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A Note on the Modal and Temporal Logics
for N-Dimensional Spacetime

JOHN F. PHILLIPS

Abstract We generalize an observation made by Goldblatt in “Diodorean
modality in Minkowski spacetime” by proving that eachn-dimensional integral
spacetime frame equipped with Robb’s irreflexive ‘after’ relation determines
a unique temporal logic. Our main result is that, unliken-dimensional space-
time where, as Goldblatt has shown, the Diodorean modal logic is the same for
each frame(Rn,≤), in the case ofn-dimensionalintegral spacetime, the frame
(Zn,≤) determines a unique Diodorean modal logic.

1 Introduction N-dimensional spacetime is the frame(Rn,�) whereR
n(n ≥ 2)

is the set of alln-tuples of real numbers and� is a binary relation. The relation� for
x = (x1, . . . , xn), andy = (y1, . . . , yn) wherex, y ∈ R

n is defined by

x � y iff
n−1∑

i=1

(yi − xi)
2 ≤ (yn − xn)

2 and xn ≤ yn

Intuitively, x � y means that a luminal signal can be sent fromx to y and hence that
y is in the ‘causal future’ ofx. The relation� determines thefuture light cone of x
which is just{y ∈ R

n : x � y}. Note thatR4 is Minkowski spacetime, the mathe-
matical model of spacetime which underlies Einstein’s Special Theory of Relativity
(see Taylor and Wheeler [5] for an accessible explanation of the theory). Evidently,
for any n ≥ 2, (Rn,�) is isomorphic to(Rn,≤) where the isomorphism is just the
45-degree rotation and for(x1, . . . , xn) and(y1, . . . , yn) in R

n:

(x1, . . . , xn) ≤ (y1, . . . , yn) iff xi ≤ yi for eachi.

The main result of Goldblatt [1] is that the Diodorean modal logic of the frames
(Rn,≤) for n ≥ 2 is the well-known systemS4.2. Goldblatt also considers frames
that have an irreflexive relationα where

x αy iff x ≤ y and x �= y.
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The relationα is the ‘after’ relation axiomatized by Robb in [4]. In [1], the problem
of axiomatizing temporal logics for the frames(Rn,≤) with n ≥ 2 is left open as
are the corresponding problems forn-dimensionalintegral spacetime, in particular
for the frames(Zn,≤) and(Zn, α) with n ≥ 2 (whereZ

n is the set of alln-tuples of
integers).

An interesting feature of the frames(Rn, α) pointed out by Goldblatt is that the
temporal logic of(R2, α) differs from that of the frame(R3, α). We shall show how
Goldblatt’s observation can be generalized to prove that for each frame(Zn, α) with
n ≥ 2, the frame(Zn, α) determines a unique temporal logic. An easy corollary of
this result is that for each frame(Rn, α) with n ≥ 2, the frame(Rn, α) determines a
unique temporal logic. A more surprising result is that, unlike the case involvingn-
dimensional spacetime where the Diodorean modal logic is the same for each frame
(Rn,≤), in the case ofn-dimensionalintegral spacetime (for everyn ≥ 2) the frame
(Zn,≤) determines a unique Diodorean modal logic.

2 Preliminaries A pair (W, R) is a frame just in caseW is a nonempty set and
R is a binary relation onW. The languageL consists of a countable set of atomic
sentences oratoms pi wherei = 0,1,2, . . . along with the Boolean connectives¬ and
∧ and the modal operator�. The set ofL-formulas is constructed in the usual way
from the atoms using the Boolean connectives¬ and∧ and the modal operator�. We
write p, q, r, and so on, for arbitrary formulas. Introduction of the abbreviations�
(constant true),⊥ (constant false),∨, and→ is done in the usual way. Additionally,
we introduce the abbreviation�, where�p abbreviates¬�¬p.

The languageL∗ is just likeL exceptL∗ contains the temporal operatorsF and
P instead of the modal operator�. The set ofL∗-formulas is likewise constructed in
the usual way. Note that we follow custom and abbreviate¬F¬p asGp and¬P¬p
asHp.

A structure ormodel (with respect toL or L∗) is atriple M = (W, R, V ) where
(W, R) is a frame andV is a function assigning eachpi asubset ofW. Wegenerally
refer to such a function as avaluation. Truth in a model is defined recursively in the
usual way (consult van Benthem [6] and Hughes and Cresswell [3] for the details).

A formula p is L-valid (or L∗-valid) in a frameF if and only if p is true in
(F , V ) at w for all w ∈ F . We shall follow the practice of using the expression
‘valid’, relying on the context to make the meaning of the expression clear. For a
frame(W, R) we write ML(W, R)(T L(W, R)) to denote the modal logic (temporal
logic) of (W, R), that is, the set of formulas in the languageL(L∗) that are valid on
(W, R). We assume the reader is familiar with the notion of ap-morphism (e.g., see
[6] or Goldblatt [2] for discussion).

3 Logics for frames with Robb’s ‘after’ relation We begin with a result forn-
dimensional integral spacetime with respect to temporal formulas.

Theorem 3.1 For any n ≥ 2, T L(Zn+1, α) �= T L(Zm, α) where 2 ≤ m ≤ n.

Proof: In order to prove the theorem, it suffices to show that for anyn-dimensional
frame withn ≥ 2, there is a formulaϕ valid on then-dimensional frame and everym-
dimensional frame where 2≤ m ≤ n such thatϕ is invalid on the(n + 1)-dimensional
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frame. Fix ann-dimensional frame(Zn, α), with n ≥ 2. For ease of exposition, we
adopt the following abbreviations:

Q1 = (p1 → (¬p2 ∧ G¬p2)∧ · · · ∧(¬pn ∧ G¬pn) ∧ (¬pn+1 ∧ G¬pn+1))

Q2 = (p2 → (¬p1 ∧ G¬p1)∧ · · · ∧(¬pn ∧ G¬pn) ∧ (¬pn+1 ∧ G¬pn+1))
...

Qn+1 = (pn+1 → (¬p1 ∧ G¬p1) ∧ (¬p2 ∧ G¬p2) ∧ · · · ∧ (¬pn ∧ G¬pn))

The formula represented by the following schema must be valid on(Zn, α):

Robn : Fp1 ∧ · · ·∧ Fpn ∧ Fpn+1 ∧ GQ1 ∧ · · ·∧ GQn+1 →∨1≤i< j≤n+1F(Fpi ∧ Fp j)

In order to prove that the formula denoted by the above schema is valid on(Zn, α),
we assume the antecedent of Robn holds at some pointw ∈ Z

n. Without loss of gen-
erality, we may suppose thatw = (0, . . . ,0) wherew containsn 0s. We thus have

(1) There is a pointc1 such thatw �= c1 wherewαc1 andp1 and(¬p2 ∧ G¬p2) ∧
· · · ∧ (¬pn ∧ G¬pn) ∧ (¬pn+1 ∧ G¬pn+1) is true atc1

...
(n+1) There is a pointcn+1 such thatw �= cn+1 wherewαcn+1 and pn+1 and(¬p1 ∧

G¬p1) ∧ (¬p2 ∧ G¬p2) ∧ · · · ∧ (¬pn ∧ G¬pn) is true atcn+1

where

c1 = (a1
1, . . . , an

1)

c2 = (a1
2, . . . , an

2)

c3 = (a1
3, . . . , an

3)

...
cn+1 = (a1

n+1, . . . , an
n+1).

Given (1) – (n + 1), it is easy to see that these points must be mutually noncom-
parable. We call the pointsa1

1, a1
2, . . . , a1

n+1 the first column of coordinates of
c1, c2, . . . , cn, cn+1 and extend this notion in the obvious way (i.e.,a2

1, a2
2, . . . , a2

n+1 is
the second column of coordinates, etc.). Now suppose there are no pointsc j, ck such
that themth coordinate (where 1≤ m ≤ n + 1) of bothc j andck is greater than the
mth coordinate of some pointcg. It follows from our supposition that in each column
of coordinates, either every pointci has the same value, or there arex, y ∈ Z such that
x < y and one pointci has the valuey in the column while every other pointch has the
valuex in that column. Note that in order for two pointsch, ci to be distinct and non-
comparable they must differ on at least two coordinates; in particular, it must be the
case thatch has a lower value thanci on one coordinate and a higher value on some
other coordinate. In the situation at hand, we know that at leastn of the coordinates
in each column must be identical. Thus, for any columnk there must be(n + 1) − k
points that are identical on all coordinates in the firstk columns. So for the (n − 1)st
column there are two such pointsch,ci; but thench, ci differ only in the last column
(thenth). It follows that eitherch seesci or ci seesch, acontradiction. �
We have now established that there are pointsc j, ck such that themth coordi-
nate (where 1≤ m ≤ n + 1) of both c j and ck is greater than themth coordi-
nate of some pointcg. Where c j = a1

j, . . . , an
j and ck = (a1

k, . . . , an
k ), let d =
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(min(a1
j, a1

k ), . . . ,min(an
j , an

k )). Since themth coordinate ofd must be greater than
0, d �= w. But then, sincewα d, it follows thatF(Fp j ∧ Fpk) is true atw and hence
that Robn is valid on(Zn, α).

Wenote that, given the fact that there is ap-morphism fromZ
n+1 ontoZ

n for n ≥
2 (by deleting the first coordinate), it follows by thep-morphism theorem that Robn

must be valid on each of(Z2, α), . . . , (Zn, α). Therefore, all that remains is to show
that Robn fails on the(n + 1) − D frame. Letp1 be false everywhere except atb1 =
(1,0, . . . ,0) (whereb1 hasn + 1 coordinates),p2 be false everywhere exceptb2 =
(0,1, . . . ,0), . . . , and pn+1 be false everywhere exceptbn+1 = (0,0, . . . ,1). We
leave it to the reader to check that Robn is false atb0 = (0,0, . . . ,0) on this valuation.

The proof of Theorem3.1also establishes the following corollary.

Corollary 3.2 For any n ≥ 2, ML(Rn+1, α) �= ML(Rm, α) where 2 ≤ m ≤ n.

4 N-dimensional integral spacetime We now establish a result concerning
Diodorean modal logics forn-dimensional integral spacetime.

Theorem 4.1 For any n ≥ 2, ML(Zn,≤) �= ML(Zm,≤) where m ≥ 2 and m �= n.

Proof: Wenote that the formula Zip2 is valid on the 2− D frame but fails on every
n − D frame forn > 2.

Zip2 : ¬p ∧ ¬q ∧ ¬r∧
�(�p ∧ ¬q ∧ ¬r)∧
�(�q ∧ ¬p ∧ ¬r)∧
�(�r ∧ ¬p ∧ ¬q) →
�[�(�p ∧ ¬q ∧ ¬r) ∧ �(�q ∧ ¬p ∧ ¬r) ∧ ¬�(�r ∧ ¬p ∧ ¬q)]∨
�[�(�p ∧ ¬q ∧ ¬r) ∧ �(�r ∧ ¬p ∧ ¬q) ∧ ¬�(�q ∧ ¬p ∧ ¬r)].

In order to prove the theorem, it suffices to show that for anyn − D frame withn > 2
there is a formula valid on then − D frame that is invalid on every(n + m)− D frame
such thatm ≥ 1. Fix ann − D frame(Zn,≤), with n > 2. For sake of clarity, we adopt
the following abbreviations (with respect to the atomsp1, p2, . . . , pn, pn+1).

ALL = (p1 ∧ p2 ∧ · · · ∧ pn ∧ pn+1).

NONE = (¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pn ∧ ¬pn+1).

∗pi = (pi ∧ ∧ j �=i ¬p j).

The formula represented by the following schema must be valid on(Zn,≤).

Zipn : NONE∧ �[NONE → �(ALL ∨ NONE∨ ∗p1 ∨ · · · ∨ ∗pn+1)]∧
�[NONE → �(∗p1) ∧ · · · ∧ �(∗pn+1)] ∧

�[ p1 → �(∗p1 ∨ ALL )] ∧
...

�[ pn+1 → �(∗pn+1 ∨ ALL )] → ∨i �= j�[� ∗ pi ∧ � ∗ p j ∧ ¬ ∧ �k �=i,k �= j ∗ pk)]

In order to prove that the formula denoted by the above schema is valid on(Zn,≤),
we may assume without loss of generality that the antecedent of Zipn holds and the
consequent fails atw = (0, . . . ,0) wherew containsn 0s. We thus have
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(1) There is a pointc1 such thatw �= c1 wherew ≤ c1 and

�p1 ∧ ¬p2 ∧ · · · ∧ ¬pn ∧ ¬pn+1 is true atc1
...

(n+1) There is a pointcn+1 such thatw �= cn+1 wherew ≤ cn+1 and

�pn+1 ∧ ¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pn is true atcn+1

where

c1 = (a1
1, . . . , an

1)

c2 = (a1
2, . . . , an

2)

c3 = (a1
3, . . . , an

3)

...

cn+1 = (a1
n+1, . . . , an

n+1).

Now consider the points

(min(a1
1, a1

2), . . . ,min(an
1, an

2))

...

(min(a1
n+1, a1

1), . . . ,min(an
1, an

n+1))

...

(min(a1
2, a1

3), . . . ,min(an
2, an

3))

...

(min(a1
2, a1

n+1), . . . ,min(an
2, an

n+1))

...

(min(a1
n, a1

n+1), . . . ,min(an
n, an

n+1))

The number of these points is determined by the equation:

k =
∑

1≤i≤n

i

Let d1, . . . , dk denote these points. Suppose each ofd1, . . . , dk is equal tow.
As before, we call the pointsa1

1, a1
2, . . . , a1

n+1 the first column of coordinates of
c1, c2, . . . , cn, cn+1 and extend this notion in the obvious way. We observe that there
aren + 1 coordinates in each column of coordinates.

We know that at leastn of the coordinates in each column must be equal to
0; for suppose there are two coordinatesα, β that do not equal 0. By assumption,
min(α, β) = 0 which is impossible, given that neither ofα, β equals 0.

From the fact that at leastn of the coordinates in each column must be equal to
0, it follows thatn ∗ n of the (n + 1) ∗ n total coordinates forc1, . . . , cn+1 must be
equal to 0. But since none ofc1, . . . , cn+1 equalsw there must ben + 1 coordinates
which are not equal to 0. This is impossible, however, given that (the number of total
coordinates)= (n + 1) ∗ n = (n ∗ n) + n and this is less than the sum of the number
of 0 coordinates and the number of non-0 coordinates.
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We have now shown that at least one ofd1, . . . , dk is not equal tow. Let di be
such a point, wheredi = (min(a1

j, a1
k ), . . . ,min(an

j , an
k )), that is,di = min(c j, ck).

Sodi seesc j andck wherec j andck are noncomparable. Thus� ∗ p j ∧ � ∗ pk with
j �= k is true atdi. Since, by hypothesis, the consequent of Zipn is false atw, weknow
� ∗ p1 ∧ · · · ∧ � ∗ pn+1 is true atdi

We know c j and ck must differ on two coordinates where one coordinate is
greater inc j and the other is greater inck. Without loss of generality, we may assume
they differ on the first two coordinates and supposec j is higher on the first coordinate
andck is higher on the second. We now prove there must be a pointx seen bydi such
thatx sees pointsy andz wherex andy differ by exactly one on themth coordinate
and are identical on all others, andx andz differ by one on precisely one coordinate
but are identical on themth and all others. In addition, we wantNONE to be true at
x, andfor each ofy andz either∗pi or ALL is true. We call a pointx of the sort we
have describedsuitable. Assumedi sees no suitable point. Let

c j = (a1, a2, a3, . . . , an),

ck = (b1, b2, b3, . . . , bn),

di = (b1, a2, c3, . . . , cn)

and

c = max(c j, ck) = (a1, b2, d3, . . . , dn).

Consider the array of points determined by the following method. The base of the
last column in the array is the pointck. Let bh be the highest coordinate ofck where
bh �= dh (sobh < dh). Whereg = dh − bh the nextg points in the column are

(b1, b2, . . . , bh+g, . . . , bn)
...

(b1, b2, . . . , bh+1, . . . , bn)

(b1, b2, . . . , bh, . . . , bn)

We follow this procedure for the next highest coordinateb f ( f < h) of ck where
b f �= d f and continue until every such coordinate has been handled. Wherey =
b2 − a2, the nexty columns (proceeding to the left) are just like the last column except
for their second coordinates.

(a1, a2, d3, . . . , dn) . . . (a1, b2−1, d3, . . . , dn) (a1, b2, d3, . . . , dn)
...

...
...

(b1, a2, . . . , bh+g, . . . , bn) . . . (b1, b2−1, . . . , bh+g, . . . , bn) ... (b1, b2, . . . , bh+g, . . . , bn)
...

...
...

(b1, a2, . . . , bh+1, . . . , bn) . . . (b1, b2−1, . . . , bh+1, . . . , bn) ... (b1, b2, . . . , bh+1, . . . , bn)

(b1, a2, . . . , bh, . . . , bn) . . . (b1, b2−1, . . . , bh, . . . , bn) ... (b1, b2, . . . , bh, . . . , bn)

Now consider the highest coordinatebh in ck where thehth coordinatech in di is such
that ch �= bh. The next column in the array is just like the last except each point in
the column containsbh−1 in thehth coordinate. We continue as before until we have
a column withch as thehth coordinate in every point. We repeat this procedure for
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each pair of nonidentical coordinates indi, ck in descending order until we have the
first column withdi at the base andc j at the top.

As an illustration of the method, we consider a simple example. Supposen = 4,
c j = (3,0,5,5), andck = (0,3,3,7). Thendi = (0,0,3,5) andc = (3,3,5,7).
The array in this case is depicted below.

(3,0,5,5) (3,0,5,6) (3,0,5,7) (3,1,5,7) (3,2,5,7) (3,3,5,7)

(2,0,5,5) (2,0,5,6) (2,0,5,7) (2,1,5,7) (2,2,5,7) (2,3,5,7)

(1,0,5,5) (1,0,5,6) (1,0,5,7) (1,1,5,7) (1,2,5,7) (1,3,5,7)

(0,0,5,5) (0,0,5,6) (0,0,5,7) (0,1,5,7) (0,2,5,7) (0,3,5,7)

(0,0,4,5) (0,0,4,6) (0,0,4,7) (0,1,4,7) (0,2,4,7) (0,3,4,7)

(0,0,3,5) (0,0,3,6) (0,0,3,7) (0,1,3,7) (0,2,3,7) (0,3,3,7)

Observe that the array of points determined by this method is such that for any point
x that is not in the top row or in the last column whereNONE is true atx, x is suitable
if for both the pointy immediately abovex and the pointz immediately to the right
of x either∗pi or ALL is true.

Returning now to the general case, assume that no points in the array are suitable.
The basic situation is depicted below.

c j . . . t c
. . . . s u
. . . . . .

di . . . . ck

Given thatc j seest andck seesu it follows that either∗p j or ALL is true att and either
∗pk or ALL is true atu. But then, sinces sees botht andu, ands is not suitable, we
know that either∗p j or ALL or ∗pk is true ats. It is not hard to see that continuing to
argue in this fashion forces either∗p j or ALL or∗pk to be true atdi. This is impossible
since then�p j or �pk is true atdi, but di seesc j andck. Thus, we have established
that one of the points in the array must be suitable.

Let the pointsx, y, z be as described earlier, wherex is suitable. SinceNONE is
true atx,� ∗ p1 ∧ · · · ∧� ∗ pn+1 must true atx. Thus,x must see at least(n + 1)− 2
pointsq1, . . . , qn−1 noncomparable withy, z. For example, if∗p1 is true at bothy and
z then there must ben + 1 points noncomparable withy andz; if ∗p1 is true aty and
∗p3 is true atz, then there are(n + 1) − 2, that is,n − 1, points noncomparable with
y andz, andso on.

Given that either∗pi or ALL is true at each ofy, z it follows that each of
q1, . . . , qn−1 must have identicalf th andgth coordinates wherex andy differ by one
on the f th coordinate andx andz differ by one on thegth coordinate. This is because
if, say,qi differs fromqi+1 on the f th coordinate, then one ofqi, qi+1 must be higher
on the f th coordinate (note that both must havef th coordinates greater than or equal
to the f th coordinate ofx). Without loss of generality we may supposeqi is higher
on the f th coordinate. But then either (1)qi = y or (2) y seesqi, sincey differs from
x only by being one higher on thef th coordinate. Both (1) and (2) are impossible
given thatqi andy are noncomparable.
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We know that there are eithern − 1, n, or n + 1 points noncomparable withy
andz. Now assume that for anys ≥ m where 3< m ≤ n there is a suitable pointx
(and the pointsy, z in virtue of whichx is suitable) wherex, y, z are seen byw and

(i) there ares, s − 1, or s + 1 pointsq1, . . . , q j seen byx whereq1, . . . , q j are
noncomparable withy andz and one another and

(ii) where one of∗p1, . . . ,∗pn+1 is true at each ofq1, . . . , q j and

(iii) q1, . . . , q j andx, y, z are identical on(n − s) + 1 coordinates.

So, for example, in case ofn (as we have shown) we have a suitablex where there
are eithern, n − 1, orn + 1 points seen byx and noncomparable withy andz and one
another where one of

(p1 ∧ ¬p2 ∧ · · · ∧ ¬pn ∧ ¬pn+1), . . . , (pn+1 ∧ ¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pn)

is true at each of these noncomparable points and where these points andx, y, z are
identical on((n − n) + 1) ∗ 2 = 2 coordinates. We now prove that form − 1 there is
asuitablex with x, y, z seen byw and

(i*) there arem − 2, m − 1, or m points seen byx and noncomparable withy, z,
and one another and

(ii*) one of ∗p1, . . . ,∗pn+1 or ALL is true at each ofq1, . . . , q j and

(iii*) q1, . . . , q j andx, y, z are identical on(n − (m − 1)) + 1 coordinates.

By hypothesis, we havexm, ym, zm with xm suitable where

(1) w seesxm, ym, zm and

(2) xm sees eitherm − 1, m, or m + 1 pointsq1, . . . , q j seen byxm and

(3) q1, . . . , q j are noncomparable withym, zm, and one another and

(4) one of∗p1, . . . ,∗pn+1 is true at each ofq1, . . . , q j and

(5) q1, . . . , q j andxm, ym, zm are identical on(n − m) + 1 coordinates.

Sincem > 3, we know we can choose two of these points that are noncomparable
with ym andzm and one another. We may designate these pointsc j andck and argue
as before that there must be some suitablex with x, y, z seen byw with m − 2, m − 1,

or m pointsq1, . . . , q j seen byx and noncomparable withy andz and one another
where one of∗p1, . . . ,∗pn+1 is true at each ofq1, . . . , q j, andq1, . . . , q j andx, y, z
are identical on(n − (m − 1)) + 1 coordinates.

From the above, it follows that there must be a suitable pointx such thatx, y, z
are seen byw where there are two, three, or four points seen byx and noncomparable
with y andz and one another. Moreover, one of∗p1, . . . ,∗pn+1 must be true at each
of these noncomparable points, and these points andx, y, z must be identical on all
but two coordinates. Note that by the definition of suitability,x and y andx andz
differ only by one on one coordinate. Lets andt be two of the points (or the only two
points) noncomparable withy andz and one another.

Weknow thatx, y, z, s, andt agree on all but two coordinates. Assume that (list-
ing only the two relevant coordinates)x = (a, b), y = (a + 1, b), z = (a, b + 1),

s = (g, h), andt = (i, j). Sinces andt cannot be seen by eithery or z it follows that
s = (a, b) andt = (a, b). This is impossible, sinces andt are noncomparable.
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All that remains is to show that Zipn fails on every(n + m) − D framem ≥ 1.
For any m − D frame m > (n + 1) let p1 be true everywhere except at
b0 = (0,0, . . . ,0) (whereb0 hasm coordinates) andb2 = (0,1, . . . ,0), . . . , bn+1 =
(0,0, . . . ,1,0, . . . ,0) (wherebn+1 containsm − (n + 1) 0s after the 1),p2 be true
everywhere exceptb0, b1, andb3, . . . , bn+1, . . . , andpn+1 be true everywhere except
b0, b1, . . . , bn. Weleave it to the reader to check that Zipn fails on this valuation. �

5 Remarks The contrast between the case of the frames(Rn,≤) which are indis-
cernible from one another with respect to the validity of formulas inL and the case
of the frames(Zn,≤), which are all distinguishable from one another in this sense,
is quite striking. Since the logics of the frames(Zn, α) with n ≥ 2 (and the frames
(Rn, α) wheren ≥ 2) are all distinct, it is natural to consider the case involving the
other ‘standard’ irreflexive relationR which is defined by

xRy iff
n−1∑

i=1

(yi − xi)
2 < (yn − xn)

2 and xn < yn.

Given our inability to discover dimension-dependent formulas for frames equipped
with the relationR, we are tempted to conjecture that the frames (R

n, R) with n ≥ 2
(and the frames(Zn, R) wheren ≥ 2) are indiscernible with respect to formulas in
bothL andL∗. In any event, it seems worthwhile to point out that the question re-
mains open. (Byrd has discovered that the frames(Zn, R) wheren ≥ 2 are discernible
in the above sense.)
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