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Abstract After a summary of earlier work it is shown that elementary or
Kalmar arithmetic can be interpreted within the system of Russell’sPrincipia
Mathematica with the axiom of infinity but without the axiom of reducibility.

1 Historical introduction After discovering the inconsistency in Frege’sGrundge-
setze der Arithmetik, Russell proposed two changes: first, dropping the assumption
that to every higher-order entity there corresponds a first-order entity; and second,
restricting the assumptions on the existence of higher-order entities, so that instead
of a simple hierarchy of first-order, second-order, third-order, and so on, one has a
ramified hierarchy in which each order is subdivided into various types in such a way
that a condition involving quantification over all entities of one type is never assumed
to determine another entity of the same type, but only of a higher type. But Russell
found that with these two changes he could not derive classical mathematics, so in
Principia Mathematica he partially compensated for the first change by assuming the
axiom of infinity and, for all mathematical purposes, wholly undid the second change
by assuming his axiom of reducibility.

Thepredicativist tradition from Weyl [21] to Feferman [2] and beyond accepts
infinity but rejects reducibility and is willing to give up parts of classical mathematics.
However, predicativists have been unable to derive classical arithmetic and unwill-
ing to give it up and so have simply assumed it as axiomatic. This assumption has its
defenders, as with Feferman and Hellman [3], and also its detractors, as with C. Par-
sons [15]. It is, therefore, of some philosophical as well as historical interest to ask
how large a fragment of classical arithmetic can be developed within the Russellian
system ofPrincipia Mathematica with infinity but without reducibility.

Now many subsystems of classical or Peano arithmetic have been recognized
since the work of Skolem [18], Kalmar [9], Grzegorczyk [4], and other pioneers.
Among these the most studied have been thesubprimitive or Grzegorczyk arithmetics
���n. These agree in allowing definitions by primitive recursion, but only when the
function F being defined recursively is bounded by some function already given; or
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what is essentially equivalent, they agree in allowing proofs by mathematical induc-
tion but only when the statementϕ being proved inductively contains only bounded
quantifications, that is, quantifications of the forms∀x ≤ u and∃x ≤ u, meaning
∀u(u ≤ v → . . . ) and∃u(u ≤ v ∧ . . .). They disagree only as to how many of
the fundamental operations of addition+, multiplication ∗ , exponentiation↑, super-
exponentiation⇑, and so on, they admit. Thus,���2 or subelementary arithmetic ad-
mits only+ and ∗ ,���3 or elementary or Kalmar arithmetic admits also↑, and���4 or
super-elementary arithmetic admits also⇑. The union of all of���n amounts toprim-
itive recursive or Skolem arithmetic.

Which if any of these systems can be developed or interpreted within the Rus-
sellian system? Russell’s own later attempt to develop arithmetic within the system
(Whitehead and Russell [22], Appendix B) was a failure, but several other logicians
over the years have been more successful. We will describe briefly such previous
work on the question as is known to us. (Given the frequency of independent redis-
covery and of unpublished work in this area, it would not be surprising if there were
also other work unknown to us.) All positive results require only the second-order
part of the system and only a few types of predicative second-order entities.1

To begin with, Skolem ([19], ch. 14), using an ordinal approach to number rem-
iniscent of Dedekind, and later Kripke (unpublished), using a cardinal approach rem-
iniscent of Russell himself, both succeeded in developing the basic laws of addi-
tion and multiplication. Skolem seems to have hoped this positive result could be
extended to all of primitive recursive arithmetic—perhaps everyone who has ever
thought about the problem and got anywhere at all with it has hoped this initially—but
Kripke before long realized that it could not, since the consistency of the Russellian
system can be proved within primitive recursive arithmetic (to which Gödelian con-
siderations apply).

To reconstruct and elaborate this argument two points are to be noted. First,
the consistency of the Russellian system can be proved by iterated application of the
proof by Shoenfield [17] of Novak Gal’s theorem [14] to the effect that the extension
T+ formed by addition of one type of predicative higher-order entity to a consistent
theoryT is still consistent. Second, Shoenfield’s proof can be formalized in primitive
recursive arithmetic, being an application of basic results of finitist, though nonele-
mentary, proof theory. Since the proof can be carried out in primitive recursive arith-
metic, it can be carried out in���n for all sufficiently largen, and it will be impossible to
develop or interpret such���n in the Russellian system, though a more detailed analysis
of the proof would be needed to determine the minimum value ofn required.2

Nelson [13] would at first glance seem to be relevant to our concerns here: the
very name of his enterprise, “predicative arithmetic,” suggests as much. At second
glance, the cited book seems less relevant, since it is concerned with a system of fea-
sible arithmetic, interpretable inrudimentary or Robinson arithmeticQ, as in Tarski,
Mostowski, and Robinson [20], in which there are no higher-order entities at all and
in which the basic laws of addition and multiplication are not deduced but assumed as
axiomatic. (Moreover, even Montagna and Mancini [12], which undertakes a reduc-
tion of Nelson’s starting point to a weak system ofset theory, isnot directly relevant
to our present question of reduction to a predicative system ofhigher-order logic.) At
third glance, the cited book is seen to be relevant after all, since once one has shown
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by whatever means that the most basic laws, the axioms ofQ, can be obtained in the
Russellian system, anything shown in the cited book to be interpretable in the system
Q will be interpretable in the Russellian system. And in the cited book it is shown, of-
ten using in the proofs ideas attributed to Solovay (unpublished), that much indeed is
interpretable in the systemQ. From such results it follows that subelementary arith-
metic is interpretable in the Russellian system, in the weak sense that, for any finitely
many theorems of subelementary arithmetic, there is a class of individuals (specifi-
able by a formula of the language ofQ) that can be proved in the Russellian system
to satisfy those theorems.

Wilkie (unpublished) has shown that in fact a system at least as strong as sub-
elementary arithmetic is interpretable inQ in the usual sense that there is asingle class
of individuals (specifiable by a formula of the language ofQ) that can be proved in
Q to satisfy all the theorems of the system. For a proof see Hájek and Pudĺak ([5],
pp. 366–71).

One might well expect (or at least hope) that a shorter, simpler proof of the inter-
pretability of subelementary arithmetic in the Russellian system ought to be possible,
if one proceeded directly rather than viaQ and exploited some of the extra strength
of the second-order apparatus. Hazen [7] in effect indicates that such a compara-
tively short and simple proof is indeed available: the cited paper gives an exposition
of the derivation of the basic laws of addition and multiplication in the Russellian
system, using only a few types of predicative second-order entities, and at the end
announces that it can be shown that subelementary arithmetic as a whole can be inter-
preted in the Russellian system in the ordinary sense (by a direct method used already
in Hazen [6]). This direct method is such that if we could only get exponentiation (or
super-exponentiation), it would at once give elementary (or super-elementary) arith-
metic.

Leivant [10] appears to address the second-order part of the Russellian system
and states without proof that in the system being addressed, super-exponentiation is
provably total, whereas super-super-exponentiation is not. But to our knowledge the
only subsequent published paper relevant to the cited abstract is Leivant [11], which
really addresses a different system, a typed version of Church’s system rather than a
version of the system of types of Russell. Since the Church-style system is stronger
than the Russellian system, the positive results about the former do not automati-
cally apply to the latter, but the negative result on the unobtainability of super-super-
exponentiationwould apply to the Russell-style system or at least its second-order
part.3

The most conspicuous question left open by the foregoing discussion is whether
exponentiation (or even super-exponentiation) is obtainable. Our main result is that
elementary arithmetic is interpretable in a small fragment of the Russellian system.
The bulk of this paper is devoted to the proof.4

Section2describes more precisely the small fragment in question, which is close
to the system originally used in [18]. Section3 treats order. Sections4 and5 treat
addition and multiplication in a manner adapted from [13]. Section6 treats bounded
induction in a manner adapted from [6]. Section7 treats exponentiation. Section8
contains a subsidiary result about super-exponentiation.5
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2 The systems Fortunately, it will not be necessary to describe thewhole of predica-
tive higher-order logic but only its second-order part. Thesimple predicative second-
order extensionU1(T) of a first-order theoryT has, besides the first-order variables
x, y, z, . . . for individuals as inT, monadic second-order variablesX1, Y1, Z1, . . . for
certain classes of individuals to be called 1-classes, with the membership symbol∈
and the following axiom scheme ofcomprehension for formulasϕ that do not involve
bound 1-class variables:

∃X1∀x(x ∈ X1 ←→ ϕ(x))

whereinϕ may contain first- or second-order free variables not displayed. HereX1

is called theextension of ϕ. U1(T) has as well the dyadic, triadic, tetradic, . . . ,
and analogues of the foregoing monadic apparatus. Thedouble predicative second-
order extensionU2(T) has, in addition, second-order variablesX2, Y2, Z2, . . . for
certain further classes of individuals to be called 2-classes, with comprehension
for formulas that (may involve bound 1-class variables but) do not involve bound
2-class variables, as well as the polyadic analogues thereof. Thetriple, quadruple,
quintuple, . . . predicative second-order extensionsU3(T), U4(T), U5(T), . . . are
similarly defined and the (full) predicative second-order extensionUω(T) of T is the
union of theUn(T) for all finite n.

The axiom of infinity comes in several variant versions. Dedekind’s historic ver-
sion is a second-order axiom asserting the existence of a set of individuals, a one-to-
one function from that set to itself, and an individual in the set but not in the range
of the function. Extending the function by defining it to be the identity outside its
original domain, this version reduces to a version asserting the existence of a one-to-
one function on the set ofall individuals and an individual not in the range of that
function. By giving the entities asserted to exist names, this existential second-order
axiom can, like any other such axiom, be reduced to first-order form. It can then be
divided into two conjuncts, one asserting that the named function is one-to-one and
the other asserting that the named individual is not in its range. By using the sugges-
tive namessuccessor or S for the one-to-one function andzero or 0 for the individual
not in its range, these two axioms can be made to assume a very familiar form.

(1) 0 �= Sx;
(2) x �= y → Sx �= Sy.

Let T0 be the first-order theory with0 andS as its nonlogical symbols and (1) and
(2) above as its nonlogical axioms.Uω(T0) is then a variant version of the second-
order part of the Russellian system. Working inUω(T0), for everyk there are monadic
and polyadic second-order entities of levelk, k-classes andk-relations. Call a class
inductive if it contains0 and is closed underS, containingSx whenever it containsx.
Then for eachk there is also a notion of number, a(k +1)-number being an individual
belonging to every inductivek-class.

For most of our work we will need onlyU2(T0), which we callpredicative
Dedekind arithmetic or PDA. Working in PDA, wewill use ‘set’, ‘relation’, ‘class’,
and ‘number’ without further qualification to mean respectively, 1-class, 1-relation,
2-class, and 3-number. (Usually the contrast ‘set’ versus ‘class’ is used to mark a dif-
ference of order, but we have no need for terms to mark distinctions of order since we
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are concerned only with second-order entities, whereas we do have a need for terms
to distinguish the first two levels within the second-order.) With this terminology the
obstacle encountered in trying to develop formal arithmetic within predicative logic
is just this, that conditions mentioning the notion of number (and thus implicitly in-
volving quantification over classes) do not determine classes, so that even if such a
condition can be proved inductive, it cannot be concluded that it holds for all numbers.
In the proofs to follow, every detour taken is in order to circumvent this obstacle.

The formal arithmeticR3 is a first-order theory having nonlogical symbols0, S,
+, ∗ ,↑, and having the nonlogical axioms 1 and 2 above, plus the following.

(3) x ≤ 0 ⇐⇒ x = 0
(4) x ≤ Sy ⇐⇒ x ≤ y ∨ x = Sy
(5) x + 0 = x
(6) x + Sy = S(x + y)

(7) x ∗ 0 = 0
(8) x ∗ Sy = (x ∗ y) + x
(9) x ↑ 0 = S0

(10) x ↑ Sy = (x ↑ y) ∗ x

It also has the axiom scheme ofbounded induction, according to which, for anyϕ
with all quantifiers bounded, the following counts as an axiom:

∀y{[ϕ(0, y) ∧ ∀x(ϕ(x, y) → ϕ(Sx, y))] → ∀xϕ(x, y)}

wherein there may be in place ofy any finite number of variables.
R3 is at least as strong as elementary arithmetic as it is usually formulated in

the literature. The part ofR3 not involving↑ will be calledR2. Our main result will
be that for every theorem ofR3 it is provable inPDA that the theorem holds when
variables are restricted to numbers. Section3 treats (3) and (4), Section4 treats (5)
and (6), Section5 treats (7) and (8), Section6 treats bounded induction, and Section
7 treats (9) and (10). Section8 considers two further axioms.

(11) x ⇑ y = S0
(12) x ⇑ Sy = x ↑ (x ⇑ y)

Certain laws derivable by induction from (1) – (10) will play a special role as auxil-
iaries in the construction: the reflexivity and counterinductiveness and transitivity of
order, the associativity of addition, the distributivity of multiplication over addition,
and the associativity of multiplication. We set these down now for future reference.

(13) y ≤ y
(14) if Sx ≤ y, thenx ≤ y
(15) if x ≤ y andy ≤ z thenx ≤ z
(16) x + (y + z) = (x + y) + z
(17) x ∗ (y + z) = x ∗ y + x ∗ z
(18) x ∗ (y ∗ z) = (x ∗ y) ∗ z
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3 Order Call a setcounterinductive (for y) if i t containsx whenever it containsSx
(and it containsy). Define order by settingx ≤ y if and only if x is an element of
every counterinductive set fory. Weclaim that (3), (4), and (13) – (15) all follow.

Indeed (13) – (15) are immediate or almost so on unpacking the definitions and
so is the first of the following three items, which together would suffice to give (3)
and (4):

(i) if x ≤ y, thenx ≤ Sy;
(ii) if x ≤ 0, thenx = 0;

(iii) if x ≤ Sy, thenx ≤ y or x = Sy.

Then (ii) holds because{0}, which is to say the extension of the formulaρ(u) saying
u = 0, is counterinductive for0, using the fact that0 �= Su for anyu by axiom 1. And
(iii) holds because ifX1 is a counterinductive set fory not containingx andx �= Sy,
thenX1 ∪{Sy}, which is to say the extension of the formulaρ(u) sayingu ∈ X1 ∨ u =
Sy, is acounterinductive set forSy not containingx, using the fact thatSy �= Su for
anyu �= y by axiom 2.

Call a classclosed downward if x is a member of it whenevery is a member of
it and x ≤ y. Thecontraction lemma for order says that any inductive classA2 has
an inductive subclassB2 that is closed downward. Indeed, it suffices to letB2 be the
class of allx such that for allu ≤ x we haveu ∈ A2. First, we have0 ∈ B2 by (3) and
the assumption that0 ∈ A2. Further, if we havex ∈ B2 so thatu ∈ A2 for all u ≤ x,
then we havex ∈ A2 by (13), andSx ∈ A2 by the assumption thatA2 is closed under
S, and so by (4) we haveu ∈ A2 for all u ≤ Sx, and soSx ∈ B2. Finally, if y ∈ B2 so
thatu ∈ A2 for everyu ≤ y, and if x ≤ y, then for anyu ≤ x we haveu ≤ y by (15),
and sou ∈ A2 so thatx ∈ B2, completing the proof.

4 Sums Define a relationF1 to be acomputation of the sum with x (of y (as z)) if F1

is a function from individuals to individuals (andy is in its domain (andF1(y) = z))
and for all individualsu we have

(5a) 0 is in the domain ofF1 andF1(0) = x;
(6a) if Su is in the domain ofF1 then so isu, and we haveF1(Su) =

SF1(u).

If there exists a unique individualz for which there exists a computation of the sum
of x with y asz, call it x + y, which otherwise will be undefined. Call an individualy
summable if x + y is defined for all individualsx. Thedefiniteness lemma for addition
says that for all individualsx we have

(5b) 0 is summable andx + 0 = x;
(6b) if y is summable then so isSy, and we havex + Sy = S(x + y).

The proof is a more or less standard set-theoretic argument. Uniqueness is easy since
(5a) specifies whatx + 0 must be and (6a) specifies whatx + Sy must be given what
x + y is. For the existence part of (5b) it suffices to consider the functionF1 with
domain{0} andF1(0) = x. This satisfies (5a) by definition and (6a) vacuously. For
the existence part of (6b), consider a computationE1 of the sum withx of y. If Sy
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is already in the domain ofE1 we are done. Otherwise consider the functionF1 with
domainF1 = domainE1 ∪ {Sy} and withF1(u) = E1(u) for u �= Sy andF1(Sy) =
SE1(y). It suffices to show thatF1 is a computation of the sum withx of Sy, and for
this (5a) and (6a) foru �= y are immediate from (5a) and (6a) forE1, whereas (6a) for
y holds by definition, completing the proof.

The definiteness lemma implies that the class of summable individuals is in-
ductive. Callx additive if x is summable and for all summablev the sumv + x is
summable, and moreover, for all individualsu, the sumu + (v + x) is what it ought
to be, namely,(u + v) + x. Theassociativity lemma for addition says that the class
of additive individuals is inductive.

For the proof, recall the usual inductive proof of the associative law of addi-
tion 16 using axioms 5 and 6 and mathematical induction. That proof essentially con-
sists of two series of equations, one to prove associativity with0 as the third term and
one to prove associativity withSx as the third term, assuming as induction hypothesis
associativity withx as the third term:

u + (v + 0) = u + v = (u + v) + 0;
u + (v + Sx) = u + S(v + x)

= S(u + (v + x))

= S((u + v) + x)

= (u + v) + Sx.

Each equation is justified by (5) or (6) or the induction hypothesis. In the present
context, (5b) is identical with (5) but (6b) is weaker than (6), being conditional on
summability. To show the equations hold in the present context we need to check
that summability holds where needed, using for this purpose our assumption that
v is summable, and in the induction step, the assumption thatx is additive. It is
readily checked that under those assumptions0, v, x, v + x, Sx, andS(v + x) are all
summable and that the foregoing are all the terms whose summability is required for
the above equations, thus completing the proof.

Theclosure lemma for addition says that ifx andy are additive, so isx + y. For
the proof, it suffices to check the following equations:

u + (v + (x + y)) = u + ((v + x) + y)

= (u + (v + x)) + y

= ((u + v) + x) + y

= (u + v) + (x + y).

The contraction lemma for addition is a kind of generalization, saying that any induc-
tive classA2 has an inductive subclassB2 (containing only additive individuals and)
closed under+.

For the proof, since the intersection of any two inductive classes is inductive, it
may be assumed without loss of generality thatA2 is a subclass of the class of additive
individuals from the start, making the associative law available. It then suffices to let
B2 be the class of allx ∈ A2 such that for allu, if u ∈ A2 thenu + x ∈ A2. The proofs
thatB2 (i) contains0, (ii) is closed underS, and (iii) is closed under+, are as follows.
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Let u ∈ A2 be given. For (i),u + 0 = u ∈ A2, and so0 ∈ B2. For (ii), givenx ∈ B2

so thatu + x ∈ A2 we haveu + Sx = S(u + x) ∈ A2 sinceA2 is inductive, and so
Sx ∈ B2. For (iii), given x ∈ B2 andy ∈ B2 we haveu + (x + y) = (u + x) + y, and
u + x ∈ A2 sincex ∈ B2, and then(u + x) + y ∈ A2 sincey ∈ B2, andsox + y ∈ B2.
This completes the proof.

What our work to this point shows is that by restricting variables to additive in-
dividuals we get an interpretation of axioms 1 – 6 and 13 – 16. Henceforth for conve-
nience we use ‘individual’ to mean ‘additive individual’, so it may be said that indi-
viduals satisfy (1) – (6) and (13) – (16).

5 Products Define a relationF1 to be acomputation of the product with x (of y
(as z)) if F1 is a function from individuals to individuals (andy is in its domain (and
F1(y) = z)) and for all individualsu we have:

(7a) 0 is in the domain ofF1 andF1(0) = S0;
(8a) if Su is in the domain ofF1 then so isu, and we haveF1(Su) =

F1(u) + x.

If there exists a uniquez for which there exists a computation of the product ofx with
y asz, call it x ∗ y, which otherwise will be undefined. Call individualy productive
if x ∗ y is defined for all individualsx.

The definiteness lemma for multiplication says that for all individualsx we have:

(7b) 0 is productive andx ∗ 0 = 0;
(8b) if y is productive then so isSy, and we havex ∗ Sy = (x ∗ y) + x.

The proof is exactly like that of the corresponding lemma for addition.
The definiteness lemma implies that the class of productive individuals is induc-

tive. Call x summably productive if x is productive and for all productivev the sum
v+ x is productive and moreover, for any individualu, the productu ∗ (v+ x) is what
it ought to be, namely,u ∗ v + u ∗ x. Thedistributivity lemma says that the class of
summably productivex is inductive. For the proof, it suffices to check the equations
used in the usual derivation of the distributive law 17:

u ∗ (v + 0) = u ∗ v = u ∗ v + 0 = u ∗ v + u ∗ 0;

u ∗ (v + Sx) = u ∗ S(v + x)

= u ∗ (v + x) + u

= (u ∗ v + u ∗ x) + u

= u ∗ v + (u ∗ x + u)

= u ∗ v + u ∗ Sx.

Theadditive closure lemma for multiplication says that ifx andy are summably pro-
ductive, thenx + y is summably productive. For the proof, it suffices to check the
following equations:
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u ∗ (v + (x + y)) = u ∗ ((v + x) + y)

= (u ∗ (v + x)) + u ∗ y

= (u ∗ v + u ∗ x) + u ∗ y

= u ∗ v + (u ∗ x + u ∗ y)

= u ∗ v + u ∗ (x + y).

Call x a multiplicative if x is summably productive and for all summably productive
v, the productv ∗ x is summably productive and, moreover, for any individualu the
productu ∗ (v ∗ x) is what it ought to be, namely,(u ∗ v)∗ x. The associativity lemma
for multiplication says that the class of multiplicative individuals is inductive. For the
proof, it suffices to check the equations used in the usual derivation of the associative
law 18 for multiplication:

u ∗ (v ∗ 0) = u ∗ 0 = 0 = (u ∗ v) ∗ 0;

u ∗ (v ∗ Sx) = u ∗ (v ∗ x + v)

= u ∗ (v ∗ x) + u ∗ v

= (u ∗ v) ∗ x + u ∗ v

= (u ∗ v) ∗ Sx.

The closure lemma for multiplication says that ifx andy are multiplicative, thenx + y
andx ∗ y are multiplicative. For the proof of closure under+ it suffices to check the
following equations:

u ∗ (v ∗ (x + y)) = u ∗ (v ∗ x + v ∗ y)

= u ∗ (v ∗ x) + u ∗ (v ∗ y)

= (u ∗ v) ∗ x + (u ∗ v) ∗ y

= (u ∗ v) ∗ (x + y).

The proof of closure under∗ is exactly like the proof of the corresponding lemma for
addition. The contraction lemma for multiplication is a kind of generalization, saying
that any inductive classA2 has an inductive subclassB2 (containing only multiplica-
tive individuals and) closed under+ and ∗ .

For the proof, since the intersection of any two inductive classes is inductive, it
may be assumed without loss of generality thatA2 is a subclass of the class of multi-
plicative individuals from the start, making the distributive and associative laws avail-
able. By the contraction lemma for addition it may be assumed without loss of gen-
erality thatA2 is closed under+. It then suffices to letB2 be the class of allx ∈ A2

such that for allu, if u ∈ A2, thenu ∗ x ∈ A2. The proofs thatB2 (i) contains0, (ii)
is closed underS, and (iii) is closed under+, are as follows. Letu ∈ A2 be given.
For (i), u ∗ 0 = 0 ∈ A2 sinceA2 is inductive, and so0 ∈ B2. For (ii), given x ∈ B2

andu ∗ x ∈ A2 we haveu ∗ Sx = u ∗ x + u ∈ A2 sinceA2 is closed under+, and so
Sx ∈ B2. For (iii), given x ∈ B2 and y ∈ B2, we haveu ∗ x ∈ A2 sincex ∈ B2, and
thenu ∗ y ∈ A2 sincey ∈ B2, and sou ∗ (x + y) = u ∗ x + u ∗ y ∈ A2 sinceA2 is
closed under+, sothatx ∗ y ∈ B2. The proof thatB2 (iv) is closed under∗ is exactly
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like the corresponding step in the proof of the contraction lemma for addition. This
completes the proof.

What our work to this point shows is that by restricting variables to multiplica-
tive individuals, we get an interpretation of axioms 1 – 8 and 13 – 18. Henceforth, for
convenience, we use ‘individual’ to mean ‘multiplicative individual’, so it may be
said that individuals satisfy (1) – (8) and (13) – (18).6

6 Bounded induction Now recall that a number is an individual belonging to every
inductive class. The closure lemma for numbers states that the numbers (1) contain0,
(2) are closed underS, (3) are closed downward, (4) are closed under+, and (5) are
closed under∗ . Here (1) and (2) are immediate from the definition, whereas (3) – (5)
are almost immediate from the contraction lemmas. (For instance, given thatx is a
number andu ≤ x, to show thatu is a number it suffices to consider any inductive
classA2 and showu ∈ A2. By the contraction lemma, there is an inductive subclass
B2 of A2 that is closed downward. Sincex is a number andB2 is inductive,x ∈ B2.
Then sinceu ≤ x andB2 is closed downward,u ∈ B2. And then, sinceB2 is a subclass
of A2, u ∈ A2.)

The closure lemma guarantees that all axioms 1 – 8 ofR2 (along with the auxil-
iaries 13 – 18) hold when quantifiers are restricted to numbers. To show that all ax-
ioms (and hence all theorems) ofR3 hold when quantifiers are restricted to numbers,
two things remain to be done: (1) to define exponentiation and show that numbers
are closed under it and satisfy axioms 9 and 10; and (2) to show that the bounded
induction axioms hold when quantifiers are restricted to numbers. These tasks may
be taken up in either order and we will first undertake task 2. More precisely, we will
show in this section that every bounded induction axiom ofR2 holds when quantifiers
are restricted to numbers and we will do so by a proof that will extend automatically to
the additional bounded induction axioms ofR3 (mentioning exponentiation), as soon
as we accomplish task 1 in the next section.

To commence, an important consequence of the closure lemma is theabsolute-
ness lemma which says that for any formulaϕ of the language with0, S,≤,+, and
∗ having all quantifiers bounded, and for any particular numberu one has thatϕ(u)

holds if and only ifϕ(u) holdswhen all its quantifiers are restricted to numbers, and
herein there may be any finite number of variables in place ofu. For example, ifx is
anumber, then the following are equivalent:

∃w ≤ x(x = Sw);

∃w ≤ x(w is a number and∧ x = Sw).

This is immediate: the restriction ‘w is a number’ is already implied by the restriction
‘w ≤ x’.

Tocontinue, the absoluteness lemma greatly simplifies the task of showing that a
bounded induction axiom holds when quantifiers are restricted to numbers. To show
that such an axiom, as displayed in Section 1, holds when quantifiers are restricted
to numbers, it will suffice to consider any fixed numbery for which the antecedent
ϕ(0, y) ∧ ∀x(ϕ(x, y) → ϕ(Sx, y)) of the axiom holds when quantifiers are restricted
to numbers and to show that the consequent∀xϕ(x, y) of the axiom holds when quan-
tifiers are restricted to numbers. By the absoluteness lemma, the antecedent holding
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when quantifiers are restricted to numbers amounts simply toϕ(0, y) holding and
to ϕ(x, y) → ϕ(Sx, y) holding for all numbersx, whereas the consequent holding
when quantifiers are restricted to numbers amounts simply toϕ(x, y) holding for all
numbersx. So it will suffice to consider a numbery such thatϕ(0, y) holds and
ϕ(u, y) → ϕ(Su, y) holds for every numberu, and to consider any numberv, and
to show thatϕ(v, y) holds.

To conclude, we show this as follows. Consider the classA2 of all individualsu
such thatu ≤ v → ϕ(u, y) holds. By (13) it will suffice to show thatv belongs toA2

and sincev is a number, for this it will suffice to show thatA2 is inductive. As toA2

containing0, ϕ(0, y) is given. As toA2 being closed underS, it suffices to show that
if we haveu ≤ v → ϕ(u, y) then we haveSu ≤ v → ϕ(Su, y) or equivalently, that
if we haveu ≤ v → ϕ(u, y) andSu ≤ v, then we haveϕ(Su, y). And indeed, given
u ≤ v → ϕ(u, y) andSu ≤ v, by (14) we getu ≤ v and, hence,ϕ(u, y). From the
downward closure of numbers andu ≤ v, it follows thatu is a number, and we are
given thatϕ(u, y) → ϕ(Su, y) holds for numbers, so we getϕ(Su, y) as required to
complete the proof.

7 Powers As already indicated, though we have chosen to treat bounded induction
before exponentiation, these topics could have been taken in either order and the treat-
ment of exponentiation does not require the results of the preceding section. Rather,
we take as our starting point in this section the situation at the very end of Section5,
where it was said that individuals satisfy (1) – (8) and (13) – (18).

Define a relationF1 to be acomputation of the power of x (to y (as z)) if F1 is a
function from individuals to individuals (andy is in its domain (andF1(y) = z)) and
for all individualsu we have

(9a) 0 is in the domain ofF1 andF1(0) = S0;
(10a) if Su is in the domain ofF1, then so isu and we haveF1(Su) =

F1(u) ∗ x.
If there exists a uniquez for which there exists a computation of the power ofx to y
asz, call it x ↑ y, which otherwise will be undefined. Call an individualy powerful
if x ↑ y is defined for all individualsx.

The definiteness lemma for exponentiation says that for all individualsx we have

(9b) 0 is powerful andx ↑ 0 = S0;
(10b) if y is powerful, then so isSy and we havex ↑ Sy = (x ↑ y) ∗ x.

The proof is exactly like that of the corresponding lemmas for addition and multipli-
cation. The definiteness lemma implies that the class of powerfulx is inductive.

The method used to prove the contraction lemmas for addition and multiplica-
tion is not applicable to exponentiation, since that operation is not associative. Still,
without making use of the notions of class or number, aweak contraction lemma for
exponentiation can be proved, saying that every inductive classA2 has an inductive
subclassB2 (containing only powerful individuals and) closed under+ and ∗ such
that for allx andy in B2, x ↑ y is in A2.

For the proof, since the intersection of any two inductive classes is inductive, it
may be assumed without loss of generality thatA2 is a subclass of the class of pow-
erful individuals from the start. By the contraction lemma for multiplication, it may
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be assumed without loss of generality thatA2 is closed under+ and ∗ . Now let B2

be the class of allv ∈ A2 such that for allu ∈ A2 we haveu ↑ v ∈ A2. WeclaimB2 is
inductive. As toB2 containing0, for anyu ∈ A2, by (9b) and the inductiveness ofA2

we haveu ↑ 0 = S0 ∈ A2. As to B2 being closed underS, if v ∈ B2, so that for any
u ∈ A2 we haveu ↑ v ∈ A2, then for anyu ∈ A2, by (10b) and the closure ofA2 under
∗ , we haveu ↑ Sv = (u ↑ v) ∗ u ∈ A2, and henceSu ∈ B2, proving the claim. IfB2

is not itself closed under+ and ∗ , it can be replaced by an inductive subclass that is
by the contraction lemma for multiplication, to complete the proof.

It is almost immediate from the weak contraction lemma already proved that
numbers are closed under↑. (Indeed, ifx andy are numbers it suffices to prove that
x ↑ y ∈ A2 for any inductive classA2. Let B2 be as in the weak contraction lemma.
We havex ∈ B2 and y ∈ B2 by inductiveness ofB2, sincex and y are numbers, so
x ↑ y ∈ A2 as required.) This was the missing piece needed to show that all theorems
of R3 can be proved inPDA to hold when quantifiers are restricted to numbers.

8 Superpowers To treat super-exponentiation, we employ a different method,
yielding a weaker result. As to predicative logic, we pass fromPDA = U2(T0) to
Uω(T0), where we must distinguish various levels of numbers. As to formal arith-
metic, we consider a theoryR◦

4 in a language without quantifiers (free variables in
theorems being tacitly understood as universally quantified).R◦

4 has the nonlogical
axioms 1 – 12 (besides the logical axioms for identity which may be taken to be reflex-
ivity, symmetry, transitivity, and substitution of equals for equals in atomic formulas).
A proof in R◦

4 is a sequence of formulas each of which is either an axiom or follows
from earlier ones by truth-functional logic or by substitution of terms for variables
or by a newrule of inference for bounded induction, allowing the inference from the
premisesϕ(0, y) andϕ(x, y) → ϕ(Sx, y) to the conclusionϕ(x, y), for all formulas
ϕ of the quantifier-free language. The part ofR◦

4 not involving⇑ may be calledR◦
3.

As a first step, define a relationF1 to be acomputation of the superpower of x
(to y (as z)) if F1 is a function from 3-numbers to 3-numbers (andy is in its domain
(andF1(y) = z)) and for all 3-numbersu we have

(11a) 0 is in the domain ofF1 andF1(0) = S0;
(12a) ifSu is in the domain ofF1 then so isu, and we haveF1(Su) = x ↑

F1(u).

If there exists a uniquez for which there exists a computation of the superpower of
x to the y asz, call it x ⇑ y, which otherwise will be undefined. Call a 3-numbery
superproductive if x ⇑ y is defined for all 3-numbersx. The definiteness lemma for
super-exponentiation says that for all 3-numbersx the following hold.

(11b) 0 is superproductive andx ⇑ 0 = S0;
(12b) if y is superproductive then so isSy, and we havex ⇑ Sy = x ↑

(x ⇑ y).

The proof is much the same as that of the corresponding lemmas for other arithmetic
operations.
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What will now be shown is thatR◦
4 is interpretable inUω(T0) in the following

very weak sense: for every finite set� of theorems ofR◦
4, or what comes to the same

thing—since the conjunction of any finite set of theorems is itself a theorem—for any
single theoremθ of R◦

4, there is akθ such that for alln ≥ kθ the theoremθ holds when
the variables are taken to range overn-numbers. This condition is to be understood as
requiring that the values of all terms inθ be defined when the values of the variables
in θ are taken to ben-numbers, but not that the values of these terms themselves be
n-numbers. Note that, weak as it is, interpretability in this sense does imply the con-
sistency ofR◦

4 relative toUω(T0): it shows that0 �= 0 cannot be a theorem of the
former unless it is a theorem of the latter. In fact, it guarantees that any result not
mentioning⇑ and provable inR◦

4 is provable inUω(T0) to hold forn-numbers for all
sufficiently largen.7

The proof is by induction on the length of the proof ofθ in R◦
4 with five cases

to be distinguished. First, consider the case whereθ is any axiom but (11) or (12).
The results of the previous sections literally say that the 3-numbers are closed under
addition, multiplication, and exponentiation and satisfy all theorems ofR3, but the
proofs of the previous sections actually show that this holds fork-numbers for any
k ≥ 3. So in the case under consideration we may takekθ = 3.

Second, consider the case whereθ is one of the axioms 11 or 12. The definiteness
lemma says that the 3-class of all superproductivey is inductive. So it contains all 4-
numbers. The same proof shows that for anyk ≥ 3 and any(k + 1)-numbersx andy,
x ⇑ y is defined and is ak-number. So in the case under consideration we may take
kθ = 4.

Third, consider the case whereθ is inferred by truth-functional logic from vari-
ousθi for which appropriateki has already been found. In this case we may takekθ

to be the maximum of theki.
Fourth, consider the case whereθ is inferred by substitution of terms for vari-

ables from someψ for which an appropriatekψ has already been found. Note that,
given functions that for allk take(k + m)-numbers tok-numbers, and given func-
tions that for allk take (k + n)-numbers tok-numbers, composition of the former
functions with the latter functions yields functions that take(k + p)-numbers tok-
numbers, wherep = m + n. Since+, ∗ , and↑ carryk-numbers tok-numbers and
⇑ carries(k + 1)-numbers tok-numbers, this guarantees that for any termt(u, v, . . .)

built up from variablesu, v, . . . using the symbols0, S,+, ∗ ,↑, and⇑, there is apt

such that for allk the value of the termt is defined and ak-number whenever the val-
ues of the variables are(k + pt)-numbers. So in the case under consideration we may
let pθ be the maximum of thept for t aterm occurring inθ, and then letkθ = kψ + pθ.

Fifth, consider the case whereθ = θ(x, y) is inferred by induction from

ψ = θ(0, y) ∧ (θ(x, y) → θ(Sx, y))

for which an appropriatekψ has been found. It follows that for any fixedkψ-number
y the (kψ + 1)-class of allkψ-numbersx such thatθ(x, y) holds is inductive and so
contains all(kψ +1)-numbers. The same proof shows it contains all(k +1)-numbers
for anyk ≥ kψ. So in the case under consideration we may takekθ = kψ + 1. This
completes the proof.
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Essentially the same method can be applied toR◦
3 to show that it can be inter-

preted in a similar very weak sense inU1(T0).8 The method is also applicable in other
situations of related interest.9

NOTES

1. Heck [8] considers a Fregean system in which only the second and not the first of Rus-
sell’s two changes to the system of theGrundgesetze is made, namely, a predicative ex-
tension of the first-order fragment of theGrundgesetze as studied in T. Parsons [16]. In
this first-order fragment, a version of the axiom of infinity is already provable and does
not have to be assumed, and a pairing function is definable, so that in considering ex-
tensions only monadic higher-order entities need to be assumed. Heck shows that in the
context he considers, the basic laws of addition and multiplication can be derived us-
ing just one level of predicative second-order entities. Because his Fregean system is
stronger than the Russellian, this result does not transfer directly. But it does suggest a
goal that a development of the basic laws of addition and multiplication within a Rus-
sellian system might hope to achieve, and that indeed is achievable, as can be seen from
the development below.

2. Shoenfield states the theorem for a particularT, namely, Zermelo-Frankel set theory,
whereT+ boils down to G̈odel-Bernays set theory, but his proof, which is formulated in
terms of the epsilon-symbol theorem—though easily reformulable in terms of the cut-
elimination theorem—is more widely applicable. Shoenfield himself notes that his proof
gives a primitive recursive functionF for which it is provable that if there were any
derivation of a contradiction inT+ with Gödel number≤ x, there would be a derivation
of a contradiction inT with Gödel number≤ F(x). To prove consistency for a fragment
of the Russellian system with a fixed finite numberm of types of higher-order entities,
it would be necessary to consider themth function in the sequence defined byF0(x) = x
andFk+1(x) = F(Fk(x)). To prove consistency for the Russellian system as a whole,
it would be necessary to proceed by induction and consider the functionF∗ defined by
the recursionF ∗(0, x) = x, F∗(Sy, x) = F(F∗(y, x)). Whichever���n suppliesF will
supply eachFm and be uninterpretable in any fragment of the Russellian system involv-
ing only finitely many types, whereas���n+1 will supply F∗ and be uninterpretable in the
Russellian system as a whole. It appears that one may taken = 4 which would make our
positive results below best possible, since as Kripke already noted, the only conspicu-
ous nonelementary step in the argument is the use of cut elimination, which involves a
super-exponential function but nothing worse.

3. Thus this confirms the estimate conjectured in the preceding note. Other claims an-
nounced without proof in [10] pertain to transfinite iteration in systems of the kind there
addressed. Predicative analysis as in [2] iterates the hierarchy of levels of second-order
entities into the transfinite, subject to a restriction ofautonomy, roughly to the effect that
extension of the system of types up to an ordinalξ is permittedprovided the ordinalξ is
describable in as much of the system of types as we already have. If claims such as those
in the cited abstract could be substantiated for a Russell-style as opposed to a Church-
style system and subject to a restriction of autonomy, the whole of classical arithmetic
would arguably becomededucible in a predicativist framework, where heretofore it has
simply beenassumed.

4. This work obviously leaves open a number of questions about the exact strength of the
Russellian system and natural subsystems thereof as compared with various well-known
weak systems of arithmetic from the literature, though an unusually helpful report by an
anonymous referee has, besides providing some important references to the more recent
literature and other useful comments, sketched proofs of some interesting partial results.
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5. An earlier draft of this paper by the first author alone proved that elementary arithmetic
can be interpreted in a weak sense in the Russellian system. The second author sug-
gested that by using the methods of [6], elementary arithmetic could be interpreted in
the ordinary sense in a small fragment of the Russellian system. This suggestion was
then verified by both authors. The historical information given comes largely from the
second author, and the treatment of super-exponentiation in the closing section from the
first author.

6. Our work thus far and the fairly routine extension thereof that would be needed to obtain
the interpretability ofQ , makes no essential use of the notion of class, and could have
been carried out inU1(T0). For whereas the contraction lemmas were stated as theorems
about classes, associating to any classA2 asubclassB2, they could easily be restated as
metatheorems about formulas, associating to any formulaα astronger formulaβ.

7. The result can be extended to a system allowing bounded recursion—or essentially
equivalently, bounded induction—as does super-elementary arithmetic���4 as it is usu-
ally formulated in the literature. Details are omitted here because the positive result
is so weak. Indeed, it may even be regarded as negative, since what the construction
of this section actually shows is that given the existence of a class closed under all the
fundamental operations up to themth, there follows the existence of an interpretation
in Uω(T0) in the very weak sense for a theory of the fundamental operations up to the
(m + 1)st. If the possibility of the latter is excluded (say by consistency proof considera-
tions, as in an earlier note) then the possibility of the former is excluded as well. (It thus
appears that in the most natural sense of the phrase super-exponentiation isnot provably
total in the Russellian system.)

8. The idea would be to show that for every theoremR3 there is a formulaκϕ(u) such that it
is provable inU1(T0) thatκϕ is inductive and thatκϕ(x) ∧ κϕ(y) → ϕ(x, y), wherein it
is required that the values of the terms appearing inϕ are defined forx andy satisfyingκϕ

but not that the values of such terms themselves satisfyκϕ. The proof is by induction on
the length of the proof ofϕ. The proof of the weak contraction lemma for exponentiation
associates to any inductive formulaα a stronger formulaα† = β such that powers of
members of classB determined byβ are members of the classA determined byα. In
the case whereϕ is obtained by substitution inθ, for κϕ we may takeκ††...†

θ
, where the

number of iterations of † matches the depth of nesting of↑ in the terms substituted inθ to
yield ϕ. In the case whereϕ is obtained by induction fromψ, wemay takeκϕ = κψ ∧ ϕ.
Remarks similar to the preceding note apply.

9. Notably the following: G̈odel’s first incompleteness theorem holds for the rudimentary
arithmeticQ or any other theory at least as strong. Indeed, the systemQ was introduced
precisely in order to prove such a result. Textbook presentations tend to leave the im-
pression thatQ is a very weak system and that one would have to go to a much stronger
system to obtain a formalization of the proof of the first incompleteness theorem, which
is the crucial step in proving the second incompleteness theorem. This impression is re-
inforced by Bezboruah and Shepherdson [1], which proves the second incompleteness
theorem forQ by a method which the cited authors emphasize is un-Gödelian and in-
applicable to stronger systems. But it has long been known to specialists that the for-
malization of the proof of the first incompleteness theorem can in fact be carried out in
acomparatively weak system, namely, elementary arithmetic���3. Indeed, the system���3

was introduced precisely in order to prove such a result. Moreover, it is now known
to specialists thatQ is not such a very weak system after all, in that many ostensibly
stronger systems are interpretable in it, including systems involving a certain amount
of exponentiation. Though���3 does not seem to be among the systems for which inter-
pretability has been explicitly stated in the published literature, by essentially the same
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method as in the preceding note, the results on interpretability (in a very weak sense) in
U1(T0) indicated there can be extended to interpretability inQ .
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