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Biconsequence Relations:
A Four-Valued Formalism of Reasoning with

Inconsistency and Incompleteness

ALEXANDER BOCHMAN

Abstract We suggest a general formalism of four-valued reasoning, called
biconsequence relations, intended to serve as a logical framework for reasoning
with incomplete and inconsistent data. The formalism is based on a four-valued
semantics suggested by Belnap. As for the classical sequent calculus, any four-
valued connective can be defined in biconsequence relations using suitable in-
troduction and elimination rules. In addition, various three-valued and partial
logics are shown to be special cases of this formalism obtained by imposing ap-
propriate additional logical rules. We show also that such rules are instances of
asingle logical principle calledcoherence. The latter can be considered a gen-
eral requirement securing that the information we can infer in this framework
will be classically coherent.

1 Introduction There seems to be no need to argue for the importance of studying
reasoning in contexts of possibly incomplete and/or inconsistent information. Nev-
ertheless, so far, there is no general formal framework that could serve as common
ground for representing reasoning of this kind. In most cases, logical systems sug-
gested for this purpose have an essentially language-dependent character that makes it
difficult to compare them. In addition, they do not reach, in general, a level of sophis-
tication comparable to the development of classical logical formalisms. What seems
to be lacking is a uniform and versatile syntactic representation of such reasoning, a
representation that will be language-independent and give astructural description for
it.

There are a number of desirable features such a formal representation should
have, in our view. First of all, it should have the form of aninference system that
provides a primary syntactic representation of the corresponding reasoning. A sec-
ond, more specific requirement is that such a representation should show clearly how
this kind of reasoning is connected with ordinary classical reasoning. Reasoning with
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possibly incomplete or inconsistent data should be seen as anatural extension of clas-
sical reasoning. In particular, it should coincide with the latter in cases where there is
no incompleteness or inconsistency involved. In addition, in order to be user-friendly,
the language and semantics of such reasoning ought to be reasonably close to that for
classical logic. Changes are inevitable, since classical logic is inappropriate for rea-
soning of this kind, but the basic principles of rationality and reason should remain
the same.

In this paper we suggest a general formalism for this kind of reasoning that is
intended to meet the above requirements. The formalism employs a well-known and
widely-used interpretation of contexts involving inconsistent or incomplete data in
terms of four-valued semantics suggested by Belnap [3]. This interpretation allows
propositions to be not only true or false, but also undetermined (neither true nor false)
or contradictory (both true and false). On this understanding, the above kind of rea-
soning can be seen as four-valued, in the same sense as classical reasoning is consid-
ered to be two-valued.

Wewill introduce a formalism calledbiconsequence relations that gives a natu-
ral syntactic representation for Belnap’s four-valued semantics. The formalism pro-
vides a purely structural description of four-valued reasoning that does not depend on
aparticular choice of connectives. Moreover, any four-valued connective can be de-
fined in it using suitable introduction and elimination rules as in the ordinary classical
sequent calculus.

Biconsequence relations permit introduction of additional structural rules. In
this way, for instance, a formalization of partial logic, as well as of different kinds
of three-valued logics, can be obtained. We will show also that many such rules can
be seen as special instances of a single logical principle calledcoherence. The latter
can be considered as a general requirement securing that the information we caninfer
in a biconsequence relation will be classically coherent. A number of important bi-
consequence relations can be obtained by restricting the applicability of the principle
to different languages.

The formalism developed in this paper has been shown to provide a logical basis
for logic programming involving negation as failure and for nonmonotonic reasoning
in general—see [6] and [8]. The main content of the paper, however, is independent
of these applications (though they certainly contribute to the significance of dealing
with these issues).

1.1 Preliminaries: Scott consequence relations It is convenient to start with a
brief description of a general sequent calculus called Scott consequence relations. We
refer the reader to Gabbay [14] and Bochman [5] for a more detailed exposition.

Scott consequence relations involve rules or sequents of the forma � b, where
a andb are finite sets of propositions. An informal reading of such rules is “If all
propositions froma are true, then one of the propositions fromb should also be true.”

Definition 1.1 A set of sequents is called aScott consequence relation if it satisfies
the following conditions.

(Reflexivity) A � A
(Monotonicity) If a � b anda ⊆ a′, b ⊆ b′, thena′ � b′
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(Cut) a � b, A a, A � b
a � b

As usual, the notion of a sequent can be extended to include infinite sets of premises
and conclusions by requiring that, for any sets of propositionsu andv, u � v if and
only if a � b, for some finitea ⊆ u, b ⊆ v. This requirement will also secure that the
resulting consequence relation will satisfy thecompactness property.

Definition 1.2 A set of propositionsu will be called atheory of a Scott consequence
relation� if u � u, whereu denotes the complement ofu.

Theories could also be defined as setsu such that ifu � a, thenu ∩ a �= ∅, for any set
of propositionsa. Such sets can be seen asmultiple-conclusion analogues of ordinary
logical theories, that is, of sets of formulas closed with respect to logical consequence.

As usual, by amodel we will mean an assignment of truth or falsity to all propo-
sitions of the language. Ifi is such an assignment, we will denote byi |= A the fact
that a propositionA is true with respect toi. Note that any such assignment can be
identified with a set of propositions that are true with respect to it. This identification
will be extensively used in what follows.

A set of models will be called asemantics. Any semanticsS determines a Scott
consequence relation�S defined as follows.

Definition 1.3 a �S b ≡ for anyi ∈ S, if i |= A, for everyA ∈ a, theni |= B,
for someB ∈ b.

The basic result about Scott consequence relations, called Scott Completeness Theo-
rem in [14], says that theories can serve ascanonical models of the latter. LetS� be
a set of models corresponding to all theories of a Scott consequence relation�. Then
we have

Theorem 1.4 (Completeness) If � is a Scott consequence relation, then �=�S� .

An immediate consequence of this theorem is that Scott consequence relations are
complete for the above semantics.

Finally, a Scott consequence relation can be transformed into the usual classi-
cal sequent calculus by extending the language to include classical connectives and
adding appropriate introduction and elimination rules for them. As is well known,
such rules can be used also to eliminate all occurrences of connectives in sequents.
In other words, they allow one to reduce any sequent to a set of sequents that involve
only atomic propositions.

The above description will be sufficient for our present purposes. Now we will
turn to defining a similar system for a four-valued inference.

2 Biconsequence relations and four-valued inference We introduce here a logi-
cal formalism, calledbiconsequence relations, that provides a syntactic representa-
tion for a four-valued inference based on Belnap’s interpretation of the four truth-
values (see [3]). The latter amounts to their identification with the subsets of the
set of classical truth-values{t, f }. According to this interpretation, the four truth-
values�, t, f,⊥ are identified, respectively, with{t, f }, {t}, { f } and∅. Accordingly,
� means that a proposition is both true and false (i.e., contradictory),t means that it
is classically true (that is, true without being false),f means that it is classically false
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(without being true), whereas⊥ means that it is neither true nor false (undetermined).
This representation allows us to see any four-valued interpretation as apair of ordi-
nary classical assignments, corresponding, respectively, to assignments of truth and
falsity to propositions. To be more exact, for any four-valued interpretationν (under
the above representation), we can define the following two assignments.

ν |= A iff t ∈ ν(A)

ν =|A iff f ∈ ν(A)

Clearly, the source 4-assignment can be restored from the above two valuations as
follows:

ν(A) = � iff ν |= A andν =|A
ν(A) = t iff ν |= A andν �=|A
ν(A) = f iff ν �|= A andν =|A

ν(A) = ⊥ iff ν �|= A andν �=|A

The equivalence of these two representations shows that thebinary representation is
fairly general and does not restrict the set of possible four-valued interpretations.

Taking into account the above representation of the four truth-values, a four-
valued reasoning in general can be seen as reasoning about truth and falsity of propo-
sitions, the only distinction from classical reasoning being that the assignments of
truth and falsity are independent of each other. Consequently, inference rules for such
reasoning would have the form of constraints on possible assignments, for example,
‘If A is true, thenB is either true or false’, and so on. As can be seen, any constraint
of this kind is expressible via a set of disjunctive clauses constructed from elemen-
tary assertions of the form ‘A is true’ and ‘A is false’, the only distinction from the
classical case being that these two assertions are independent of each other. These
considerations lead to the following construction that will provide a syntactic coun-
terpart for such a reasoning.

By a bisequent we will mean a rule of the form

a : b � c : d,

wherea, b, c, d are finite sets of propositions. The intended interpretation of such
rules is

If all propositions froma are true and all propositions fromb are false, then
either one of the propositions fromc is true or one of the propositions fromd is
false.

In accordance with this interpretation, propositions froma andb will be called, re-
spectively,positive andnegative premises, whereas that fromc andd will be called
positive andnegative conclusions. The following definition provides a primary char-
acterization of such bisequents in accordance with their intended interpretation.

Definition 2.1 A biconsequence relation is a set of bisequents closed with respect
to the following rules:
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(Monotonicity) a : b � c : d
a′ : b′ � c′ : d′,

if a ⊆ a′, b ⊆ b′, c ⊆ c′, d ⊆ d′

(Positive Reflexivity) A :� A :

(Negative Reflexivity) :A � : A

(Positive Cut) a : b � A, c : d A, a : b � c : d
a : b � c : d

(Negative Cut) a : b � c : A, d a : A, b � c : d
a : b � c : d

A biconsequence relation can be seen as adoubled version of a Scott consequence
relation reflecting the independence of truth and falsity assignments. Abusing the ter-
minology somewhat, we will use the symbol�, possibly with indices, for denoting
biconsequence relations.

Again, the definition of a biconsequence relation is extendable to arbitrary sets
of propositions by accepting the followingcompactness requirement.

(Compactness) u : v � w : z iff a : b � c : d,

for some finite setsa, b, c, d such thata ⊆ u, b ⊆ v, c ⊆ w andd ⊆ z.
Weare going to show now that biconsequence relations provide an adequate for-

malization of four-valued inference. The following definition describes thecanonical
models of biconsequence relations.

Definition 2.2 A pair of sets of propositions(u, v) is abitheory of a biconsequence
relation� if

u : v � u : v .

The following lemma describes bitheories as objects that areclosed with respect to
the bisequents of a biconsequence relation.

Lemma 2.3 (u, v) is a bitheory of a biconsequence relation � if and only if u : v �
c : d implies that either c ∩ u �= ∅ or d ∩ v �= ∅, for any sets c, d.

Proof: If u : v � c : d, but c ⊆ u andd ⊆ v, thenu : v � u : v by monotonicity and
compactness, and hence(u, v) is not a bitheory. In the other direction, ifu : v � u : v,
then, due to compactness, there are finite setsc, d such thatc ⊆ u, d ⊆ v, andu : v �
c : d. �

The followingRepresentation Theorem shows that biconsequence relations are deter-
mined by their bitheories.

Theorem 2.4 (Representation Theorem)If � is a biconsequence relation, then a :
b � c : d if and only if, for any bitheory (u, v), if a ⊆ u and b ⊆ v, then either c ∩ u �=
∅ or d ∩ v �= ∅.

Proof: The implication from left to right follows from the definition of a bitheory.
Assume now thata : b � c : d. Note that, for any fixedb0 andd0, we can define a
Scott consequence relation as follows:

a � c ≡ a : b0 � c : d0.
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Consequently, the completeness theorem for Scott consequence relations implies that
there is a setu such thata ⊆ u, c ⊆ u, andu : b � u : d. Let us define now the following
Scott consequence relation:

a � c ≡ u : c � u : a.

This time, the same completeness theorem gives us the result that there is a setv such
thatb ⊆ v, d ⊆ v andu : v � u : v. Clearly, (u, v) is a bitheory of�, and hence the
implication from right to left also holds. �

Definition 2.5 A bisequenta : b � c : d will be said to bevalid with respect to a
four-valued interpretationν, if ν |= A, for every A ∈ a, andν =|B, for everyB ∈ b,
imply that eitherν |= C, for someC ∈ c, or ν =|D, for someD ∈ d.

If I is a set of 4-interpretations, we will denote by�I a set of all bisequents that are
valid with respect to every interpretation inI. It is easy to show that this set forms a
biconsequence relation.

Finally, notice that any bitheory(u, v) can be identified with a four-valued in-
terpretation by takingu to be the set of true propositions andv the set of propositions
that are not false. Then the completeness theorem immediately implies that any bi-
consequence relation is determined by some set of 4-interpretations.

Corollary 2.6 � is a biconsequence relation if and only if �=�I, for some set of
4-interpretations I.

This result shows that biconsequence relations provide an adequate formalization of
four-valued reasoning.

Remark 2.7 As can be seen, our representation of four-valued reasoning trades
upon a (highly specific) possibility ofdecomposing 4-interpretations into a pair of
two-valued ones. From a purely technical point of view, this construction can be
traced back to Łukasiewicz’s idea of multiplication of logical matrices. Apart from
the intuitive justification, this gives a significantrepresentation economy, since oth-
erwise we would have to use 4-sequents instead of our bisequents for representing
four-valued inference rules. Notice also that this immediately distinguishes our bi-
consequence relations from the general approach to formalization of many-valued
logics initiated by Schr̈oter in [19] (see, e.g., Carnielli [9], Rousseau [18], Taka-
hashi [22], and Zach’s thesis [24] for a survey). Though many authors in this trend
usen-component sequents for describingn-valued logics, such sequents do not cor-
respond to inference rules in our sense; rather, they provide a syntactic description
for associated semantic tableaux.

3 Introducing connectives Note that our formalism does not depend on a partic-
ular choice of four-valued connectives. Moreover, we will now show that any such
connective is definable in it via introduction and elimination rules as in the classical
sequent calculi, the only distinction being that we should have a pair of introduction
rules and a pair of elimination rules corresponding to two premise sets and two con-
clusion sets, respectively.
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Due to the correspondence between four-valued interpretations and their bicom-
ponent representations, any four-valued connective #(A1, . . . , An) can always be de-
termined by a pair of conditions describing, respectively, when it is true and when it
is false. Consequently, it can be described by a pair of definitions.

(D(#))
ν |= #(A1, . . . , An) ≡ F +

ν [ A1, . . . , An]

ν =|#(A1, . . . , An) ≡ F −
ν [ A1, . . . , An]

whereF +
ν [ A1, . . . , An] and F −

ν [ A1, . . . , An] are classical logical formulas in the
metalanguage generated by elementary propositions of the formν |= Ai andν =|Ai.

We will show that introduction and elimination rules for such a connective can
always be given in the following form:

(#E+) {a, ai : b, bi � c, ci : d, di} (1 ≤ i ≤ k1)

a,#(A1, . . . , An) : b � c : d

(#I+) {a, ai : b, bi � c, ci : d, di} (1 ≤ i ≤ k2)

a : b � c,#(A1, . . . , An) : d

(#E−) {a, ai : b, bi � c, ci : d, di} (1 ≤ i ≤ k3)

a : b � c : d,#(A1, . . . , An)

(#I−) {a, ai : b, bi � c, ci : d, di} (1 ≤ i ≤ k4)

a : b,#(A1, . . . , An) � c : d

whereai, bi, ci, anddi are subsets of{A1, . . . , An}.
The following theorem shows that any four-valued connective can be character-

ized by such rules added to a biconsequence relation. This theorem can be seen as
aparadigmatic completeness theorem for biconsequence relations in languages con-
taining four-valued connectives.

Theorem 3.1 Let #(A1, . . . , An) be a four-valued connective determined by D(#).
Then there are four rules of the above form such that any biconsequence relation
satisfying these rules is generated by a set of four-valued interpretations satisfying
D(#).

Proof: Let us assume thatF +
ν [ A1, . . . , An] is represented in a disjunctive normal

form C1 � · · · � C d
k , where eachC i is a conjunction ofliterals of the formν |= A j,

ν �|= A j, ν =|A j, or ν �=|A j. Then we will introduce a rule of the form #E+ such that
A j belongs toai (respectively, tobi, ci, or di) if and only if ν |= A j (ν =|A j, ν �|= A j,
or ν �=|A j) belongs toC i.

Assume now thatF +
ν [ A1, . . . , An] is transformed into aconjunctive normal

form D1 � · · · � Dm, where eachD i is a disjunction of the same literals. Then we
will introduce a rule #I+ such thatA j belongs toai (respectively, tobi, ci, or di) if
and only ifν �|= A j (ν �=|A j, ν |= A j, or ν =|A j) belongs toD i.

In the same way, a disjunctive normal form ofF −
ν [ A1, . . . , An] generates a rule

of the form #I−, whereas its conjunctive normal form generates a rule of the form
#E−.

Assume that� is a biconsequence relation satisfying the above rules,(u, v) is its
bitheory, andν(u,v) a four-valued interpretation corresponding to(u, v). Then #E+
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implies that if #(A1, . . . , An) belongs tou, at least one of the conjunctsC i of a dis-
junctive normal form ofF +

ν [ A1, . . . , An] should be such thatai ⊆ u, bi ⊆ v, ci ⊆ u,

anddi ⊆ v. Consequently,ν(u,v) |= #(A1, . . . , An) impliesF +
ν [ A1, . . . , An] for ν =

ν(u,v). Similarly, #I+ implies that ifν(u,v) �|= #(A1, . . . , An), one of the disjuncts of a
conjunctive normal form ofF +

ν [ A1, . . . , An] for ν = ν(u,v) should be false, and hence
F +

ν [ A1, . . . , An] itself is false with respect to this interpretation. Thus,ν(u,v) satis-
fies the first condition ofD(#). In the same way it can be shown that the other two
rules imply the validity of the second condition fromD(#) for ν(u,v). Consequently,
all canonical interpretations of� satisfyD(#). Now the result follows from the rep-
resentation theorem, since any biconsequence relation is generated by its canonical
interpretations. �
An application of the procedure given in the proof of the above theorem to a particu-
lar class ofclassical four-valued connectives will be presented below. Just as in the
case of classical logic, the rules corresponding to four-valued connectives allow us
to reduce any bisequent involving such connectives to a set of bisequents containing
atomic propositions only (even without the use of the two cut rules). This is simply a
syntactic expression of the fact that the value of any proposition involving only truth-
functional connectives in an interpretation is uniquely determined by the values of its
atomic propositions.

Bisequents that involve only atomic propositions will be calledbasic ones.
Thus, for any given language containing only four-valued connectives, there is a one-
to-one correspondence between biconsequence relations and their restrictions to the
basic bisequents. Note that the latter can be considered biconsequence relations in
their own right, namely, as biconsequence relations in the language without connec-
tives. Such biconsequence relations will also be calledbasic. Thus, any biconse-
quence relation involving only four-valued connectives is equivalent, in a sense, to
some basic biconsequence relation.

In what follows, by alanguage L we will mean a subset of four-valued connec-
tives. Generalizing the above considerations a bit, we will say that two biconsequence
relations, possibly in different languages, areequivalent if they have the same basic
subrelations. As can be easily seen, any equivalence class under this relation contains
exactly one biconsequence relation for every four-valued languageL . Accordingly,
for any biconsequence relation� (in some languageL0) and any languageL , wewill
denote by� [L ] the unique biconsequence relation inL that is equivalent to�. In
particular,� [∅] will denote the basic biconsequence relation equivalent to�. We
will use this notation later when describing logical rules for biconsequence relations.

Finally, we will briefly describe still another general way of characterizing four-
valued connectives in biconsequence relations, namely, by a set of bisequents having
one of the forms:

(#E+
0 ) a,#(A1, . . . , An) : b � c : d

(#I+
0 ) a : b � c,#(A1, . . . , An) : d

(#E−
0 ) a : b � c : d,#(A1, . . . , An)

(#I−
0 ) a : b,#(A1, . . . , An) � c : d
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wherea, b, c, andd are subsets of{A1, . . . , An}. This characterization is actually a
four-valued generalization of the corresponding description of classical connectives
in the framework of Scott consequence relations given in Segerberg [21] (see also
[14]). The next theorem shows that any four-valued connective can be characterized
in this way.

Theorem 3.2 Let #(A1, . . . , An) be a four-valued connective determined by D(#).
Then there are rules of the above form such that any biconsequence relation satisfying
these rules is generated by a set of four-valued interpretations satisfying D(#).

Proof: As in the proof of the preceding theorem, assume first thatF +
ν [ A1, . . . , An]

is represented in a disjunctive normal formC1 � · · · � C d
k , where eachC i is a conjunc-

tion of literals of the formν |= A j, ν �|= A j, ν =|A j, orν �=|A j. Then, for everyC i, we
will introduce a bisequent of the form #I+

0 such thatA j belongs toa (respectively, to
b, c, or d) if and only ifν |= A j (ν =|A j, ν �|= A j, or ν �=|A j) belongs toC i.

Assume now thatF +
ν [ A1, . . . , An] is transformed into aconjunctive normal

form D1 � · · · � Dm. Then for everyD i, we will introduce a bisequent of the form
#E+

0 such thatA j belongs toa (respectively, tob, c, or d) if and only if ν �|= A j

(ν �=|A j, ν |= A j, or ν =|A j) belongs toD i. In the same way, a disjunctive normal
form of F −

ν [ A1, . . . , An] generates bisequents of the form #E−
0 , whereas its conjunc-

tive normal form generates bisequents of the form #I−
0 .

Assume now that� is a biconsequence relation satisfying the above rules and
ν(u,v) is a four-valued interpretation corresponding to some bitheory(u, v). Then
each bisequent #E+

0 implies that if ν(u,v) |= #(A1, . . . , An), then the correspond-
ing disjunctD i of a conjunctive normal form ofF +

ν [ A1, . . . , An] is true for ν =
ν(u,v). Consequently, all such bisequents imply jointly thatF +

ν [ A1, . . . , An] is true
for ν = ν(u,v). Similarly, all bisequents of the form #I+ jointly imply that if ν(u,v) �|=
#(A1, . . . , An), F +

ν [ A1, . . . , An] should be false forν = ν(u,v). Thus,ν(u,v) satisfies
the first condition ofD(#). In the same way it can be shown that the bisequents of
the other two kinds imply the validity of the second condition fromD(#) for ν(u,v).
Consequently, all canonical interpretations of� satisfyD(#). Now the result follows
from the representation theorem. �

3.1 Classical connectives A particular class of four-valued functions turns out to
be of special interest in our intended application of Belnap’s semantics. If we are pri-
marily interested in what information a four-valued reasoning can give us about ordi-
nary, classical truth and falsity, that is, aboutt andf, we can require that a four-valued
reasoning must agree with a classical one in cases when the context does not involve
inconsistent or incomplete information. To secure this requirement, we should restrict
our attention to connectives that areclassical in the sense that they give classical val-
ues when their arguments receive classical valuest or f.

It turns out that there are four mutually independent connectives that are jointly
sufficient for defining all such classical four-valued functions. The first is the well-
knowndisjunction connective:

ν |= A ∨ B iff ν |= A or ν |= B

ν =|A ∨ B iff ν =|A andν =|B
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Next, there are two unary connectives that can be seen as natural extensions of a clas-
sical negation to the four-valued setting:

ν |= ∼A iff ν =|A
ν =|∼A iff ν |= A

ν |= ¬A iff ν �|= A

ν =|¬A iff ν �=|A

Note that these are the only connectives that coincide with the classical negation on
the classical truth-values and satisfy the double negation rule. The difference between
the two is that the first one switches the context between truth and falsity, whereas
the second one retains the context. Accordingly, we will call∼ and¬ a switching
negation and alocal negation, respectively. Note also that each of them can be used
together with the disjunction to define a naturalconjunction connective:

A ∧ B ≡ ∼(∼A ∨ ∼B),

or, equivalently,
A ∧ B ≡ ¬(¬A ∨ ¬B).

Finally, the following unary connectiveL can be seen as a kind of a modal operator.
It determines a (rudimentary) modal logic definable in the four-valued setting (and
becomes trivial in the classical context).

ν |= LA iff ν |= A

ν =|LA iff ν �|= A

Remark 3.3 Even for classical logic, the choice of a natural functionally complete
set of basic connectives is not unique. We have even fewer reasons for reaching
agreement about what could be seen as a natural functionally complete set of clas-
sical four-valued functions. Nevertheless, the advantages of the suggested choice of
the basic connectives for our study are twofold. First, it ismodular in the sense that
a number of important subclasses of four-valued connectives, discussed below, are
obtained simply by removing some of the basic connectives. Second, it allows us to
give a very natural transformation of the bisequent calculus into an ordinary Hilbert-
type axiomatic system which is an extension of classical logic (see Section 3.2). In
particular, the (slightly unusual) local negation turns out to be essential for this rep-
resentation, since it will function as areal classical negation in this context.

The following proposition shows that any classical four-valued function is repre-
sentable via our four basic connectives.

Proposition 3.4 The set {∨,¬,∼, L} is functionally complete for the set of all clas-
sical four-valued functions.
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Proof: Let ν be a 4-interpretation restricted to atomic propositionsp1, . . . , pn. We
will define a propositionAν corresponding toν as follows:

Aν ≡ p̂1 ∧ p̌1 ∧ · · · ∧ p̂n ∧ p̌n,

wherep̂i is eitherpi or¬pi whenν |= pi or ν �|= pi, respectively, whereašpi is either
∼ pi or ¬∼pi when, respectively,ν =|pi or ν �=|pi. It is easy to check that, for any
4-interpretationµ restricted to the same atomic propositions,µ |= Aν if and only if
µ coincides withν. For a finite set of 4-interpretationsU, we will define AU as a
disjunction of allAν, whereν ∈ U. Then it is easy to see thatν |= AU if and only ifν ∈
U. Now, for any classical four-valued functionF(p1, . . . , pn), wewill denote byUF

(VF) the set of all 4-valuationsν restricted top1, . . . , pn such thatν |= F(p1, . . . , pn)

(respectively,ν �=|F(p1, . . . , pn)).
SinceF is a classical function, ifν ∈ (UF \ VF ), there must existpi that has a

nonclassical value inν. If the value is�, we will denote byÂν the formulaAν ∧ Lpi.
Otherwisepi has the value⊥, and Âν will denote the formulaAν ∧ L¬pi. It is easy
to check that in both cases|= Âν is equivalent to|= Aν, whereas=| Âν always holds.
Wewill define alsoÂU similarly to AU .

Finally we define a formulaAF corresponding toF as follows:

AF ≡ LAUF∩VF ∨ ÂUF\VF ∨ ∼¬ ÂVF\UF .

It is easy to check thatν |= AF holds if and only if

ν |= AUF∩VF ∨ ÂUF\VF

if and only if either
ν ∈ UF ∩ VF or ν ∈ (UF \ VF )

if and only if
ν ∈ UF .

Similarly, ν �=|AF holds if and only if either

ν |= AUF∩VF or ν �=|∼¬ Â−
VF\UF

if and only if either
ν ∈ UF ∩ VF or ν ∈ (VF \ UF )

if and only if
ν ∈ VF .

ThereforeAF determines the same four-valued function asF, and we are done. �
The following introduction and elimination rules provide a characterization of the
above four connectives for biconsequence relations. Just as in the classical case, the
rules are easily discernible from the above definitions given the intended interpreta-
tion of the premises and conclusions of a bisequent.

Rules for disjunction
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a, A : b � c : d a, B : b � c : d
a, A ∨ B : b � c : d

a : b � c, A, B : d
a : b � c, A ∨ B : d

a : b � c : d, A a : b � c : d, B
a : b � c : d, A ∨ B

a : b, A, B � c : d
a : b, A ∨ B � c : d

Rules for ∼

a, A : b � c : d
a : ∼A, b � c : d

a : A, b � c : d
a,∼A : b � c : d

a : b � c, A : d
a : b � c : ∼A, d

a : b � c : A, d
a : b � c,∼A : d

Rules for ¬

a, A : b � c : d
a : b � ¬A, c : d

a : A, b � c : d
a : b � c : ¬A, d

a : b � c, A : d
a,¬A : b � c : d

a : b � c : A, d
a : b,¬A � c : d

Rules for L

a, A : b � c : d
a, LA : b � c : d

a : b � A, c : d
a : LA, b � c : d

a : b � A, c : d
a : b � LA, c : d

A, a : b � c : d
a : b � c : LA, d

Theorem3.1can be used to show that the above rules provide a complete character-
ization of the corresponding connectives.

As we said above, there is another general way of characterizing four-valued
connectives in biconsequence relations, namely, via a set of bisequents. For the above
connectives, these bisequents are as follows.

Axioms for disjunction

A :� A ∨ B : B :� A ∨ B : A ∨ B :� A, B :

: A ∨ B � : A : A ∨ B � : B : A, B � : A ∨ B

Axioms for a switching negation

∼A :� : A A :� : ∼A

: ∼A � A : : A � ∼A :
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Axioms for a local negation

¬A, A :� � A,¬A :

: ¬A, A � � : A,¬A

Axioms for L

LA :� A : A :� LA :

A : LA � � A : LA

As for the preceding representation, Theorem3.2(to be more exact, the procedure of
constructing the relevant bisequents) can be used to show that the above bisequents
provide a complete characterization of the classical connectives.

3.2 A Hilbert-type axiomatic representation Having the above connectives at our
disposal, we can transform bisequents into more familiar rules. For any set of proposi-
tionsu, wewill denote by∼u the set{∼A | A ∈ u}. The notation¬u, Lu (or their com-
binations) will have a similar meaning. The following representation of bisequents
can easily be obtained from the characteristic rules for the relevant connectives.

Lemma 3.5 Any bisequent a : b � c : d is equivalent to each of the following:

1. a,∼b : � c,∼d;
2. � ¬a,¬∼b, c,∼d;
3. � ∼La,∼L∼b, c,∼d.

Bisequents of the form in (1) can be considered as ordinary sequents. In fact, this is
a common trick used for giving a representation of four- and three-valued logics in
the form of a sequent calculus. As can be seen, it heavily depends on the presence of
switching negation in the language. Notice that occurrences of this negation are not
eliminable in this setting. In all other respects, each of these formalisms is translatable
into the other.

Since the set of positive conclusions can be replaced by its disjunction, we can
transform bisequents into usual Tarski-type rules using only the switching negation
and disjunction. As is shown by Belnap and others, the resulting{∨,∼}-system will
coincide with a (flat) theory ofrelevant entailment (see, e.g., [3], Dunn [10]). Finally,
using either a local negation orL, we can transform each bisequent into a formula as
in the classical sequent calculus. Moreover, it is easy to see that the disjunction∨
and a local negation¬ behave in an entirely classical way in this context. In fact,
they generate a class of connectives we will calllocal ones that behave as ordinary
classical connectives with respect toeach of the two contexts.

The above considerations lead to the following definition that provides a stan-
dard Hilbert-type axiomatization of our logic. To be more exact, it can be shown that
the systemL

c
4, described below, provides a strongly sound and complete axiomatiza-

tion of a four-valued logic in the language of classical four-valued connectives.
In the definition below we use an equivalence connective←→ defined in a usual

classical way in terms of{∨,¬}.
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Definition 3.6 A systemL
c
4 of four-valued logic in the language containing

{∨,¬,∼, L} is determined by the following axioms and rules:

1. the axioms and rules of classical logic for{∨,¬};
2. the following axioms for∼:

∼∼A ←→ A,

∼¬A ←→ ¬∼A,

∼(A ∧ B) ←→ ∼A ∨ ∼B.

3. the following axioms forL:

LA ←→ A,

∼LA ←→ ¬A.

The logicLc
4 can be seen as an extension of the classical logic by two new connectives.

Notice, however, that the switching negation∼ lacks the usual feature of replacement
of provable equivalents, so, in particular, the equivalenceLA ←→ A does not imply
that A andLA are interchangeable in all contexts.

3.3 Invariant connectives An interesting additional requirement that can be im-
posed on possible four-valued connectives is that they should behave similarly with
respect to truth and nonfalsity (after all, both have the same meaning for us in the
classical case). To be more exact, we can require that the definition of a connective
with respect to falsity can be obtained from that for the truth through a simultaneous
replacement of|= by �=| and vice versa. We will call such connectivesinvariant. The
following definition gives a corresponding formal description. A four-valued func-
tion¬∼ below switches the context between truth and nonfalsity. (This function cor-
responds to theconflation connective from [11].)

Definition 3.7 A four-valued connectiveF(p1, . . . , pn) will be calledinvariant if,
for any valuationν, the value ofF(p1, . . . , pn) with respect toν is equal to the value
of ∼¬F(∼¬p1, . . . ,∼¬pn).

As an immediate consequence of this definition, we obtain the following characteri-
zation of invariant connectives.

Lemma 3.8 A four valued connective F(A1, . . . , An) is invariant if and only if, for
any valuation ν, ν |= F(A1, . . . , An) if and only if ν∗ �=|F(A1, . . . , An), where ν∗ is
a valuation obtained from ν by a simultaneous replacement of |= by �=| and =| by �|=.

It is easy to check that any invariant connective is already classical. Note also that all
our basic connectives, exceptL, satisfy this property. Furthermore, it turns out that
invariant connectives are precisely connectives that are expressible via{∨,¬,∼}.
Proposition 3.9 The set {∧,¬,∼} is functionally complete for the set of invariant
connectives.

Proof: Let F(p1, . . . , pn) be an invariant connective andU a set of all
4-interpretationsν such thatν |= F(p1, . . . , pn). Let AU be the formula correspond-
ing toU as defined in the proof of Proposition3.4. Notice that this formula uses only
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connectives from{∧,¬,∼}. Moreover, it is easy to show that any composition of in-
variant connectives is invariant. Consequently,AU determines an invariant function.

Wewill show now thatF can be defined asAU . To begin with,ν |= F is equiv-
alent toν |= AU , since the latter holds if and only ifν ∈ U. Now, ν =|F if and only
if ν∗ �|= F (sinceF is invariant) if and only ifν∗ �|= AU if and only if ν =|AU (since
AU is invariant). Consequently,F is expressible asAU . �
Note that in view of Lemma3.5, invariant connectives allow us to replace bisequents
by formulas, so we can define the corresponding Hilbert-type axiomatization. Thus,
afour-valued logic in the language with invariant connectives, that we will denote by
L

i
4, is obtainable fromL

c
4 by simply deleting the axioms forL.

3.4 Conservative connectives Another possible constraint on the class of four-
valued connectives is that they should not produce contradictions (�) or incomplete-
ness (⊥) unless some of their arguments are such. In other words, we could require
our connectives to beconservative on the subsets{t, f,⊥} and{t, f,�}. Note that
this immediately implies that such connectives are classical. It turns out that all such
functions are expressible in terms of{∨,∼, L}.
Proposition 3.10 The set {∨,∼, L} is functionally complete for the set of all con-
servative four-valued functions.

Proof: For any 4-interpretation onp1, . . . , pn, wewill denote byAν the following
formula in the language{∨,∼, L}:

Aν ≡ p̂1 ∧ p̌1 ∧ · · · ∧ p̂n ∧ p̌n,

where p̂i is L pi or ∼L pi, if, respectively,ν |= pi or ν |= pi, whereasp̌i is L∼pi or
∼L∼pi, if, respectively,ν =|pi or ν �=|pi.

Let F(p1, . . . , pn) be a conservative connective. As before, we will denote by
UF (VF) the set of all 4-interpretations for whichF is true (respectively, nonfalse).

SinceF is conservative, ifν ∈ UF \ VF, then there must existpi that has the value
� in ν. Then Ânu will denote the formulaAν ∧ pi. It is easy to check that|= Ânu is
always equivalent to|= Anu, whereas=| Ânu always holds (due to the fact that both
Lpi andL∼pi belong toAν). Similarly, if ν ∈ VF \ UF, there must existpi that has
the value⊥ in ν. Then Ǎnu will denote the formulaAν ∧ ∼pi. Then �|= Ǎν always
holds, whereas=| Ǎν is equivalent to=|Aν. For a finite set of interpretationsU, we
will denote byAU the disjunction of allAnu, whereν ∈ U. ÂU andǍU will be defined
similarly.

Finally, we will define a{∨,∼, L}-proposition corresponding toF as follows:

AF ≡ AUF∩VF ∨ ÂUF\VF ∨ ǍVF\UF .

Thenν |= AF if and only if ν |= AUF∩VF or ν |= ÂUF\VF if and only if ν ∈ UF. Sim-
ilarly, ν �=|AF if and only if ν �=|AUF∩VF or ν �=| ǍVF\UF if and only if ν ∈ VF. Thus,
AF determines the same four-valued function asF. �
Again, Lemma3.5 shows that conservative connectives allow us to replace bise-
quents by formulas, so we can define the corresponding Hilbert-type axiomatization.
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The following definition gives a corresponding axiomatization for a four-valued logic
based on conservative connectives. The axiomatization uses definable implication
and equivalence connectives expressible as follows (see Arieli and Avron [1]).

A =⇒ B ≡ ∼LA ∨ BA ⇐⇒ B ≡ (A =⇒ B) ∧ (B =⇒ A)

Definition 3.11 A four-valued logicLc
4 in the language with conservative connec-

tives is characterized by the following axioms and rules:

1. the axioms and rules of classical logic for the language{∨,∧,=⇒};
2. the following axioms for∼:

∼∼A ⇐⇒ A,

∼(A ∧ B) ⇐⇒ ∼A ∨ ∼B.

3. the following axiom forL:
LA ⇐⇒ A.

An appropriate completeness theorem can be easily obtained from the corresponding
result for the language{∨,∼,=⇒} proved in [1]. As we will see, this axiomatization
can serve as a basis for axiomatics of three-valued logics in the language of classical
connectives.

4 Coherence Belnap’s interpretation can help us once more, this time in determin-
ing some further plausible constraints on biconsequence relations.

4.1 Logical rules and structural rules A distinctive feature of four-valued reason-
ing, a feature that does not hold for classical logic, is the possibility of imposing some
nontrivial structural constraints on the set of possible interpretations. For example,
we can restrict our valuations to those that do not assign the value� to propositions,
and in this way obtain, in effect, a system of three-valued reasoning. Similarly, we
can exclude both nonclassical values⊥ and� and thus obtain ordinary classical val-
uations. In this way, both three-valued and classical two-valued reasoning will be
shown below to be special cases of our formalism.

On the syntactic side, the above-mentioned constraints can be imposed by
adding certain rules to biconsequence relations. However, an important point that
should be kept in mind in what follows is that the actual constraint implied by a gen-
eral rule can vary with the underlying language, that is, with what connectives belong
to it. Generally speaking, the more expressive the language, the stronger the corre-
sponding constraint imposed by a rule.

By a logical rule we will mean (in what follows) a rule for biconsequence rela-
tions that does not involve explicit occurrences of connectives. The following def-
inition gives a language-dependent characterization of validity of logical rules with
respect to biconsequence relations.

Definition 4.1

1. A biconsequence relation� (in some languageL0) will be said tosatisfy
a logical rule ρ for the language L , if ρ is a valid rule in� [L ].
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2. A logical ruleρ will be said to be astructural rule for � if it is a valid rule
in � [∅].

The five rules involved in the definition of a biconsequence relation are logical rules
in the above sense, for any biconsequence relation and any set of four-valued connec-
tivesL . However, we will consider below logical rules with varying strength depend-
ing on the languageL . Note also that the validity of a logicalL-rule is independent
of the underlying language (L0) of a biconsequence relation. So, in particular, a bi-
consequence relation satisfies a logical rule with respect toL if and only if its basic
subrelation satisfies it with respect toL .

Structural rules can be seen as logical rules for the associated basic biconse-
quence relations. Note that the real constraint imposed by a logicalL-rule can be
measured in terms of what restrictions it imposes on the associated basic biconse-
quence relation. And it will turn out that logical rules considered below can be always
characterized in terms of some structural rules implied by it.

4.2 Coherent biconsequence relations Recall that our main objective in using
four-valued reasoning in this study is to discover what information such reasoning
can give us about ordinary (classical) truth and falsity. The main benefit of Belnap’s
interpretation is that it allows us to use four-valued reasoning as a general framework
for logical reasoning in the presence of inconsistent or incomplete information. How-
ever, this generality has a weak side in that it completely ignores the distinction be-
tween ordinary truth and falsity on the one hand, and inconsistency and incomplete-
ness on the other. All four truth-values have equal status in the context of such rea-
soning. Consequently, what seems to be missing is a mechanism that would allow us
to infer classical information in the framework of biconsequence relations.

We will suggest in what follows a natural and rather strong requirement saying
that, though truth and falsity are largely independent,provability and refutability with
respect to the positive context must coincide with provable classical truth and falsity.
If this condition holds for a biconsequence relation, the information we caninfer using
it will be of the usual classical kind.

Biconsequence relations satisfying the above requirement will be calledcoher-
ent. The strength of the requirement, however, can vary depending on what proposi-
tional formulas are susceptible of coherence. Consequently, it will be expressed using
appropriate logical rules imposed on a biconsequence relation.

Definition 4.2 A biconsequence relation will be calledL-coherent if it satisfies the
following two logical rules with respect toL :

(Positive Coherence)
� A :
: A � (Negative Coherence)

A : �
� : A

The results that follow provide an equivalent structural description of the above co-
herence rules for different languages. To begin with, the next two results describe
some general features of coherent biconsequence relations.

Lemma 4.3 If L contains ¬, positive and negative L-coherence rules are equiva-
lent.
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Proof: If A :�, then� ¬A : . By positive coherence, we have :¬A � . But the
latter is reducible to� : A. Thus, positive coherence implies negative coherence. The
reverse implication is proved similarly. �

Lemma 4.4 If � is a coherent biconsequence relation in a language L that con-
tains ∼, then for any proposition A in L,

1. � A : iff : A �;
2. A :� iff � : A.

Proof: If : A �, then∼A :� in the language extended with connectives fromL ,
and hence� : ∼A by negative coherence. The latter bisequent is reducible to� A : .

Similarly, it can be shown that� : A implies A :� . �
Thus, for biconsequence relations that are coherent in languages containing∼, prov-
able truth coincides with provable classical truth and provable nontruth (refutability)
coincides with provable falsity.

As a preparation for what follows, we will give below a structural description
of coherent biconsequence relations in some rather weak languages. As is shown in
Bochman [7], however, such biconsequence relations provide also a primary classi-
fication for a number of known semantics of logic programs involving negation as
failure.

Description 4.5 ({∨,∧}-coherence) If the languageL contains no connectives, the
coherence rules coincide with their structural counterparts. If the language con-
tains disjunction, positive coherence is already equivalent to a multiple structural
rule given below, though negative coherence is still reducible to its singular variant.
Adding conjunction will give a corresponding multiple variant of negative coherence:

Proposition 4.6 A biconsequence relation � is {∨,∧}-coherent if and only if it sat-
isfies the following structural rules:

� a :
: a �

a : �
� : a

.

Proof: Since any finite set of propositions is replaceable by its conjunction in pos-
itive premises and negative conclusions, and by its disjunction in negative premises
and positive conclusions, the implication from left to right is obvious. To prove the
reverse implication, we will show a stronger result that the above structural rules, if
they hold with respect to a biconsequence relation, are also{∨,∧}-logical rules with
respect to it. This can be proved by induction on the total number of conjunctions
and disjunctions occurring in these rules. If� a, A ∧ B :, then� a, A : and� a, B :,
and therefore by the inductive assumption :a, A � and : a, B �. Consequently,
: a, A ∧ B � by the properties of conjunction. If� a, A ∨ B :, then� a, A, B : by the
properties of disjunction. Hence :a, A, B � by the inductive assumption (notice that
a ∪ {A} ∪ {B} contains fewer connectives thana ∪ {A ∨ B}). But then :a, A ∨ B �.

In the same way it can be proved that the second structural rule implies its
{∨,∧}-logical counterpart. Now, the relevant{∨,∧}-coherence rules are simply spe-
cial cases of such logical rules, and hence the implication from right to left also holds.

�



BICONSEQUENCE RELATIONS 65

Description 4.7 ({∨,∧, L}-coherence) The following result describes structural
equivalents for{∨,∧, L}-coherence rules.

Proposition 4.8 {∨,∧, L}-coherence rules are equivalent, respectively, to the fol-
lowing structural rules:

� a, b :
: a � b :

a, b : �
a : � : b

Proof: We will consider only positive coherence here; the proof for negative co-
herence is completely analogous. If� a, b : then�

∨
(a ∪ Lb) : by the properties

of disjunction andL. Hence :
∨

(a ∪ Lb) � by positive coherence, which is equiv-
alent to :a � b : . Thus, positive coherence implies the corresponding structural
rule. To show the reverse inclusion, we will prove that this structural rule implies
its {∨,∧, L}-logical counterpart. Again, this can be done by induction on the total
number of connectives occurring in propositions of the rule. We will consider only
the case ofL.

If � LA, a, b : then� A, a, b : . Applying the inductive assumption, we obtain
: a � A, b : . Therefore, both :LA, a � b : and: a � b, LA : hold due to the properties
of L. This gives us the two cases of the rule depending on whetherLA is adjoined to
a or to b. �

Description 4.9 (Local Coherence) For{∨,¬}-coherence, that is, coherence
with respect to all local connectives, positive coherence and negative coherence are
already equivalent. Moreover, we have the following proposition.

Proposition 4.10 {∨,¬}-coherence is equivalent to a structural rule

a :� c :
: c �: a

.

Proof: If a :� c :, then� ¬a, c :, and hence�
∨

(¬a ∪ c) : . Applying positive co-
herence, we obtain :

∨
(¬a ∪ c) �, which is reducible to :c � : a. Thus, positive co-

herence implies the above structural rule. In the other direction, it can be proved that
this structural rule implies the corresponding{∨,¬}-logical rule (again, by induction
on the complexity of propositions occurring in it). Since both positive and negative
coherence are special cases of such a logical rule, this will complete the proof.�
The above structural rule corresponds to an interesting semantic constraint on possi-
ble interpretations. It says that, for any bitheory(u, v) there is a bitheory of the form
(v,w). In other words, any negative part of an admissible interpretation should also
serve as a positive part of some other interpretation. A strengthening of this constraint
to the requirement that if(u, v) is a bitheory, then(v, u) is also a bitheory will give
us a semantic description of invariant biconsequence relations considered later in the
paper.

5 Three-valued and classical biconsequence relations Let us now consider the
following logical rule.

(Consistency) A : A �
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A biconsequence relation satisfying the above rule will be calledconsistent. As can
be easily seen, the rule amounts to a semantic requirement that, for any four-valued
interpretationν, ν |= A is inconsistent withν =|A. In other words, any such interpre-
tation must be consistent in the sense that any true proposition is classically true (and
hence any false proposition is classically false). This means that such biconsequence
relations are based on three-valued interpretations in which the inconsistent value�
is missing. Note also that the basic semantic setting ofpartial logic (see, e.g., Blamey
[4]) can be identified with this interpretation, since it (usually) deals only with possi-
ble incompleteness of information.

We will show now that consistent biconsequence relations provide an adequate
formalization of a three-valued inference witht as the only distinguished value. To
begin with, note that any consistent four-valued interpretationν naturally corresponds
to a three-valued interpretationν3 on the truth-values{t,⊥, f }, and vice versa. By this
correspondence,

1. ν |= A iff A has the valuet in ν3;
2. ν =|A iff A has the valuef in ν3.

Wewill say that a bisequent ist-valid with respect to a three-valued interpretationν3 if
it is valid with respect to the above four-valued interpretation corresponding toν3 (see
Definition 2.5). Notice that validity of bisequents in accordance with this definition
amounts to preservation of classical trutht.

Again, any set of three-valued interpretationsI3 generates a biconsequence re-
lation�t

I3
determined by bisequents that aret-valid in all three-valued interpretations

from I3. The following theorem shows that any biconsequence relation satisfying
consistency is generated in this way by a set of three-valued interpretations.

Theorem 5.1 � is a consistent biconsequence relation if and only if �=�t
I3

, for
some set of three-valued interpretations I3.

Proof: As we said, it is easy to check that any biconsequence relation of the form
�t

I is consistent. Now let� be a consistent biconsequence relation andI a set of four-
valued interpretations corresponding to its bitheories. By the representation theorem,
�=�I. But any interpretationν from I is consistent, that is,ν |= A impliesν �=|A,
for any propositionA. Hence, any such interpretation can be represented by a three-
valued interpretationν3. Hence the result. �
Thus, consistent biconsequence relations constitute an adequate formalism for three-
valued inference. We should note again that our formalization is fairly general and is
independent of a particular choice of three-valued connectives.

Finally, the following result shows that consistency is also a kind of a coherence
rule. Let us say that a languageL is conservative if it contains only conservative con-
nectives. Then the next result shows that for such languages consistency is equivalent
to positive coherence.

Proposition 5.2 A biconsequence relation in a conservative language is consistent
if and only if it satisfies positive coherence with respect to {∨,∼, L}.
Proof: SinceA :� A : by reflexivity, we have� ∼LA ∨ A : by Lemma3.5.3, and
hence :∼LA ∨ A � by positive coherence. The latter bisequent is reducible toA :



BICONSEQUENCE RELATIONS 67

A �, and therefore positive coherence in our case implies consistency as a logical
rule. In the other direction, it is easy to show that consistent biconsequence relations
make valid bisequentsA : A � for all {∨,∼, L}-propositionsA (by induction on the
complexity of A). Consequently, if� A : holds, we obtain :A � by positive cut.
Thus, positive coherence holds. �
Let us consider now a rule dual to consistency.

(Completeness) � A : A

A biconsequence relation will be calledcomplete if it satisfies completeness. The rule
says, in effect, that any four-valued interpretation is complete, that is, any proposition
is either true or false with respect to it (though it still can be both true and false). Such
biconsequence relations can also be considered as three-valued ones, though the third
value isinconsistent rather thanundetermined. As we will see now, such biconse-
quence relations correspond to three-valued logics based on a weak notion of truth.
The latter use the two truth-values distinct fromf as distinguished values (instead of
one distinguished valuet in the case of consistency).

Any three-valued interpretationν3 with respect to the truth-values{t,�, f } is
equivalent to a four-valued interpretationν determined by the following pair of truth
and falsity valuations.

1. ν |= A iff A has eithert or � as its value inν;
2. ν =|A iff A has the valuef or � in ν.

Clearly, such valuations make any proposition either true or false (or both). We will
say that a bisequent isf-valid with respect to a three-valued interpretationν3 if it is
valid with respect to the above valuations. As can be seen,ν |= A holds if and only if
A does not have the valuef in ν3. Consequently, this notion of validity corresponds
to preservation of nonfalsity.

Any set of three-valued interpretationsI generates a biconsequence relation�f
I

determined by bisequents that aref-valid in the latter. Any such generated biconse-
quence relation will satisfy completeness. Moreover, the following theorem shows
that any complete biconsequence relation is generated in this way by a set of three-
valued interpretations. The proof of this theorem is perfectly analogous to the proof
of the preceding theorem.

Theorem 5.3 � is a complete biconsequence relation if and only if �=�f
I, for

some set of three-valued interpretations I.

The following result shows that the completeness rule is equivalent to negative coher-
ence in the conservative language. The proof of this result is completely analogous
to the case of consistency and will be omitted.

Proposition 5.4 A biconsequence relation in a conservative language is complete
if and only if it satisfies negative coherence in {∨,∼, L}.
A biconsequence relation will be calledclassical if it is both consistent and complete.
Clearly, the joint effect of consistency and completeness amounts to identification of
truth with absence of falsity. All bitheories of such a biconsequence relation have
the form (u, u), and any bisequenta : b � c : d in this case will be equivalent to
a, d : � b, c : (as well as to :b, c � : a, d). In fact, it is easy to see that a classical
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biconsequence relation is already equivalent to a Scott consequence relation. More-
over, in this case∨ will correspond to a classical disjunction,∼ and¬ will coincide
and both amount to a classical negation, whileL will be trivial, that is,LA will always
be equivalent toA. As a result, we have that the resulting biconsequence relation in
the classical language is reducible to an ordinary classical sequent calculus.

Since consistency and coherence are equivalent, respectively, to positive and
negative coherence in the conservative language, we immediately obtain the follow-
ing proposition.

Proposition 5.5 A biconsequence relation is classical if and only if it is coherent
with respect to the conservative language.

The following result shows that classicality is equivalent also to coherence in the lan-
guage{∨,¬, L}.
Proposition 5.6 A biconsequence relation is {∨,¬, L}-coherent if and only if it is
classical.

Proof: SinceA :� A : by reflexivity, we have� L¬A ∨ A : by theproperties of
the connectives involved, and hence :L¬A ∨ A � by positive coherence. The latter
bisequent is reducible toA : A �. Since the latter bisequent holds for all proposi-
tions A in our language,¬A : ¬A � also holds. The latter bisequent is reducible to
� A : A. Thus, coherence for this language implies classicality. In the other direction,
it is easy to show that, for a classical biconsequence relation,A : A � and� A : A are
logical rules with respect to the full language of classical connectives. Now, applying
positive cut toA : A � and A :�, we obtain positive coherence. But since the lan-
guage contains a local negation, it satisfies also negative coherence, since the latter
is equivalent to

� ¬A :
: ¬A �

.

Thus, any classical biconsequence relation is coherent with respect to the whole lan-
guage of classical connectives. �
As is shown in the above proof, any classical biconsequence relation is already co-
herent with respect to all the classical four-valued connectives. Thus, classical coher-
ence is the strongest form of coherence possible: it reduces biconsequence relations
to ordinary classical sequent calculus.

5.1 Ordered biconsequence relations The following logical rule:

(CC) A : A � B : B

can be seen as acommon part of consistent and complete biconsequence relations,
since it holds in both. Biconsequence relations satisfying this rule will be calledor-
dered. The semantic condition corresponding to the rule is that each interpretation
should be either consistent or complete. As an immediate consequence of this fact,
we have this lemma.

Lemma 5.7 A biconsequence relation is ordered if and only if it is an intersection
of a complete and a consistent biconsequence relation.
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Proof: Clearly, if a biconsequence relation is an intersection of a complete and a
consistent biconsequence relation, then it satisfies (CC), since it holds in both. Now
if � is an ordered biconsequence relation, we will denote by�t (�f) abiconsequence
relation determined by all consistent (respectively, complete) bitheories of�. Then
it is easy to see that� is an intersection of these two biconsequence relations.�
Thus, ordered biconsequence relations could be also considered three-valued ones.

5.2 Three-valued logics Here we will briefly discuss how the above three-valued
biconsequence relations can be extended to ordinary three-valued logics. To begin
with, note that conservative four-valued connectives generate isomorphic classical
three-valued functions when the set of truth-values is restricted to either{t, f,⊥} or
to {t, f,�}. Moreover, it immediately follows from the known results on functional
completeness for three-valued functions (see, e.g., van Benthem [23]) that the result-
ing set of connectives is functionally complete for the class of all three-valued clas-
sical (closed) functions. As a result, alternative versions of three-valued logics based
on classical three-valued connectives can be obtained simply by imposing appropri-
ate structural rules on biconsequence relations in the conservative language. More-
over, as we have said earlier, a four-valued logic in the conservative language admits a
Hilbert-type axiomatization. Consequently, appropriate axiomatizations for its three-
valued counterparts can be obtained, respectively, by adding one of the following ax-
ioms (see Avron [2]).

(Consistency) ∼LA ∨ ∼L∼A
(Completeness) A ∨ ∼A
(CC) A ∧ ∼A =⇒ B ∨ ∼B

6 Invariant biconsequence relations The last logical rule we consider here is the
following.

(Invariance) a : b � c : d
d : c � b : a

Biconsequence relations satisfying this rule will be calledinvariant. The correspond-
ing semantic constraint is that if(i, j) is a bitheory, then( j, i) is also a bitheory. Con-
sequently, this rule reflects an informal requirement we already mentioned in the pre-
ceding section that the reasoning should besymmetrical with respect to truth and non-
falsity. We will show now that such an invariant four-valued reasoning amounts to a
preservation of atruth order among the truth-values:f ≤t ⊥,� ≤t t.

Let ν be a four-valued interpretation. For a set of propositionsa we will denote
by inft ν(a) (supt ν(a)) the least upper bound (respectively, g.l.b.) of the values ofν

on a in the truth order. Then we will say that a bisequent isi-valid with respect to a
four-valued interpretationν, if inf t ν(a ∪ ∼b) ≤t supt ν(c ∪ ∼d). (Notice that we do
not require that∼ should actually belong to the underlying language.) Again, for any
set of four-valued interpretationsI, wewill define�i

I as the set of all bisequents that
are i-valid in all interpretations fromI.

Theorem 6.1 � is an invariant biconsequence relation if and only if �=�i
I, for

some set of four-valued interpretations I.
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Proof: To begin with, note that supt ν(a) and inft ν(a) are equal, respectively, to
the values of

∨
a and

∧
a in ν. (Again, ∧ and∨ are not required to belong to our

language.) Note also that ifν(A) ≤t ν(B), thenν(∼B) ≤t ν(∼A). These two facts
are sufficient to establish that ifa : b � c : d is i-valid with respect toν, d : c � b : a
will also bei-valid with respect toν. Consequently, any biconsequence relation of
the form�i

I will be invariant. Finally, notice thatν(A) ≤t ν(B) holds if and only if
ν |= A impliesν |= B andν =|B impliesν =|A.

Now, letI be a set of four-valued interpretations corresponding to bitheories of
an invariant biconsequence relation�, and assume thata : b � c : d. Let us denote
propositions

∧
(a ∪ ∼b) and

∨
(c ∪ ∼d) by A and B, respectively. Then the latter

bisequent is equivalent toA :� B : . By the representation theorem, this holds if and
only if ν |= A impliesν |= B, for anyν ∈ I. But we have alsod : c � b : a by invari-
ance. The latter bisequent is equivalent to∼B :� ∼A :, and henceν |= ∼B implies
ν |= ∼A, for anyν ∈ I. But this is equivalent to the condition thatν =|B always im-
pliesν =|A, and henceν(A) ≤t ν(B). Thus, a bisequent belongs to� if and only if
it is i-valid in all interpretations fromI. �
Finally, we will show that invariance is equivalent to coherence with respect to the
language of invariant connectives.

Proposition 6.2 A biconsequence relation in a language with invariant connec-
tives is invariant if and only if it is coherent in {∨,¬,∼}.

Proof: If a : b � c : d, then

�
∨

(¬a ∪ ¬∼b ∪ c ∪ ∼d) :

(see Lemma3.5.2). Applying positive coherence, we obtain
∨

(¬a ∪ ¬∼b ∪ c ∪ ∼d) � .

But the latter bisequent is reducible tod : c � b : a. Thus,{∨,¬,∼}-coherence im-
plies invariance. To prove the reverse implication, we can show, just as in the pre-
ceding proofs, that invariance with respect to propositional atoms implies invariance
with respect to all{∨,¬,∼}-propositions. Clearly, the coherence rules will be special
cases of such a{∨,¬,∼}-logical invariance, and hence the implication from right to
left also holds. �

7 Conclusions In this paper we suggested a general four-valued formalism in-
tended to serve as a common framework for reasoning with incomplete and incon-
sistent data. We have shown also how various three-valued and partial logics can be
seen as special cases of this formalism obtained by specifying the language and im-
posing appropriate coherence constraints on biconsequence relations.

Our framework can serve as a basis for various extensions and generalizations
of Belnap’s semantics. Thus, the set of interpretations is naturally ordered, and hence
gives rise to a straightforward dynamic extension of the basic semantics obtained
by introducing connectives and operators that are definable on this ordered structure
(see, e.g., Jaspers [16]). This perspective reveals, in particular, the importance of the
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so-calledpersistent four-valued connectives that preserve their truth-values with the
growth of information. A detailed study of such connectives lies, however, beyond
the scope and purposes of the present paper.

An algebraic representation of Belnap’s semantics can be traced back to the no-
tions ofde Morgan lattice andquasi-Boolean algebra (see Rasiowa [17] and refer-
ences). An important generalization of these structures has been provided by the no-
tion of abilattice suggested by Ginsberg [15] and developed further by Fitting [11],
[12], [13] (see also [1]). The latter notion has found interesting applications in non-
monotonic reasoning and logic programming.

A further generalization of Belnap’s bicomponent interpretation arises when we
realize that biconsequence relations can be seen as providing a general framework
of reasoning with respect topairs of contexts. For example, we can assume that the
positive context reflects what is actually true, whereas the negative one—what is be-
lieved (or assumed) to hold. Such systems have turned out to be common in different
approaches to formalization ofnonmonotonic reasoning. See [6] for details.

Our final remark concerns the use of many-valued logics for formalizing var-
ious applied kinds of reasoning. At first sight, many-valued logics have an obvious
advantage over, for example, purely syntactic ones in possessing a clear semantics by
their very definition. Moreover, in most cases they are easily axiomatizable, so they
apparently have all the features a decent logic should have. Many authors, however,
have found it desirable to avoid the use of many-valued logics as a way of expressing
their ideas. Perhaps the best case in point is Scott’s remark in [20] that so far he hasn’t
seen a useful three-valued logic with which it is pleasant to work.

As it seems, the main problem with common many-valued logics is that a set
of truth-values does not usually give a clue to a natural system of logical reasoning
about them that would proceed in accordance with our intuitions. In particular, the
knowledge of truth-values alone gives us no answer as to what we can count as a log-
ical connective (i.e., conjunction, disjunction, negation, and implication) of a corre-
sponding logic. Generally speaking, not all sets of many-valued connectives gener-
ate a human-friendly framework of logical reasoning, though they always generate a
many-valued logic.

In this respect, Belnap’s interpretation of the four truth-values gives us two
things. First, it connects four-valued reasoning with actual problems of commonsense
reasoning that usually proceeds on the basis of incomplete or inconsistent informa-
tion. On the other hand, it provides a natural connection between classical and four-
valued reasoning and allows thereby to transfer many of our logical intuitions to the
latter. In other words, it allows us to see four-valued reasoning as a natural extension
of classical ones to more realistic contexts. There is no magic in the number four,
apart from the fact that it is an immediate result of seeing the relevant truth-values as
combinations of classical ones.
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