94

Notre Dame Journal of Formal Logic
Volume 39, Number 1, Winter 1998

A Syntactic Approach to
Maksimova’s Principle of Variable Separation
for Some Substructural Logics

H. NARUSE, BAYU SURARSO, and H. ONO

Abstract Maksimova'’s principle of variable separation says that if proposi-
tional formulasA; > A, andB; O B, have no propositional variables in com-
mon and if a formulad; A By D Ay v By is provable, then eithed; D A or

B; D By is provable. Results on Maksimova’s principle until now are obtained
mostly by using semantical arguments. In the present paper, a proof-theoretic
approach to this principle in some substructural logics is given, which analyzes
agiven cut-free proof of the formula; A B; D A, v B, and examines how the
formula is derived. This analysis will make clear why Maksimova’s principle
holds for these logics.

1 Introduction  In her paperlf] (see alsol[Q]), Maksimova proved a theorem on
some relevant logics, includirig andE, which implies the following:

Suppose that propositional formuldg > A, and B; D B, have no proposi-
tional variables in common. If a formuld; A B; D A, v By is provable, then
eitherA; D A, or B; D By is provable.

When the above property holds for a given logicwe saythat Maksimova’s prin-
ciple of variable separatioffor simply Maksimova'’s principliholds forL. (In this
casel is said to beviaksimova-complete Chagrov and Zakharyasch@.b In [,
she gave also an example of a relevant logic for which Maksimova’s principle doesn’t
hold. Some relationships among Maksimova'’s principle, the disjunction property and
Hallden-completeness for intermediate logics are studield]inAn algebraic char-
acterization of Maksimova’s principle is given [@a].

Most of the results on Maksimova's principle obtained so far are proved by us-
ing semantical methods. In the present paper, by using a syntactic method, we will
show that Maksimova’s principle holds for many of the basic substructural logics,
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all of which are extensions of the logklL which has no structural rules. First, we
will show Maksimova’s principle for logics without weakening. By using the same
idea but slightly modifying the proof, we will next show Maksimova’s principle for
logics with weakening. We will show Maksimova'’s principle also for some distribu-
tive substructural logics including the relevant logits, RW_ andTW_, in which

the distributive law betweeadditiveconjunctions and disjunctions holds. Although
we will discuss here only Maksimova'’s principle for some propositional logics, the
proof can be naturally extended to their predicate extensions. All the results on Mak-
simova'’s principle shown in the present paper except thaRfoare new.

The basic calculu&L is, roughly speaking, the system obtained from the se-
guent calculug.J for the intuitionistic logic by deleting all of J's structural rules.
The language dfFL consists of logical constantsf, T, and_L, logical connectives
D, A, V, andx (multiplicative conjunctioror fusion). (We can dispense with, as it
can be defined by. O 1.) To make the present paper self-contained, we will give
here the definition oFL.

Definition 1.1  For consistency of notation throughout the present paper, we as-
sume that any sequent kL is of the form As;...; An — B wherem > 0 andB

may be empty. Also, different from the notation in O@L we will use the con-
stant symbol$ and f instead of 1 and O.

FL consists of the following initial sequents:

Initial sequents

1. A— A,

2. I'y L;A— C,
3. r— T,

4, — 1,

5. f—,

and the following rules of inference:

Cut rule
r- A AJAAXYX—>C
AT, 22— C

Rules for logical constants

F;A—)C (t) I -
T;tA—>C Y ['—

: (fw)

Rules for logical connectives

I A— B (=5) r- A A;B;X—C (5—)
r- ADB A;ADB T X—C
r— A - B
r-Ave VY r—Ave V2



96 H. NARUSE, BAYU SURARSO, and H. ONO

NnA;A~C I''B:A—-C (v =)
I'AvB:A—=C

r- A I'—>B
- AAB

(= AN)

'y A; A~ C (Al—) I'B;:A—C
I'AAB;A—C I'AAB;A—C

(A2 —)

r-A A—>B A BA—-C
I'A— AxB (= %) I'; AxB; A

Sequent calculFL, FL, andFL. are defined to be the systems obtained ffelm
by adding the following weakening, contraction, and exchange rules, respectively:

F;A;E—>C(w_>) F—)C(_>w)
'y A; A; - C (con) I'B;A;Xx—C (ex)
I, A;>—C I' A;B;: X — C

We will use any combination of suffixes ¢, andw to denote the calculus obtained
from FL by adding structural rules corresponding to these suffixes. For instance,
FL ey denotes the systefL with both the exchange and the weakening rules. For
more information on substructural logics introduced here, see, for examplell@no [
and [[4). Since all logics discussed in this paper are formulated as sequent calculi,
we will sometimes identify a sequent calculus with the logic determined by it. We
can prove the following theorems. (See Ono and Konfidi and [[L3].)

Theorem 1.2 Cut elimination theorem holds fdétL, FL¢, FLy,, FLeay, FLe, and
FL ecwy-

Theorem 1.3  Craig’s interpolation theorem holds fétL, FL¢, FL\y, FLey, FLec,
andFL gy .

Note here that the cut elimination theorem doesn’t holdHog, as shown in Bayu
Surarso and Ongg].

2 Maksimova'sprinciplefor logicswithout weakening To explain the idea of our
proof of Maksimova'’s principle, in this section we will discuss Maksimova'’s prin-
ciple for the substructural logics without weakening. As shown in the next section,
more complicated arguments will be necessary to show Maksimova'’s principle for
logics with weakeningThroughout this section, we assume that our language does
not contain any propositional constanthis assumption will eliminate nonessential
complications in expressing our main theorem (ThedEegin this section, since
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the weakening rule becomes admissible for some particular constants, for example,
the rule(tw) for the constant. Inthe following, S(A) denotes the set of subformulas
of a formulaA.

Lemma2.1 Suppose that formulas;A A; and B D B, have no propositional
variables incommon. If' — D is asequent satisfying the following three conditions

1. all formulas occurring in the sequent are subformulas of eithgn /8, or
Ao v By,

2. atleast one of them belongs t0/43) U S(A),

3. at least one of them belongs t0E) U S(By),

then it is not provable ifFL .

Proof: Tothe contrary, suppose thRt— D is provable. Then there must be a cut-
free proofIl in FL ¢ Whose endsequentis— D. Itis easily seen that in any appli-
cation of a rule of inference i, if the lower sequent satisfies the above three condi-
tions then at least one of its upper sequents must also satisfy these conditions. Notice
here that this holds for any application of eitiies *) or (>—) since its principal
formula must be a member of the &tA;) U S(Ay) U S(B1) U S(By). So, at least

one of initial sequents dil must satisfy these three conditions. But, clearly no initial
sequent can satisfy all of these conditions. Clearly, the above argument doesn’t hold
when we have the weakening rule. O

Corollary 2.2  Suppose that A> A, and B, O B, have no propositional variables
in common and thdt is any one ofFL, FLe andFL . If T is a cut-free proof irL
of a sequent” — D such that

(%) allformulasinitare subformulas of either;A B, or A, v B, and at least
one of them belongs to(&;) U S(Ay),

then every sequent ifi satisfies also«). Moreover, no applications of the following
rules of inference appear ifi.

I'B;;A— E A=A A— B
M A ABLADE 27 AS AR TN
I's Ao A— E F;Bz;A—>E(V_>) A — By (= v2).

I'iAov By, A— E A— AV B

Proof: We can show that

for any applicationl of rules of inference if1, if the lower sequent off
satisfies condition:) then the upper sequent also satisfies (or both of its
upper sequents satisfy) conditios) (

This can be proved without difficulty, except in the case wHeieeither(— %) or
(D>—). Suppose that is an application of— x) of the following form.

r-b A—-E
I'hrA— DxE
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By the subformula property, the formulax E must be either irSB(A;) U S(Ay) orin
S(B1) U S(By). Suppose that the latter holds. Then, bBtAnd E belong toS(B;) U
S(By). By our assumption, some formulaslin A belong toS(A;) U S(Ay). Hence,
eitherl’ — D or A — E satisfies all of three conditions in Lemif@a]and thus it is
not provable. This is a contradiction. Thu3 E, and hence botiD and E belong
to S(A1) U S(Ay). Therefore, the above statement holds in this case. Similarly, we
can show that this holds also fGgb— ). Thus, every sequent il also satisfies).

Now suppose that any one of the applications stated in Corollary 2.2 appears in
I1. Then, by what we have shown in the above, its upper sequent(s) must satisfy (
On the other hand, (at least one of) the upper sequent(s) contains BitberB,.
Then the sequent, which is of course provable, satisfies all three of the conditions in
Lemmal2.1] This is a contradiction. O

Theorem 2.3 Maksimova’s principle holds fdfL , FL ¢, andFL . More precisely,
suppose that formulas:A> Az and B, O B, have no propositional variables in com-
mon. Then the following hold for each logic in the above.

1. If asequent AA By — A, Vv By is provable, then either A— A, or
B, — By is provable.
2. If a sequent AA By — Ay is provable, then the sequent A> A; is

provable.
3. If asequent A— A, Vv B, is provable, then the sequent A> A, is

provable.

Proof: Suppose that the sequesf A By — A, Vv By is provable in the logid,
wherel is any one ofFL, FL, andFL . Clearly, it is not an initial sequent. So
we can assume that its cut-free prdofin L (and consequently iRL¢) is of the
following form, wherel is a rule of inference other than exchange and contraction.

A ABL . AABS AV D
(some exchanges and contractions
Al A Bl — AZ \ Bz

Then,| must be one of the following rules of inferende;1 — ), (A2 —), (— V1),
and(— Vv2). Suppose that is (A1 —). That is,

AABL .. AL AABL > AV B
ALABy...; AiABy ... AiABl— Ay v By

(A1l —).

Here, the left side of the upper sequent abntains only oné\; and others aré; A
B:. Then by Corollary2.2] the proof of the upper sequent and hence the whole proof
doesn’t contain any application of the following rules of inference:

I'Bi; A > E
F;Al/\Bl;A—>

A — Al A — B]_
A—)Al/\Bl

E (A2 =) (= A)

I'Ao;cA— E TI';By;A— E A — By
T; A,V By A E V=) Ao AvB, VP
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It means that when an occurrence of the formulag. B; and A, v B, is introduced
in the proofIl, it must be introduced only by rules of the following form:

I'hAi; A— E (AL —) A— A
' AiAB; A— E A— AV By

(= Vvl).

(Note that theseA; A B; and A, v B, may be introduced in several placesIin)

Now, we replace first all occurrences Af A B, by A; and of A, v B, by Ay in T,

and then remove every redundant application that occurs by this replacement. The
figure thus obtained is in fact a proof inwhose endsequent &; — A,. Whenl

is any one of the other rules, by using the similar argument we can get the proof of
eitherA; — A, or By — Bo. U

As we mentioned at the beginning of the present section, it is necessary to modify
Theoreni2.3lslightly when our language contains propositional constants. For in-
stance, itis easy to see that the sequent(r At) — q D qis provable irFL, where

t is the propositional constant introduced in Section 1 png, andr are mutually
distinct constants. On the other hamd~ g D g is not provable in it. Thus, Case 2

of Theorenf2.3ldoesn’t hold in the present form.

3 Maksimova's principle for logics with weakening  When we have weakening,
the situation becomes different from what we mentioned in the previous section. For
instancep — —pV (q D Q) is provable inFL,, as shown by the following.

9—q
—~ 909
——-pv@>sQq
p——-pVv(@>q

(—=D)
(= V)
(w—).

The sequenp — —pis not provable in it (cf. the third case of Theorﬁj. Soit

will be necessary to modify the statement of the principle of variable separation. Ba-
sically, our proof of Maksimova'’s principle for logics without weakening still works.
So, when a cut-free proof of a sequekitA B; — A, v By is given, from the end-
sequent upward in the proof we will search for such an application of rules by which
either A; A By or Ay v By is introduced, that is, the last application of eitlier—)
whose principal formula i$\; A By, or (— V) whose principal formula i\, v Bo.
WhenL is one of logics without weakening discussed in Section 2; i\ B, is ob-
tained fromA; by an application of A —) then A, v B, must be obtained fron,

but not fromB,, by an application of(— V), asshown in Corollarm Hence, we

can transform the original proof into a proof with the endsequent> A, by re-
placing all occurrences dh; A By by A; and of A, v By by A, respectively.

But this argument doesn’t work well for logiggith weakeningsince the weak-
ening rule may cause various possibilities. To avoid this, we will consider a cut-free
proof of the sequend;; B; — A, Vv By, instead of that oA, A By — A, Vv By, since
the provability of the former sequent follows from the provability of the latter by us-
ing weakening rule (though the converse doesn'’t always hold). Then we can focus
our attention only on when and hots v B, will be introduced. The previous argu-
ment seems to work well except the case where~) is applied befored, v B, is
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introduced, or more precisely, there exists an applicatiofvof>) below the appli-
cation of (— Vv) whose principal formula i\, v B,. In such a casé\, v B, will
appear in differenibranchesn the proof, and therefore it might be obtained frém

in one place but fronB, in other places. If this happens, then it is impossible to re-
place the formul&, v B, by only one ofA; and B, throughout the proof, preserving
the correctness of the proof. In the following, however, we will show that such an ap-
plication of (v —) is avoidable.

In this section, we suppose that our language may contain some propositional
constants. We note that when we have the weakening rule, constants 0 and 1 are logi-
cally equivalenttal andT, respectively. The following lemma is proved as a special
case of Craig’s interpolation theorem given[if] (Theorem 2.4).

Lemma3.l Letl', =, andII be finite sequences of formulas and E be a formula.
Suppose that the sequenteand the sequendg, I1, E have no propositional vari-
ables in common. Then for each calcukis,,, FLgy, and FL y, if the sequent

I'; 3; I1 — E is provable then eithek — or I'; [T — E is provable.

Lemma3.2 LetL be any one ofL,, FLeay, andFLeyw. Suppose that A> A,

and B, © B, have no propositional variables in common and thaland®) is an ar-

bitrary finite (possibly empty) sequence of subformulasofaAd B, respectively).
If the sequent\; ® — A, Vv B, is provable inL, then

1. there exists a cut-free proof of this sequerit iwhich has no applications
of (v —) to sequents with Av B, on the right-hand side,
2. eitherA; ® — Ay or A; ® — By is provable inL.

Proof: Wewill prove our lemma folFL . By a slight modification of the proof, we
can prove it for other cases. LEtbe a cut-free proof of the sequent® — A, Vv Bs.
We will prove our lemma using the induction on the heighof IT. Whenn = 1,
A; ® - Ay v B, must be an initial sequent. But this happens only whestcurs in
the sequenca, ®. Thenreplacing®, v By by Ay, wewill geta sequenty; @ — Ao,
which is still an intial sequent. Thus, we have (2). Clearly, this proof satisfies (1).
Next suppose that > 1. Sincell is a cut-free proof, if a sequent in it has
A, v By on the right-hand side then its left-hand side must always be of the form
A*; @*, where A* and ®* are finite (possibly empty) sequences of subformulas of
A; and By, respectively. Now, let be the last inference ifl. We suppose first that
the principal formula ofl is A, v B,. Thenl| must be one of— w), (— Vv1) and
(— Vv2). Obviously, (1) is satisfied in this case, since the upper sequent is one of the
following; A; ® — , A; ® - A, andA; ® — By. Neither of them hag\, v B, on
the right-hand side. Thus (1) holds. Also, (2) follows immediately.
Suppose next that the principal formulalois not A, v B, and moreover that
| is not(v —). Then, the upper sequent (or only one of the upper sequents Wwhen
is (D—)) is of the formAT; ©7 — A, v By, whereAT and®T are finite (possibly
empty) sequences of subformulasfofandB,. Then, by the hypothesis of induction,
this sequent has a cut-free proof which has no applicatio(g %) to sequents with
A, v B on the right-hand side. Sindds not(v —), (1) holds. Also, by the hypoth-
esis of induction, eitheA™; @ — A, or AT; ®" — B, is provable. By applyingd
to either of them, we can get the proof of either® — A, or A; ® — B,.
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Finally suppose thdtis (v —). Without loss of generality, we can assume that
AisoftheformAq; A'v A”; A, (and hencé) v A” is a subformula of\;) such that
A v A” is the principal formula of. Then the inferencé will be of the following
form:

Aq; A Ay, ® > Aov By Agp; A’; Ar; ® = Ay v By
A AVA A0 — AV B

(vV—=).

By the hypothesis of induction, both of the upper sequents have proofs which have no
applications of v —) to sequents having, v B, on the right-hand side. Also, either
A1, A A © — AyorAqg; A Ay; ©® — Byisprovable, and eithex1; A”; Ao, © —

A, or Ag; A”; Ay; ® — By is provable. Wher® — B, is provable, then by apply-
ing (w —) repeatedly, we hava,; A’ v A’; Ay; ® — By. So, by(— Vv2) we get
A A v A’ Ap; ® > Ay v By, Thus, both (1) and (2) hold. Next suppose that
® — Byisnotprovable. When; A'; Ay; ® — By is provable, them1; A'; Ao —
must be provable by Lemnial] and henceA; A'; Ap; ©® — Ay is provable, by us-
ing weakening. But, since eithef; A, Ao; ©® — Ay or Ay A Ay ®© — Bois
provable by our assumptiom,;; A’; Ay; ® — A, must be provable in either case.
Similarly, we can show that1; A”; Az; ® — Ay is provable. So, applyingv —),

we getA1; A’V A’; A, — A,. Note that in this application afv — ), the right-hand
side of the sequent i8,, not A, v By. So,A1; A’V A”; Ap; ® — Ay v By follows
from this. Hence, both (1) and (2) also hold in this case. O

Using these lemmas, we have the following theorem on Maksimova'’s principle for
logics with weakening in a stronger form.

Theorem 3.3 Suppose that AD A, and B, O B, have no propositional variables
in common. Then the following hold Ly, FL ey, aNdFL ey

1. Ifasequent Ax B; — Ay Vv Byis provable, then either A~ A, or B; —

B, is provable.
2. If a sequent Ax B; — A, is provable, then either A~ A, or B; — is

provable.
3. Ifasequent A— A,V By is provable, then either A~ A, or — By is

provable.

Proof: We will give a proof of (1). Itis clear tha#\; x By — Ay v By is provable

if and only if A;; By — Ay v Byis provable. Takingd; andB; for A and®, respec-
tively, in Lemmd3.2 we have that eitheA;; B, — A, or A;; B — B is provable.
Then, by Lemmg&:T](and then by applying the weakening rule, if necessary), either
A, — Ay or B; — By is provable. Similarly, we can prove our theorem for (2) and
3). O

Corollary 3.4 Maksimova’s principle holds fdfL , FL e, andFL ew. More pre-
cisely, suppose that;/> A, and B, > B, have no propositional variables in com-
mon. Then the following holds for each logic in the above.

1. Ifasequent AA By — Ao Vv Byis provable, then either A~ A, or B; —

B, is provable.
2. If asequent AA By — Ay is provable, then either A~ A, or B; — is

provable.
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3. Ifasequent A— A, Vv B, is provable, then either A~ A, or — By is
provable.

Proof: When we have the weakenind; « By — A; A By is provable. So our corol-
lary follows immediately from Theorefd.3 a

Wehave discussed Maksimova’s principle for various intuitionistic substructural log-
ics, thatis, substructural logics obtained from the intuitionistic logic by deleting some
of structural rules. But our method works well also for the classical substructural log-
ics. LetGL be Girard’s linear logic (without exponentials). Alsot . andGL,, be
logics obtained fronGGL by adding the contraction and the weakening, respectively.
Then we have the following.

Theorem 3.5 Maksimova’s principle holds fa6L, GL ¢, andGL .

4 Addingthedistributivelaw In this and the next sections, we will discuss Maksi-
mova'’s principle for the positive relevant logiBs. andRW ;. and also for the logics
DBCC andDBCK introduced in[[5]. A common feature among them is that the
following distributive law

AA(BVC)— (AAB)V(AAQC)

holds in all of them. In fact, the logid3BCC andDBCK can be obtained froaL,
andFL ¢y, respectively, by adding the distributive law as initial sequents.

In Dunn [5] and Giambrondd], sequent systemsithout the cut ruldor R, and
RW. are introduced and discussed. Also, Slaney introducéfbrsquent systems
without the cut ruld. L pgcc andL L pgck for DBCC andDBCK, respectively.

In the following, we will give a definition of these systems, butin a slightly mod-
ified form. We will take the same set of logical connectives as that introducgt in
On the other hand, we will take no logical constants for BthandRW ., and take
only the logical constant. for the other distributive logics. First, we will introduce
structureswhich are calledunchesn [16), recursively as follows:

1. any formula is a structure;
2. forn > 2, if X is a structure fori = 1,...,n, then both sequences
(X1, ..., Xy) and(Xq; ...; Xn) are structures.

Structures of the forniXy, ..., X,)—and of the form(Xy; ...; X,)—are said to be
extensiona({andintensionaj respectively). Each structupg is called arimmediate
constituenof (Xq, ..., Xp) and(Xy; ...; X,). For simplicity’s sake, we assume that
no immediate constituents of an extensional (and an intensional) structure are exten-
sional (and intensional, respectively). (Thus, a structure of the fotngY; Z); W)
will be identified with the structuréX; Y; Z; W).) In other words, extensional struc-
tures and intensional structures will appear alternately in a given structure. We will
omit parentheses when no confusions will occur.

Intuitively, a structuréA, ..., A, (@ndAq; .. .; A,) expresses the formuky, A
-« A An(@ndAg % - - - x Ap, respectively). Inthe following, capital lette¥s Y, andZ,
and so on, with or without subscripts will denote structufasbstructuresf a given
structureZ can be defined in the usual way. Sometimes, we will pay special attention
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to a particular occurrence of a substructiref Z. Insuch a case, the occurrensés
called astructure-occurrencef X (in Z) which isindicated An expression such as

' (X) will be used for denoting a structure with an indicated structure-occurrence of
Xinit. Sequents in the following calculi are expressions of the ferm A, where

X'is a structure (possibly empty) ardis a formula.

Now, we will introduce a sequent systdnDFL for the basic distributive logic
DFL as follows.

Initial sequents

1. A— A
2. 1l —

Structural rules for extensional structures

'Y, X)—> C rex)y—=~C

rxy) >c (E-e% Fx.Y) > ¢ (E-weak
(X, X)— C
T S c (Eeon.
Rules for logical connectives
X;A— B (=5) X— A F(B)—>C(_>)
X—>A>B ' ° FTADB X)>C *°
X— A X— B
X— Ave VD X— AvE V2

I'(A)—> C T(B)—C
FAvB >Cc V™)

X—-A Y—B I'(A,B)— C
XY—>ArB N TAsrBoSC AT

X—>A Y—>B I'(A;B)—>C
X.Y—AxB % TAxBoc )

Some comments would be necessary here for understanding some expressions that
appear in the above rules. Let us take the nale—) in the above, for instance.
Here,I'(A D B; X) means the structure obtained frdniB) by replacing the in-
dicated occurrence dB by the expressio®\ D B; X. As mentioned in the above,

we assume that extensional structures and intensional structures must appear alter-
nately. So, when the indicated occurrenceBoippears in an intensional substruc-

ture such a¥; B; Z in I'(B), the substructure resulting from this replacement is not

Y; (AD B; X); Z, butY; AD B; X; Z. By our definition of sequents, it may happen
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that X is empty. In such a case, the lower sequef > B; X) — C must be under-
stood ad" (A D B) — C. Similar considerations will be necessary also fer A)
and(— =) when at least one of andY is empty.

In (E — weak), we must assume thdt(X) is nonempty. Otherwise, it will
work just like the weakening rule for sequents with empty antecedents. We allow
(E — con) to apply to a sequent of the forty X, X, Z — C and to get the sequent
Y, X, Z— C. Thus, X, Xin IT"(X, X) will be understood not as a substructure but as
a subexpressianWe will use these sloppy definitions simply to avoid unnecessary
complications. (See footnotes 28 and 29 in Dlﬁn)[

Next, we will define some extensions bDFL. To do so, let us consider the
following structural rules for intensional structures:

r¢y; Xy —C 'x; X)y—C

rxy)>c (=& rox) > ¢ (—con
I'(X)—C X —
—F(X;Y)—>C(I_weak) X5 c (W

Different from (E — weak), it ispossible to apply| — weak whenI'(X) is empty.
In this casel'(X; Y) must be understood &%

The sequent systeinRW . (andLR,) for the relevant logicRW  (andR.)
is obtained fronL DFL by adding(l — ex) (and both(l — ex) and (I — con), re-
spectively). In the sequent systeinBBCC andLDBCK for the distributive logic
DBCC andDBCK, we will allow any sequent of the fornX — whereXis a struc-
ture. They are obtained frolnDFL by first adding the initial sequent of the form:

2. 1l —

and then addingl — weak) and(— w) for LDBCC, and(l — weak), (— w), and
(I —ex) for LDBCK, respectively. The cut rule in these calculi is a rule of the fol-

lowing form:
X—- A I'(A)—» C )

'X)—C

Although the cut rule is admissible in bdiibBCC andL DBCK, itisnot necessarily
admissible iLRW, andL R, (when we don't have the constant But still, they
are adequate systems RW_ andR_, respectively. (Seﬂ for RW,, and ] and
Mints [12] for R,.)

Now we will show Maksimova'’s principle foRW . andR... In the following,
we will prove several lemmas which hold for bdtRW ;. andLR... Inthe rest of this
section, we assume that formulas > A, andB; > B, are given and that they have
no propositional variables in common. What we want to show now is that if the se-
quentA; A By — Ay Vv Byis provable, then eithed; — A, or B; — B, is provable.
A formula D is an A-formula(a B-formula) if D belongs to the seB(A;) U S(A>)
(the setS(B;) U S(By), respectively). Similarly, a structur¥ is an A-structure(a
B-structurg if only A-formulas B-formulas, respectively) appear in it.

The basic idea of our proof comes from the proof givef2n But there seem to
be difficulties which are peculiar to these sequent calculi introduced in this section.
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To see this, consider a proof of the sequéatrn B; — Az v B,. The sequent may
be obtained from the sequefi\;, B;) — A, v B, by applying(A —). If we look
at the proof of this sequent from the bottom upward, one would expect the existence
of an application of E — weak) by which (A4, B;) is decomposeihto eitherA; or
B;. But this may not always happen in these calculi, since a formglar By (in
(A1, B1)) may be decomposed prior to an applicatior{ Bf— weak).
The following result is known foR as the relevance principle or the variable-
sharing property. (See Anderson and Belipp. 417.) Obviously, this also holds
for bothRW , andR, since they are subsystemskf

Lemma4.l Suppose Z is a structure and D is a formula such that they have no
propositional variables in common. Then-2 D isnot provable.

Lemmad4.2 Let Z C be astructure and D a formula such that they have no propo-
sitional variables in common. Then if 2 Cv D is provable, Z— C is provable.

Proof: LetII be a (cut-free) proof oZ — C v D. Clearly there is no sequent in
IT which containsC v D in its antecedent. S€ v D must be introduced ifil by
applying(— v1) or (— v2) of the following form:

Z > C Z > D

————— (= V] -
Z —-CvD Z —-CvD

(— Vv2).

By the subformula property di, we can show thaZ ; C andD have no propositional
variables in common. B’ — D cannot be provable by LemrHall So, T doesn’t
contain any application of— v2) of the above form. Thus, in each branch of the
proofIl, Cv D mustbe introduced by an application(eé v1) whose upper sequent
is of the formZ" — C. Now, by replacing every occurrence of form@av D in I1

by the formulaC and removing redundant sequents, we can get the praofefC.

]

Lemmad4.3 Suppose that D is an A-formula and Z is a structure which consists
only of the formula AA By, Aformulas, and B-formulas. Let be an arbitrary
structure obtained from Z by replacing each occurrence o1 by A and each
occurrence of a B-formula by any A-structure. Then, #ZD is provable, Z— D

is also provable.

Proof: LetIl be a(cut-free) proof o — D. Wewill prove our lemma by induction
on the length of 1. Here we will give a proof only when the last inferenicef IT is
one of (E — weak), (O—), and(A —).

Case 1. The last inference i$E — weak). We can assume thaf — D is of the
formTI'(X,Y) — D andl is of the following form.
[(X)—> D

m (E—weak).

We can assume that by any replacement mentioned in the above, the lower sequent
of | will change into the sequent of the forf(X, Y') — D. By the hypothesis of
induction,I"(X') — D is provable. Thereford; (X, Y) — D is also provable by

applying(E — weak.
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Case 2: The lastinference isD— ). Inthis case, we can assume t@at> D is of
the formI"(C; D Cy; X) — D and the last inference is of the following form.

X—C, T(C,) — D
NCio>Cyu X)y— D

(>—).

By the subformula property, the formu@, > C, is either anA-formula or aB-
formula. Suppose first that it is afs+formula. Then the result of the lower sequent
by a given replacement will be of the form(C; > Cy; X') — D. By the hypothesis
of induction, bothX' — C; andI" (C,) — D are provable. Thus, b§p—) we can
get a proof of" (C; D Cy; X') — D.

On the other hand, whe®;, > C; is a B-formula, we will get a sequent of the
formI"(U; X') — D by a replacement, whete is an A-structure. By using the hy-
pothesis of induction for the right upper sequent ofve can show that™ (V) — D
is provable forany AstructureV. Thus,I" (U; X') — D is provable by takingJ; X’
for V sinceU; X' is an A-structure.

Case 3: The lastinference isA —). When the principal formula of the inference
is different fromA; A By, the proof goes essentially in the same way as Case 2. When
the principal formula isA; A By, the last inference is of the following form.

F(Al, Bl) — D
F(Al 7AN Bl) — D

(A—).

Then the result of the lower sequent by a replacement will be of the Fofdy) —
D. By the hypothesis of inductiol;(A;, U) — D is provable for anyA-structureJ.
In particular, by takingA; for U, we have that" (A1, A;) — D is provable. Using
(E — con), we can derive that (A;) — Dis provable. O

Lemmad4.4 Suppose Z is a structure that consists only of the formyla B, A-
formulas, and B-formulas. LetpZand Zg) be an arbitrary structure obtained from

Z by first replacing each occurrence ofiA B; by A (and B,) and then replacing
each occurrence of a B-formula (and an A-formula) in Z by an A-structure (and a
B-structure, respectively). Then if 2 A, v B, is provable, either £ - A, v By

is provable for any such g£or Zg — A, Vv By is provable for any such g

Proof: LetII be a (cut-free) proof oZ — A, v B,. We will prove our lemma by
induction on the length of the prodt. In the following, we will give a proof here
when the last inferenckis one of(D—), (Vv —), (— Vv1), and(A —).

Case 1. The last inference i$D—). HereZ — A, v By is of the formI"(Cy D
Cy; X) — Ay V B, and the last inference is of the following form.

X — Cl F(Cz) — A2\/ Bz
F(Cl D) Cz; X) — A2 \ Bz

(>—).

Without a loss of generality, we can assume tBat> C, is an A-formula. Also,
we can suppose thaty and Zg are of the fornT o(C1 D Cy; Xa) andT'g(Ug; Xp),
respectively, wher&g is an arbitraryB-structure. Let us consider the right upper
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sequent ofl. By the hypothesis of induction, eith&a(Cy) — Ao Vv By is prov-
able, orT'g(Vg) — A, Vv By is provable for anyB-structureVg. Suppose first that
I'a(C2) — Ay Vv B, is provable. By LemmBL3] Xa — C; is provable. Hence, by
using (O—) we can get a proof of o(C; D Cp; Xa) — Ay Vv Byo. Suppose other-
wise. Then, by takiny/g for Ug; Xg we can get a proof df'g(Ug; Xg) = Ay V By
for anyUsg.

Case 2: The last inference i$v —). In this caseZ — A, Vv B, is of the form
I'(C, v (Cy) — AV By and the last inference is of the following form.

F(Cl) — A2 \ Bz F(Cz) — A2V Bz
F(Cl \ Cz) — A2 \ Bz

(v —).

Without a loss of generality, we can assume bat C, is an A-formula. Also, we
suppose thaZ 5 and Zg are of the form"5(C; v Cy) andT'g(Up) for a B-structure

Ug, respectively. Taking both of the upper sequents and using the hypothesis of in-
duction, we have that either

1. Ta(Cy) — Ay Vv By is provable
or

2. I'g(V) = AoV By is provable for anyB-structureVg,
and also that either

3. T'a(Cy) - AV Byis provable
or

4. I'g(Wg) — Ay Vv By is provable for anyB-structureWs.

Now suppose that either (2) or (4) is the case. Then by tadimdpr Vg or Wg, we
can getaproof of g(Ug) — Ay Vv By for an arbitraryUg. Suppose otherwise. Then
both (1) and (3) hold. By applyingv —) to these sequents, we can get a proof of
FA(C]_ \ C2) — A2 4 Bz.

Case 3: The last inference i&— Vv1). Here the last inference is of the following

form.
Z— A2

75 AvE VD

Let us consider the upper sequent. By Lenln@ Z, — A, is provable (for any
Za). Now by using(— V1), we have a pof of Zy — Ay Vv Bo.

Case 4. The last inference isA —). When the principal formula of the inference
is different from A; A By, the proof goes essentially in the same way as the above
cases. When the principal formulaAg A By, the last inference is of the following

form.
I'(A1, By) — AoV By

'(A1AB) — Abv B

(A—).

Here, Z is T'(A1 A By) and hence we can suppose tlt and Zg are of the
form T'a(A;) and I'g(By), respectively. By the hypothesis of induction, either



108 H. NARUSE, BAYU SURARSO, and H. ONO

Ca(Ag, U) — Ay Vv By is provable for anyA-structurelU or I'g(V, B1) — Ay v By
is provable for anyB-structureV. If the former holds, then we can show tlzgt —
A, Vv By is provable, by takingd; for U and applying(E — con). Similarly, Zg —
A, v B, is provable when the latter holds. O

Theorem 4.5 Maksimova’s principle holds f&RW . andR ... More precisely, sup-
pose that formulas AD A, and B, D By have no propositional variables in common.
Then the following holds.

1. Ifasequent AA By — Ay Vv Byis provable, then either A~ A, or By —
B, is provable.
2. Ifasequent AA B; — A; is provable, then A— A; is provable.

3. Ifasequent A— A,V B, is provable, then A— A; is provable.

Proof: (1) Applying Lemmd4.4}o the sequeniy A B; — A, v By, we have that
eitherA; — A,V By is provable oiB; — A, v B, is provable. Then by Lemnta2)
A; — Ay is provable in the former case a4 — By is provable in the latter case.
(2) and (3) follow immediately from Lemmés3and_2] respectively. O

By a slight modification of the above proof, we can show the following result for the
positive relevant logidW . Asfor a sequent system faiw ., se€[[7].

Theorem 4.6 Maksimova’s principle holds forw,..

It may be interesting to compare results in this section with Maksimova’s negative re-
sult on the relevant logiRM. In [8] (and also in[[Q]), she showed that Maksimova’s
principle doesn't hold foRM which is obtained fronR by adding theamingle axiom

A D (AD A). Infact, Maksimova showed that for mutually distinct propositional
variablesp, g, r, ands, the formula (=(p D> p) AQ) D (SV (r D r)) is provable

in RM, but neither —=(p > p) D snorg D (r D r) is provable in it. Our method

of proving Maksimova’s principle for a logic depends highly on the existence of a
cut-free system fok.. At this moment, it is not so clear where the limitation of our
method lies.

5 Distributivelogicswith weakening  Next, we will prove that Maksimova'’s prin-
ciple holds for the distributive logicBBCC and DBCK, both of which have the
weakening rule. In Bayu Surardg)[the author proved Craig’s interpolation theorem
for bothDBCC andDBCK. Infact, we can show a stronger form of Craig’s interpo-
lation theorem which is given below. To explain it, we will introduce some notations.
Suppose thatfar=1, ..., n,Y; is a structure-occurrence in a given structursuch
thatY; andY, do not intersect each other wheg- k. Let Z; be a structure for each
i. ThenU;z v, denotes the structure obtained frahby replacingy; by Z; for each
i=1,...,n. Also,U._,y, denotes the structure obtained frohiy simply omitting
everyY;. (In the latter case, we must also omit one of the occurrences of connections
‘.7 or '’ (ifany) atthe end of eact, to make the resulting expression a structure.)
The symbol V) denotes the set of propositional variablesdin the following.

Now the following theorem holds for bothDBCC andL DBCK from which
the usual Craig’s interpolation theorem 9BCC andDBCK follows immediately.
(See Plfor details.)
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Theorem 5.1 Let U be a structure and;Ys a structure-occurrence of U for+
1,...,n. Suppose that (1);¥and Y, do not intersect each another wheg: k and (2)
if Y; and ¥ are substructures of structure-occurrences Z ari@f2J, respectively,
then they never appear as the formZ in U.

If the sequent U A is provable, then there exist formulagfori =1,...,n
such that

1. Y; — C; are provable for each j,
2. U vy — Ais povable,
3. V(C)) cV(Y) N[V (Ui_,v)) UV(A)] for each j.

To understand the conditions @hin the above theorem, first consider the structure
X; Y1; (V, Yo); W, for instance. Tak&; for Z and(V, Y») for Z’. Then the structure
has a subexpression of the foEnZ’, and hence the conditions in our theorem are not
satisfied. On the other hand, whns of the formX, Yy, (V; Y2), W, it will satisfy
these conditions. 1) — Ais provable for thidJ, then the theorem says that there
exist formulasC; andC, such that

1. bothY; — C; andY, — C, are provable,
2. X,Cq, (V;Cy), W— Ais provable,
3. V(C) cV(YpNIV(X, V,W)UV(A)]for j=1,2.

We will show in the following that Maksimova’s principle holds f@BCC and
DBCK by using these sequent systeti3BCC andLDBCK. First we will show
that the following lemmas hold for bothDBCC andL DBCK.

Lemmab.2 Let X and Y be (possibly empty) structures foe 1, ..., nand D
be a formula. Suppose that the structuke Y. ; Y, and the structure % ...; Xn; D
have no propositional variables in common. If the seque@t Y1), ..., (Xn; Yn) —
D is provable, then either X ..., X, — D is provable or X — is provable for some
k such thatl < k < n. This also holds for the sequefity; Xy), ..., (Yn; Xn) — D.

Proof: Suppose thatXs; Y1), ..., (Xn; Ya) — D is provable. By Theorerfa.]]

there are formula€; fori =1, ..., n, each of which consists only of propositional
constants such that — C; is provable for eachand (Xy; Cy), ..., (Xn; Cy) — D

is provable. On the other hand, it can be easily shown by induction on the complex-
ity of C; that either— C; or C; — is provable for each Suppose thaiCy — is
provable for som&. Then we can show th&f, — is provable by using the admissi-
bility of the cut rule. Otherwise;~ C; is provable for each Then, also by using the

cut rule, we have thaXy, ..., X, — D is provable. The proof goes similarly when
(Y1; X1), ..., (Yn; Xy) — D is provable. O

The following lemma is an analogue of Lem&za]

Lemmab5.3 LetL beLDBCC or LDBCK. Suppose that AD A, and B D

B, have no propositional variables in common. Let Z be a structure of the form
(Ug; V1), ..., (Um; Vi), where each Yis either empty or a structure consisting only
of formulas in $A;) and each Vis either empty or a structure consisting only of
formulas of $B,). If the sequent Z> A, v B, is provable, then
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1. there exists a proof of this sequent which has no applications e$ ) to
sequents with Av B, on the right-hand side,
2. either Z— A, or Z — By is provable.

Proof: Wewill prove our lemma foL. DBCC. By aslight modification of the proof,
we can prove it also fdt DBCK . The proof is essentially the same as thdt &f Let
IT be a proof (inLDBCC) of the sequenZ — A, v B,. We will prove our lemma
using the induction on the heightof IT.

If n=1, thenZ — A,V B, must be an initial sequent. But this cannot happen
because of the form of initial sequentsldDBCC. Thus,n must be greater than 1.
Sincell contains no applications of the cut rule, if any sequent in ithag B, on the
right-hand side then its left-hand side must be of the fout; V;), ..., (U} Vi),
where eachJ;” is either empty or a structure consisting only of subformulag.pf
and also eacN;" is empty or a structure consisting only of subformulaggf Now
let | be the last inference ifl. We suppose first that the principal formula bfs
A, Vv Bo. Thenl must be one of— V1), (— Vv2), and right weakening. Then the
upper sequent is one of the following: —, Z - A,, andZ — By,. Since none of
them hasA; v B, on the right-hand side, (1) holds obviously. Also (2) follows from
this.

Suppose next that the principal formula bis not A, v B, and, moreover,
that | is not (v —). Then the upper sequent (or only one of the upper sequents,
when | is (D—)) is of the form(U/; V), ..., (UL Vi) — Ay v B,, where each
UiT is either empty or a structure consisting only of subformulashpfand each
\/iJr is either empty or a structure consisting only of subformula8of Then, by
the hypothesis of induction, this sequent has a proof which has no applications of
(v —) to sequents withA, v B, on the right-hand side. Sindeis not (v —), (1)
holds. Also, by the hypothesis of induction, eitlier’; V), ..., (US; Vi) — Ay or
ulvh, ..., vl — By is provable. By applying to either of them, we can
get the proof of eitheZ — A, or Z — Bo.

Finally, suppose thdtis (v —). Without loss of generality, we can assume that
U, is of the form.T" (A’ v A”) such thatA’ v A” is the principal formula of. Then
the inferencd will be of the following form.

CA): VD), s (Umi Vi) > AoV B, (T(A"): V1), ..., (Umi Vi) > Ao v By
(T(AV A V), ..., (Um; Vim) = A2V By

vV =)

By the hypothesis of induction, both of the upper sequents have proofs which have
no applications of v —) to sequents havind, v B, on the right-hand side. Also,

() either(T'(A); V1),..., (Un; Vim) > Asor (T(A); V), ..., (Un; Vin) — Bais
provable, and also (ii) eithéf(A”); V1), ..., (Un; Vm) = Acor (T'(A”); V), ...,

(Um; Vi) — By is provable. Now suppose thdd, ..., Vim — By is provable. Then,
applying(l — weak) repeatedly, we can g€F (A’ v A”); V1), ..., (Un; Vim) — Bo.

So, by (— v2) we have a proof of (A" v A”); V1), ..., (Un; Vim) = Ax Vv By,

which satisfies the condition in (1). Clearly, (2) also holds. Next suppose that
Vi,...,Vm — By is not provable. If(T'(A"); V1), ..., (Un; Vi) — By is prov-

able, then by Lemm&either I'(A') — is provable olU, — is provable for
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somek. In dther case, by applyingE — weak), (I — weak), and right weakening,
we will have (T'(A); V1), ..., (Um; Vm) — Az. So, by the above assumption (i),
(T(A); V1), ..., (Un; Vim) — Agis always provable. Similarly'(A”); V1), ...,
(Um; Vm) — Ao is provable. So, applyingv —) to them, we havgl'(A’ v
A"); V1), ..., (Un; Vim) = Ao. Now by applying(— Vv2) we get a proof of I'(A" v
A" V), ..., (Un; Vim) — Ax Vv By which satisfies the condition in (1). Clearly, (2)
holds. O

Using these lemmas, we have the following theorem.

Theorem 5.4 Suppose that £O A, and B, O B, have no propositional variables
in common. Then the following holds loDBCC andL DBCK.

1. Ifasequent Ax B; — A,V By is provable, then either A~ A, or B; —
B, is provable.

2. If asequent Ax B; — A is provable, then either A~ A, or B; — is
provable.

3. Ifasequent A— A,V By is provable, then either A~ A, or — By is
provable.

Proof: Wewill give a proof of (1). By using the admissibility of cut rule, it is clear
that Ay * By — A, Vv By is provable if and only ifA;; By — A, v By is provable.
Then by takingm = 1 and taking A; for U; and B; for V; in Lemma5.3] we have
that eitherA;: By — A, or A;; By — B, is provable. Hence, by Lemrfia2] either

A; — A, or By — By is provable. Similarly, we can also prove our theorem for
Cases 2 and 3. O

Corollary 5.5 Maksimova’s principle holds fdtDBCC andLDBCK. More pre-
cisely, suppose that;/> A, and B, O B, have no propositional variables in com-
mon. Then the following holds ftDBCC andLDBCK.

1. Ifasequent AA By — Ay Vv Byis provable, then either A~ A, or By —
B, is provable.

2. If asequent AA By — A, is provable, then either A~ A, or B; — is
provable.

3. Ifasequent A— A, Vv B, is provable, then either A~ A, or — By is
provable.

Proof: It is easy to show tha#; « By — A3 A By is provable. So our corollary
follows immediately from Theorefa.4] O
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