(∨ →)

X → A Y → B
X, Y → A∧ B

(→ ∧)
�(A, B) → C
�(A∧ B) → C

(∧ →)

X → A Y → B
X;Y → A∗ B

(→ ∗)
�(A; B) → C
�(A∗ B) → C

(∗ →) .

Some comments would be necessary here for understanding some expressions that
appear in the above rules. Let us take the rule(⊃→) in the above, for instance.
Here,�(A ⊃ B; X) means the structure obtained from�(B) by replacing the in-
dicated occurrence ofB by the expressionA ⊃ B; X. As mentioned in the above,
we assume that extensional structures and intensional structures must appear alter-
nately. So, when the indicated occurrence ofB appears in an intensional substruc-
ture such asY; B; Z in �(B), the substructure resulting from this replacement is not
Y; (A ⊃ B; X); Z, butY; A ⊃ B; X; Z. By our definition of sequents, it may happen
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that X is empty. In such a case, the lower sequent�(A ⊃ B; X) → C must be under-
stood as�(A ⊃ B) → C. Similar considerations will be necessary also for(→ ∧)

and(→ ∗) when at least one ofX andY is empty.
In (E − weak), we must assume that�(X) is nonempty. Otherwise, it will

work just like the weakening rule for sequents with empty antecedents. We allow
(E − con) to apply to a sequent of the formY, X, X, Z → C and to get the sequent
Y, X, Z → C. Thus,X, X in �(X, X) will be understood not as a substructure but as
a subexpression. We will use these sloppy definitions simply to avoid unnecessary
complications. (See footnotes 28 and 29 in Dunn [6].)

Next, we will define some extensions ofLDFL. To do so, let us consider the
following structural rules for intensional structures:

�(Y; X) → C
�(X;Y) → C

( I − ex)
�(X; X) → C
�(X) → C

( I − con)

�(X) → C
�(X;Y) → C

( I − weak) X →
X → C

(→ w) .

Different from(E − weak), it ispossible to apply( I − weak) when�(X) is empty.
In this case,�(X;Y) must be understood asY.

The sequent systemLRW+ (andLR+) for the relevant logicsRW+ (andR+)
is obtained fromLDFL by adding( I − ex) (and both( I − ex) and ( I − con), re-
spectively). In the sequent systemsLDBCC andLDBCK for the distributive logic
DBCC andDBCK, wewill allow any sequent of the formX → whereX is a struc-
ture. They are obtained fromLDFL by first adding the initial sequent of the form:

2. ⊥ →
and then adding( I − weak) and(→ w) for LDBCC, and( I − weak), (→ w), and
( I − ex) for LDBCK, respectively. The cut rule in these calculi is a rule of the fol-
lowing form:

X → A �(A) → C
�(X) → C

.

Although the cut rule is admissible in bothLDBCC andLDBCK, it isnot necessarily
admissible inLRW+ andLR+ (when we don’t have the constantt). But still, they
are adequate systems forRW+ andR+, respectively. (See [7] for RW+, and [5] and
Mints [12] for R+.)

Now we will show Maksimova’s principle forRW+ andR+. In the following,
we will prove several lemmas which hold for bothLRW+ andLR+. In the rest of this
section, we assume that formulasA1 ⊃ A2 andB1 ⊃ B2 are given and that they have
no propositional variables in common. What we want to show now is that if the se-
quentA1 ∧ B1 → A2 ∨ B2 is provable, then eitherA1 → A2 or B1 → B2 is provable.
A formula D is an A-formula (a B-formula) if D belongs to the setS(A1) ∪ S(A2)

(the setS(B1) ∪ S(B2), respectively). Similarly, a structureX is an A-structure(a
B-structure) if only A-formulas (B-formulas, respectively) appear in it.

The basic idea of our proof comes from the proof given in§2. But there seem to
be difficulties which are peculiar to these sequent calculi introduced in this section.
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To see this, consider a proof of the sequentA1 ∧ B1 → A2 ∨ B2. The sequent may
be obtained from the sequent(A1, B1) → A2 ∨ B2 by applying(∧ →). If we look
at the proof of this sequent from the bottom upward, one would expect the existence
of an application of(E − weak) by which(A1, B1) is decomposedinto eitherA1 or
B1. But this may not always happen in these calculi, since a formulaA1 or B1 (in
(A1, B1)) may be decomposed prior to an application of(E − weak).

The following result is known forR as the relevance principle or the variable-
sharing property. (See Anderson and Belnap [1], p. 417.) Obviously, this also holds
for bothRW+ andR+ since they are subsystems ofR.

Lemma 4.1 Suppose Z is a structure and D is a formula such that they have no
propositional variables in common. Then Z→ D is not provable.

Lemma 4.2 Let Z;C be astructure and D a formula such that they have no propo-
sitional variables in common. Then if Z→ C ∨ D is provable, Z→ C is provable.

Proof: Let � be a (cut-free) proof ofZ → C ∨ D. Clearly there is no sequent in
� which containsC ∨ D in its antecedent. SoC ∨ D must be introduced in� by
applying(→ ∨1) or (→ ∨2) of the following form:

Z
′ → C

Z
′ → C ∨ D

(→ ∨1)
Z

′ → D
Z

′ → C ∨ D
(→ ∨2) .

By the subformula property of�, we can show thatZ
′ ;C andD have no propositional

variables in common. ButZ
′ → D cannot be provable by Lemma4.1. So,� doesn’t

contain any application of(→ ∨2) of the above form. Thus, in each branch of the
proof�, C∨ D must be introduced by an application of(→ ∨1) whose upper sequent
is of the formZ

′ → C. Now, by replacing every occurrence of formulaC ∨ D in �

by the formulaC and removing redundant sequents, we can get the proof ofZ → C.
�

Lemma 4.3 Suppose that D is an A-formula and Z is a structure which consists
only of the formula A1 ∧ B1, A-formulas, and B-formulas. Let Z

′
be an arbitrary

structure obtained from Z by replacing each occurrence of A1 ∧ B1 by A1 and each
occurrence of a B-formula by any A-structure. Then, if Z→ D is provable, Z

′ → D
is also provable.

Proof: Let� be a (cut-free) proof ofZ → D. Wewill prove our lemma by induction
on the length of�. Here we will give a proof only when the last inferenceI of � is
one of(E − weak), (⊃→), and(∧ →).

Case 1: The last inference is(E − weak). We can assume thatZ → D is of the
form �(X, Y) → D and I is of the following form.

�(X) → D
�(X, Y) → D

(E − weak) .

We can assume that by any replacement mentioned in the above, the lower sequent
of I will change into the sequent of the form�

′
(X

′
, Y

′
) → D. By the hypothesis of

induction,�(X
′
) → D is provable. Therefore,�

′
(X

′
, Y

′
) → D is also provable by

applying(E − weak).
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Case 2: The last inference is(⊃→). In this case, we can assume thatZ → D is of
the form�(C1 ⊃ C2; X) → D and the last inference is of the following form.

X → C1 �(C2) → D
�(C1 ⊃ C2; X) → D

(⊃→) .

By the subformula property, the formulaC1 ⊃ C2 is either anA-formula or aB-
formula. Suppose first that it is anA-formula. Then the result of the lower sequent
by a given replacement will be of the form�

′
(C1 ⊃ C2; X

′
) → D. By the hypothesis

of induction, bothX
′ → C1 and�

′
(C2) → D are provable. Thus, by(⊃→) we can

get a proof of�
′
(C1 ⊃ C2; X

′
) → D.

On the other hand, whenC1 ⊃ C2 is a B-formula, we will get a sequent of the
form �

′
(U; X

′
) → D by a replacement, whereU is anA-structure. By using the hy-

pothesis of induction for the right upper sequent ofI , we can show that�
′
(V) → D

is provable forany A-structureV. Thus,�
′
(U; X

′
) → D is provable by takingU; X

′

for V sinceU; X
′
is anA-structure.

Case 3: The last inference is(∧ →). When the principal formula of the inference
is different fromA1 ∧ B1, the proof goes essentially in the same way as Case 2. When
the principal formula isA1 ∧ B1, the last inference is of the following form.

�(A1, B1) → D
�(A1 ∧ B1) → D

(∧ →) .

Then the result of the lower sequent by a replacement will be of the form�
′
(A1) →

D. By the hypothesis of induction,�(A1,U) → D is provable for anyA-structureU.
In particular, by takingA1 for U, we have that�(A1, A1) → D is provable. Using
(E − con), wecan derive that�

′
(A1) → D is provable. �

Lemma 4.4 Suppose Z is a structure that consists only of the formula A1 ∧ B1, A-
formulas, and B-formulas. Let ZA (and ZB) be an arbitrary structure obtained from
Z by first replacing each occurrence of A1 ∧ B1 by A1 (and B1) and then replacing
each occurrence of a B-formula (and an A-formula) in Z by an A-structure (and a
B-structure, respectively). Then if Z→ A2 ∨ B2 is provable, either ZA → A2 ∨ B2

is provable for any such ZA or ZB → A2 ∨ B2 is provable for any such ZB.

Proof: Let � be a (cut-free) proof ofZ → A2 ∨ B2. We will prove our lemma by
induction on the length of the proof�. In the following, we will give a proof here
when the last inferenceI is one of(⊃→), (∨ →), (→ ∨1), and(∧ →).

Case 1: The last inference is(⊃→). Here Z → A2 ∨ B2 is of the form�(C1 ⊃
C2; X) → A2 ∨ B2 and the last inference is of the following form.

X → C1 �(C2) → A2 ∨ B2

�(C1 ⊃ C2; X) → A2 ∨ B2
(⊃→) .

Without a loss of generality, we can assume thatC1 ⊃ C2 is an A-formula. Also,
we can suppose thatZA andZB are of the form�A(C1 ⊃ C2; XA) and�B(UB; XB),
respectively, whereUB is an arbitraryB-structure. Let us consider the right upper
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sequent ofI . By the hypothesis of induction, either�A(C2) → A2 ∨ B2 is prov-
able, or�B(VB) → A2 ∨ B2 is provable for anyB-structureVB. Suppose first that
�A(C2) → A2 ∨ B2 is provable. By Lemma4.3, XA → C1 is provable. Hence, by
using(⊃→) we can get a proof of�A(C1 ⊃ C2; XA) → A2 ∨ B2. Suppose other-
wise. Then, by takingVB for UB; XB we can get a proof of�B(UB; XB) → A2 ∨ B2

for anyUB.

Case 2: The last inference is(∨ →). In this case,Z → A2 ∨ B2 is of the form
�(C1 ∨ C2) → A2 ∨ B2 and the last inference is of the following form.

�(C1) → A2 ∨ B2 �(C2) → A2 ∨ B2

�(C1 ∨ C2) → A2 ∨ B2
(∨ →) .

Without a loss of generality, we can assume thatC1 ∨ C2 is an A-formula. Also, we
suppose thatZA andZB are of the form�A(C1 ∨ C2) and�B(UB) for a B-structure
UB, respectively. Taking both of the upper sequents and using the hypothesis of in-
duction, we have that either

1. �A(C1) → A2 ∨ B2 is provable

or

2. �B(VB) → A2 ∨ B2 is provable for anyB-structureVB,

and also that either

3. �A(C2) → A2 ∨ B2 is provable

or

4. �B(WB) → A2 ∨ B2 is provable for anyB-structureWB.

Now suppose that either (2) or (4) is the case. Then by takingUB for VB or WB, we
can get a proof of�B(UB) → A2 ∨ B2 for an arbitraryUB. Suppose otherwise. Then
both (1) and (3) hold. By applying(∨ →) to these sequents, we can get a proof of
�A(C1 ∨ C2) → A2 ∨ B2.

Case 3: The last inference is(→ ∨1). Here the last inference is of the following
form.

Z → A2

Z → A2 ∨ B2
(→ ∨1) .

Let us consider the upper sequent. By Lemma4.3, ZA → A2 is provable (for any
ZA). Now by using(→ ∨1), we have a proof of ZA → A2 ∨ B2.

Case 4: The last inference is(∧ →). When the principal formula of the inference
is different fromA1 ∧ B1, the proof goes essentially in the same way as the above
cases. When the principal formula isA1 ∧ B1, the last inference is of the following
form.

�(A1, B1) → A2 ∨ B2

�(A1 ∧ B1) → A2 ∨ B2
(∧ →) .

Here, Z is �(A1 ∧ B1) and hence we can suppose thatZA and ZB are of the
form �A(A1) and �B(B1), respectively. By the hypothesis of induction, either
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�A(A1,U) → A2 ∨ B2 is provable for anyA-structureU or �B(V, B1) → A2 ∨ B2

is provable for anyB-structureV. If the former holds, then we can show thatZA →
A2 ∨ B2 is provable, by takingA1 for U and applying(E − con). Similarly, ZB →
A2 ∨ B2 is provable when the latter holds. �

Theorem 4.5 Maksimova’s principle holds forRW+ andR+. More precisely, sup-
pose that formulas A1 ⊃ A2 and B1 ⊃ B2 have no propositional variables in common.
Then the following holds.

1. If a sequent A1 ∧ B1 → A2 ∨ B2 is provable, then either A1 → A2 or B1 →
B2 is provable.

2. If a sequent A1 ∧ B1 → A2 is provable, then A1 → A2 is provable.
3. If a sequent A1 → A2 ∨ B2 is provable, then A1 → A2 is provable.

Proof: (1) Applying Lemma4.4 to the sequentA1 ∧ B1 → A2 ∨ B2, we have that
eitherA1 → A2 ∨ B2 is provable orB1 → A2 ∨ B2 is provable. Then by Lemma4.2,
A1 → A2 is provable in the former case andB1 → B2 is provable in the latter case.
(2) and (3) follow immediately from Lemmas4.3and4.2, respectively. �
By a slight modification of the above proof, we can show the following result for the
positive relevant logicTW+. As for a sequent system forTW+, see[7].

Theorem 4.6 Maksimova’s principle holds forTW+.

It may be interesting to compare results in this section with Maksimova’s negative re-
sult on the relevant logicRM. In [8] (and also in [10]), she showed that Maksimova’s
principle doesn’t hold forRM which is obtained fromR by adding themingle axiom:
A ⊃ (A ⊃ A). In fact, Maksimova showed that for mutually distinct propositional
variablesp, q, r, ands, the formula (¬(p ⊃ p) ∧ q) ⊃ (s∨ (r ⊃ r )) is provable
in RM, but neither ¬(p ⊃ p) ⊃ s nor q ⊃ (r ⊃ r ) is provable in it. Our method
of proving Maksimova’s principle for a logicL depends highly on the existence of a
cut-free system forL. At this moment, it is not so clear where the limitation of our
method lies.

5 Distributive logics with weakening Next, we will prove that Maksimova’s prin-
ciple holds for the distributive logicsDBCC andDBCK, both of which have the
weakening rule. In Bayu Surarso [2], the author proved Craig’s interpolation theorem
for bothDBCC andDBCK. In fact, we can show a stronger form of Craig’s interpo-
lation theorem which is given below. To explain it, we will introduce some notations.
Suppose that fori = 1, . . . , n, Yi is a structure-occurrence in a given structureU such
thatYj andYk do not intersect each other whenj �= k. Let Zi be a structure for each
i. Then U{Zi/Yi }i denotes the structure obtained fromU by replacingYi by Zi for each
i = 1, . . . , n. Also,U{−/Yi }i denotes the structure obtained fromU by simply omitting
everyYi . (In the latter case, we must also omit one of the occurrences of connections
‘ , ’ or ‘ ; ’ (if any) at the end of eachYi , to make the resulting expression a structure.)
The symbol V(X) denotes the set of propositional variables inX in the following.

Now the following theorem holds for bothLDBCC andLDBCK from which
the usual Craig’s interpolation theorem forDBCC andDBCK follows immediately.
(See [2] for details.)
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Theorem 5.1 Let U be a structure and Yi is a structure-occurrence of U for i=
1, . . . , n. Suppose that (1) Yj and Yk do not intersect each another when j�= k and (2)
if Yj and Yk are substructures of structure-occurrences Z and Z′ of U, respectively,
then they never appear as the form Z; Z′ in U.

If the sequent U→ A is provable, then there exist formulas Ci for i = 1, . . . , n
such that

1. Yj → Cj are provable for each j,

2. U{Ci/Yi }i → A is provable,

3. V(Cj ) ⊂ V(Yj ) ∩ [V (U{−/Yi }i ) ∪ V(A)] for each j.

To understand the conditions onU in the above theorem, first consider the structure
X;Y1; (V, Y2); W, for instance. TakeY1 for Z and(V, Y2) for Z′. Then the structure
has a subexpression of the formZ; Z′, and hence the conditions in our theorem are not
satisfied. On the other hand, whenU is of the formX, Y1, (V;Y2), W, it will satisfy
these conditions. IfU → A is provable for thisU, then the theorem says that there
exist formulasC1 andC2 such that

1. bothY1 → C1 andY2 → C2 are provable,

2. X, C1, (V;C2), W → A is provable,

3. V(Cj ) ⊂ V(Yj ) ∩ [V (X, V, W) ∪ V(A)] for j = 1,2.

We will show in the following that Maksimova’s principle holds forDBCC and
DBCK by using these sequent systemsLDBCC andLDBCK. First we will show
that the following lemmas hold for bothLDBCC andLDBCK.

Lemma 5.2 Let Xi and Yi be (possibly empty) structures for i= 1, . . . , n and D
be a formula. Suppose that the structure Y1; . . . ;Yn and the structure X1; . . . ; Xn; D
have no propositional variables in common. If the sequent(X1;Y1), . . . , (Xn;Yn) →
D is provable, then either X1, . . . , Xn → D is provable or Yk → is provable for some
k such that1 ≤ k ≤ n. This also holds for the sequent(Y1; X1), . . . , (Yn; Xn) → D.

Proof: Suppose that(X1;Y1), . . . , (Xn;Yn) → D is provable. By Theorem5.1,
there are formulasCi for i = 1, . . . , n, each of which consists only of propositional
constants such thatYi → Ci is provable for eachi and (X1;C1), . . . , (Xn;Cn) → D
is provable. On the other hand, it can be easily shown by induction on the complex-
ity of Ci that either → Ci or Ci → is provable for eachi. Suppose thatCk → is
provable for somek. Then we can show thatYk → is provable by using the admissi-
bility of the cut rule. Otherwise,→ Ci is provable for eachi. Then, also by using the
cut rule, we have thatX1, . . . , Xn → D is provable. The proof goes similarly when
(Y1; X1), . . . , (Yn; Xn) → D is provable. �

The following lemma is an analogue of Lemma3.2.

Lemma 5.3 Let L be LDBCC or LDBCK. Suppose that A1 ⊃ A2 and B1 ⊃
B2 have no propositional variables in common. Let Z be a structure of the form
(U1; V1), . . . , (Um; Vm), where each Ui is either empty or a structure consisting only
of formulas in S(A1) and each Vi is either empty or a structure consisting only of
formulas of S(B1). If the sequent Z→ A2 ∨ B2 is provable, then
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1. there exists a proof of this sequent which has no applications of(∨ →) to
sequents with A2 ∨ B2 on the right-hand side,

2. either Z→ A2 or Z → B2 is provable.

Proof: Wewill prove our lemma forLDBCC. By aslight modification of the proof,
we can prove it also forLDBCK. The proof is essentially the same as that of3.2. Let
� be a proof (inLDBCC) of the sequentZ → A2 ∨ B2. We will prove our lemma
using the induction on the heightn of �.

If n = 1, thenZ → A2 ∨ B2 must be an initial sequent. But this cannot happen
because of the form of initial sequents ofLDBCC. Thus,n must be greater than 1.
Since� contains no applications of the cut rule, if any sequent in it hasA2 ∨ B2 on the
right-hand side then its left-hand side must be of the form(U∗

1; V∗
1 ), . . . , (U∗

k ; V∗
k ),

where eachU∗
i is either empty or a structure consisting only of subformulas ofA1

and also eachV∗
i is empty or a structure consisting only of subformulas ofB1. Now

let I be the last inference in�. We suppose first that the principal formula ofI is
A2 ∨ B2. Then I must be one of(→ ∨1), (→ ∨2), and right weakening. Then the
upper sequent is one of the following:Z →, Z → A2, andZ → B2. Since none of
them hasA2 ∨ B2 on the right-hand side, (1) holds obviously. Also (2) follows from
this.

Suppose next that the principal formula ofI is not A2 ∨ B2 and, moreover,
that I is not (∨ →). Then the upper sequent (or only one of the upper sequents,
when I is (⊃→)) is of the form(U†

1; V†
1 ), . . . , (U†

s; V†
s ) → A2 ∨ B2, where each

U†
i is either empty or a structure consisting only of subformulas ofA1 and each

V†
i is either empty or a structure consisting only of subformulas ofB1. Then, by

the hypothesis of induction, this sequent has a proof which has no applications of
(∨ →) to sequents withA2 ∨ B2 on the right-hand side. SinceI is not (∨ →), (1)
holds. Also, by the hypothesis of induction, either(U†

1; V†
1 ), . . . , (U†

s; V†
s ) → A2 or

(U†
1; V†

1 ), . . . , (U†
s; V†

s ) → B2 is provable. By applyingI to either of them, we can
get the proof of eitherZ → A2 or Z → B2.

Finally, suppose thatI is (∨ →). Without loss of generality, we can assume that
U1 is of the form.�(A′ ∨ A′′) such thatA′ ∨ A′′ is the principal formula ofI . Then
the inferenceI will be of the following form.

(�(A′); V1), . . . , (Um; Vm) → A2 ∨ B2 (�(A′′); V1), . . . , (Um; Vm) → A2 ∨ B2

(�(A′ ∨ A′′); V1), . . . , (Um; Vm) → A2 ∨ B2
(∨ →)

By the hypothesis of induction, both of the upper sequents have proofs which have
no applications of(∨ →) to sequents havingA2 ∨ B2 on the right-hand side. Also,
(i) either (�(A′); V1), . . . , (Um; Vm) → A2 or (�(A′); V1), . . . , (Um; Vm) → B2 is
provable, and also (ii) either(�(A′′); V1), . . . , (Um; Vm) → A2 or (�(A′′); V1), . . . ,

(Um; Vm) → B2 is provable. Now suppose thatV1, . . . , Vm → B2 is provable. Then,
applying( I − weak) repeatedly, we can get(�(A′ ∨ A′′); V1), . . . , (Um; Vm) → B2.
So, by(→ ∨2) we have a proof of(�(A′ ∨ A′′); V1), . . . , (Um; Vm) → A2 ∨ B2,
which satisfies the condition in (1). Clearly, (2) also holds. Next suppose that
V1, . . . , Vm → B2 is not provable. If(�(A′); V1), . . . , (Um; Vm) → B2 is prov-
able, then by Lemma5.2 either �(A′) → is provable orUk → is provable for
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somek. In either case, by applying(E − weak), ( I − weak), and right weakening,
we will have (�(A′); V1), . . . , (Um; Vm) → A2. So, by the above assumption (i),
(�(A′); V1), . . . , (Um; Vm) → A2 is always provable. Similarly,(�(A′′); V1), . . . ,

(Um; Vm) → A2 is provable. So, applying(∨ →) to them, we have(�(A′ ∨
A′′); V1), . . . , (Um; Vm) → A2. Now by applying(→ ∨2) we get a proof of(�(A′ ∨
A′′); V1), . . . , (Um; Vm) → A2 ∨ B2 which satisfies the condition in (1). Clearly, (2)
holds. �

Using these lemmas, we have the following theorem.

Theorem 5.4 Suppose that A1 ⊃ A2 and B1 ⊃ B2 have no propositional variables
in common. Then the following holds forLDBCC andLDBCK.

1. If a sequent A1 ∗ B1 → A2 ∨ B2 is provable, then either A1 → A2 or B1 →
B2 is provable.

2. If a sequent A1 ∗ B1 → A2 is provable, then either A1 → A2 or B1 → is
provable.

3. If a sequent A1 → A2 ∨ B2 is provable, then either A1 → A2 or → B2 is
provable.

Proof: Wewill give a proof of (1). By using the admissibility of cut rule, it is clear
that A1 ∗ B1 → A2 ∨ B2 is provable if and only ifA1; B1 → A2 ∨ B2 is provable.
Then by takingm = 1 and takingA1 for U1 and B1 for V1 in Lemma5.3, we have
that eitherA1; B1 → A2 or A1; B1 → B2 is provable. Hence, by Lemma5.2, either
A1 → A2 or B1 → B2 is provable. Similarly, we can also prove our theorem for
Cases 2 and 3. �

Corollary 5.5 Maksimova’s principle holds forLDBCC andLDBCK. More pre-
cisely, suppose that A1 ⊃ A2 and B1 ⊃ B2 have no propositional variables in com-
mon. Then the following holds forLDBCC andLDBCK.

1. If a sequent A1 ∧ B1 → A2 ∨ B2 is provable, then either A1 → A2 or B1 →
B2 is provable.

2. If a sequent A1 ∧ B1 → A2 is provable, then either A1 → A2 or B1 → is
provable.

3. If a sequent A1 → A2 ∨ B2 is provable, then either A1 → A2 or → B2 is
provable.

Proof: It is easy to show thatA1 ∗ B1 → A1 ∧ B1 is provable. So our corollary
follows immediately from Theorem5.4. �
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