Uncompactness of Stit Logics Containing Generalized Refref Conditionals

MING XU

Abstract

In this paper we prove the uncompactness of every stit logic that contains a generalized refref conditional and is a sublogic of the stit logic with refref equivalence, a syntactical condition of uncompactness that covers infinitely many stit logics. This result is established through the uncompactness of every stit logic whose semantic structures contain no chain of busy choice sequences with cardinality n, where n is any natural number >0. The basic idea in the proof is to apply the notion of companions to stit sentences in finding busy choice sequences in structures, and to make use of a relation between chains of busy choice sequences and generalized refref conditionals in connecting the two conditions of uncompactness mentioned above.

1 Introduction Modal logic of agency has a long tradition which has been represented by many philosophers and logicians in this century. ${ }^{1}$ Following this tradition, several theories of agency have been proposed by von Kutschera, Horty, Belnap, and Perloff in a series of articles such as [26], 13], 16], (5], (6], and [7]. These theories are now often referred to as "stit theories." They start with "stit sentences" such as $[\alpha$ stit: $A]$ (read " α sees to it that A," where α is an agent term and A is any sentence) whose semantic interpretation, based on the branching time theory proposed by Prior [21] and Thomason [24], is roughly that A is guaranteed true due to a choice made by α. If, in this context, the moment at which [α stit: A] is evaluated is the same moment at which α makes the choice, the result theory is called the deliberative stit, or dstit. If the moment at which $[\alpha$ stit: $A]$ is evaluated is properly later than the moment at which α makes the choice, the result theory is called the achievement stit, or astit. Two close relatives of these theories are sometimes called bstit and cstit, where b refers to Brown 9 and c to Chellas (10 and [11). ${ }^{2}$ Conceptual or technical discussions on astit, bstit, cstit, or dstit (including combinations of stit with other branches of philosophical logic) can be found, in addition to those mentioned above, in Bartha [1], Belnap and Bartha [4], Horty ([14] and [15]), von Kutschera [27], and
$\mathrm{Xu} \sqrt[31]{ }$ and 34 (dstit), and Belnap (22 and 3) and Perloff (19$]$ and 207) (astit). The present paper focuses on astit theory. From now on, we use stit for astit.

The main purpose of this paper is to prove that for each stit logic L ,
(1) L is uncompact if L contains a "generalized refref conditional" and is a sublogic of the stit logic with "refref equivalence" (presented in Xu 29]);
(2) L is uncompact if the class of all L-structures includes all finite structures and, for some $n \geqslant 0$, includes no structure containing a chain C of "busy choice sequences" with $|\mathrm{C}|>n$, where $|\mathrm{C}|$ is the cardinality of C .
Some explanations of the terms used in (1) and (2) seem necessary. "Generalized refref conditionals" are those sentences that indicate, say, doing implies (or is implied by) refraining from refraining, refraining implies (or is implied by) refraining from refraining from refraining, and so on, each of which amounts to a postulate concerning a certain relation between modes of actions/inactions. A "busy choice sequence" is like a "super task" that indicates a situation in which an agent has infinitely many choice points within a finite time. This notion of busy choice sequences, introduced in Belnap 22 and discussed in Belnap and Perloff [6] and Xu (29], 30], and [33), is central to a study of distinct modes of actions/inactions in stit theory. For instance, that there is no busy choice sequence is equivalent to that doing implies (or is implied by, or is equivalent to) refraining from refraining from doing, and hence there are only eight distinct modes of actions/inactions when there is no busy choice sequence. ${ }^{3}$ Our study of compactness of the stit theories amounts to a study that answers the following questions (and incidentally, the answers are all negative).
(a) When doing is taken to imply (or to be implied by, or to be equivalent to) refraining from refraining, does a sentence following from a set of premises follow from finitely many of them?
(b) When we postulate that there is no busy choice sequence, does a sentence following from a set of premises follow from finitely many of them?
(c) When refraining is taken to imply (or to be implied by, or to be equivalent to) refraining from refraining from refraining, does a sentence following from a set of premises follow from finitely many of them?
(d) When we postulate that there is no chain C of busy choice sequences with $|C|>1$, does a sentence following from a set of premises follow from finitely many of them?
(e) ...

Note that there are infinitely many stit logics satisfying the antecedent of (1) as well as that of (2). Note also that to establish (1), (2) alone is not enough. We need to show that
(3) each stit logic satisfying the antecedent of (1) satisfies that of (2).

Note, finally, that (1) provides a sufficient syntactical condition, whereas (2) provides a sufficient semantic condition, of uncompactness. We establish (1) through (2), and establish (2) through the use of "companions to stit sentences" applied in Xu (29], [32], [34], and [35]), though the reader's familiarity with that notion is not presupposed. The notion of companions to stit sentences is a basic technical notion introduced to obtain syntactical characterizations of astit and dstit logics. In this paper, for
the first time, we apply this notion in the context of chains of busy choice sequences to obtain the uncompactness results.

Uncompactness results in nonclassical logic are familiar phenomena. In modal logic, for example, KM, KW, and KW. 3 are known to be uncompact (see Wang [28] and Hughes and Cresswell $18{ }^{4}$ and 17); and in tense logic, the U, S-tense logic over integer time is an example of uncompact logics (see Reynolds [22]). There are, nevertheless, many modal logics and tense logics that are known to be compact, much more than those that are known to be uncompact. In contrast to this, only two astit logics are known to be compact-one is the minimal $\operatorname{logic} \mathrm{L}_{\text {min }}$, with a single agent, characterized by the class of all semantic structures, and the other is the largest consistent stit logic $\mathrm{L}_{\text {max }}$, with a single agent, characterized by the class of all structures containing no choice points (see [35] for details). ${ }^{5}$ This suggests that in the area of astit, unlike the area of modal logic or tense logic, or even that of dstit (see [31), compactness might not be a common phenomenon.

Section 2 presents basic stit syntactical as well as semantic notions and defines other preliminary notions such as generalized refref conditionals and busy choice sequences. Section 3 proves (3), and Section 4 establishes both (1) and (2) above. And finally, Section 5 presents some remarks on our uncompactness results.

2 Preliminaries Although our results concerning "generalized refref conditionals" and uncompactness hold for stit theories with multiple agents, the formal language used in this paper contains only a single non-truth-functional operator [α stit: $]$ in addition to denumerably many propositional variables and the truthfunctional operators \sim and \wedge. Formulas are defined as usual, except that $[\alpha s t i t: A]$ is a formula whenever A is. We will use A, B, C, and so on, to range over formulas, and use Φ, Ψ, and so on, to range over sets of formulas. Ordinary truthfunctional operators such as \vee, \rightarrow, and \longleftrightarrow, and propositional constants \top and \perp are introduced as abbreviations. We will use $[\alpha] A$ as an abbreviation of $[\alpha$ stit: $A]$, and use A^{α} as an abbreviation of $A \wedge \sim[\alpha] A$.

Let A be any formula. A-refraining formulas (with respect to α) is defined as follows:
(i) $[\alpha] A$ is an A-refraining formula (with respect to α);
(ii) if B is an A-refraining formula (with respect to α), so is $[\alpha] \sim B$.

For each A-refraining formula B, the A-refraining degree of B, written $\operatorname{Rdg}^{A}(B)$, is defined in a parallel way:
(i) $\operatorname{Rdg}^{A}([\alpha] A)=0$;
(ii) if B is an A-refraining formula and $\operatorname{Rdg}^{A}(B)=n, \operatorname{Rdg}^{A}([\alpha] \sim B)=n+1$.

Let us fix a propositional variable q. The q-refref equivalence (refref equivalence for short) is the formula $[\alpha] q \longleftrightarrow[\alpha] \sim[\alpha] \sim[\alpha] q$. A $(q-)$ refref conditional is either $[\alpha] q \rightarrow[\alpha] \sim[\alpha] \sim[\alpha] q$ or $[\alpha] \sim[\alpha] \sim[\alpha] q \rightarrow[\alpha] q$. A generalized (q-)refref conditional is any formula of the form $A \rightarrow[\alpha] \sim[\alpha] \sim A$ or $[\alpha] \sim[\alpha] \sim A \rightarrow A$, where A is a q-refraining formula. In this context, if $\operatorname{Rdg}^{q}(A)=n$, we call $A \rightarrow[\alpha] \sim[\alpha] \sim A$ and $[\alpha] \sim[\alpha] \sim A \rightarrow A$ generalized refref conditionals with degree n. Clearly, a refref conditional is a generalized refref conditional with degree 0 .

Based on branching time theory proposed by Prior and Thomason (see 21, [24], and [25]), a semantic structure for astit (briefly, a structure) is any quintuple $\mathfrak{F}=\langle T, \leqslant$, Instant, Agent, Choice \rangle satisfying the following postulates: $\langle T, \leqslant\rangle$ is a tree-like frame, that is, T is a nonempty set, whose elements w, m, and so on, are called moments, and \leqslant is a partial order on T subject to historical connection, $\forall m \forall m^{\prime} \exists w\left(w \leqslant m \wedge w \leqslant m^{\prime}\right)$, and no downward branching, $\forall m \forall w \forall w^{\prime}(w \leqslant m \wedge$ $\left.w^{\prime} \leqslant m \rightarrow w \leqslant w^{\prime} \vee w^{\prime} \leqslant w\right)$. We use $w<m$ for $w \leqslant m$ and $w \neq m$. A maximal chain h of moments in T (or a branch of the tree) is called a history, representing a possible course of history. We use H, H^{\prime} and so on, to range over sets of histories, and for each $w \in T$, let $H_{(w)}=\{h: w \in h\}$. Two histories h and h^{\prime} are undivided at w, written $h \equiv_{w} h^{\prime}$, if and only if $\exists w^{\prime}\left(w<w^{\prime} \wedge w^{\prime} \in h \cap h^{\prime}\right)$. Instant, whose elements i, i^{\prime}, and so on, are called instants, is a partition of T satisfying unique intersection, $\forall i \forall h \exists!m(\{m\}=i \cap h)$, and order preservation, $\forall i \forall i^{\prime} \forall h \forall h^{\prime}\left(m_{(i, h)} \leqslant m_{\left(i^{\prime}, h\right)} \longleftrightarrow\right.$ $\left.m_{\left(i, h^{\prime}\right)} \leqslant m_{\left(i^{\prime}, h^{\prime}\right)}\right)$ where $\left\{m_{(i, h)}\right\}=i \cap h$, and so on. We define $i_{(m)}$ to be the instant to which m belongs, and $w<i$ if and only if $\exists m(m \in i \wedge w<m)$. Provided $w<i$, we use $\left.i\right|_{>w}$ for $\{m: m \in i \wedge w<m\}$. Agent is a nonempty set whose elements a, b, and so on, are called agents. Choice is a function on Agent $\times T$ such that for each $a \in$ Agent and each $w \in T$, Choice (a, w) is a partition of $H_{(w)}$. Elements of Choice (a, w) are called possible choices for a at $w . h$ and h^{\prime} are choice equivalent for a at w, written $h \equiv_{w}^{a} h^{\prime}$, if and only if $\exists H\left(H \in \operatorname{Choice}(a, w) \wedge h, h^{\prime} \in H\right)$. Provided $m,\left.m^{\prime} \in i\right|_{>w}, m$ and m^{\prime} are choice equivalent for a at w, written $m \equiv_{w}^{a} m^{\prime}$, if and only if $\exists h \exists h^{\prime}\left(h \equiv{ }_{w}^{a} h^{\prime} \wedge\{m\}=i \cap h \wedge\left\{m^{\prime}\right\}=i \cap h^{\prime}\right)$. The function Choice is subject to the conditions no choice between undivided histories, $\forall h \forall h^{\prime} \forall a \forall w\left(h \equiv{ }_{w} h^{\prime} \rightarrow h \equiv_{w}^{a} h^{\prime}\right)$, and independence of agents: for each $w \in T$, and for each function s_{w} on Agent such that $s_{w}(a) \in \operatorname{Choice}(a, w)$ for all $a \in \operatorname{Agent}, \bigcap_{a \in \operatorname{Agent}} s_{w}(a) \neq \varnothing$. An agent a has vacuous choice at w if and only if $\operatorname{Choice}(a, w)=\left\{H_{(w)}\right\}$.

The following fact, which is a consequence of no choice between undivided histories, is established as $\S 1.2$ in Xu 30 .

Fact 2.1 Let \mathfrak{F} be any structure in which $w^{\prime}<w<m \in i$ and $\left.m^{\prime} \in i\right|_{>w}$. Then for every agent $a, m^{\prime} \equiv{ }_{w^{\prime}}^{a}$ m. And in particular, if $w^{\prime} \leqslant w$ and $m^{\prime} \equiv{ }_{w}^{a} m$, then $m^{\prime} \equiv_{w^{\prime}}^{a} m$.
A model \mathfrak{M} on \mathfrak{F} is a pair $\langle\mathfrak{F}, V\rangle$, where $\mathfrak{F}=\langle T, \leqslant$, Instant, Agent, Choice \rangle is a structure, and V is a valuation assigning to each agent term α an agent $V(\alpha)=\bar{\alpha} \in$ Agent, ${ }^{6}$ and to each propositional variable a subset of $\{\langle m, h\rangle: m \in h\}$. That a formula A is true in \mathfrak{M} at a moment/history pair $\langle m, h\rangle$ with $m \in h$, written $\mathfrak{M} \models_{m / h} A$, is defined recursively as follows, where $i=i_{(m)}$ and q is any propositional variable:

$$
\begin{array}{lll}
\mathfrak{M} \models_{m / h} q & \text { iff } & \langle m, h\rangle \in V(q) ; \\
\mathfrak{M} \models_{m / h} \sim A & \text { iff } & \mathfrak{M} \not \models_{m / h} A\left(\operatorname{not} \mathfrak{M}=_{m / h} A\right) ; \\
\mathfrak{M} \models_{m / h} A \wedge B & \text { iff } & \mathfrak{M} \models_{m / h} A \text { and } \mathfrak{M}=_{m / h} B ; \\
\mathfrak{M} \models_{m / h}[\alpha] A & \text { iff } & \text { there is a } w<m \text { and an }\left.m^{\prime \prime} \in i\right|_{>w} \text { such that }
\end{array}
$$

(i) $\forall m^{\prime} \forall h^{\prime}\left(m^{\prime} \equiv_{w}^{\bar{\alpha}} m \wedge m^{\prime} \in h^{\prime} \rightarrow \mathfrak{M} \models_{m^{\prime} / h^{\prime}} A\right)$,
(ii) $\exists h^{\prime \prime}\left(m^{\prime \prime} \in h^{\prime \prime} \wedge \mathfrak{M} \not \models_{m^{\prime \prime} / h^{\prime \prime}} A\right)$.

With reference to the clause defining $\mathfrak{M} \models_{m / h}[\alpha] A$ above, we call (i) the positive condition, (ii) the negative condition, w a witness to $[\alpha] A$ at m, and $m^{\prime \prime}$ a counter. A is settled true at m in \mathfrak{M}, written $\mathfrak{M} \models_{m} A$, if and only if $\mathfrak{M} \models_{m / h} A$ for all h in \mathfrak{M}
with $m \in h$. For each set Φ of formulas, and for each model $\mathfrak{M}, \mathfrak{M} \models_{m / h} \Phi$ if and only if $\mathfrak{M} \models_{m / h} A$ for all $A \in \Phi$, and $\mathfrak{M} \models_{m} \Phi$ if and only if $\mathfrak{M} \models_{m / h} \Phi$ for every h in \mathfrak{M} with $m \in h . A$ (or Φ) has a model \mathfrak{M} if $\mathfrak{M} \models_{m / h} A\left(\mathfrak{M} \models_{m / h} \Phi\right)$ for some m, h in \mathfrak{M} with $m \in h . \mathfrak{F}$ is a structure of A, or simply an A-structure (a structure of Φ, or a Φ-structure), written $\mathfrak{F} \models A(\mathfrak{F} \models \Phi)$, if and only if $\mathfrak{M} \models_{m} A\left(\mathfrak{M} \models_{m} \Phi\right)$ for every model \mathfrak{M} on \mathfrak{F} and every m in \mathfrak{M}. If $\mathfrak{F} \models A$, we also say that A is valid in \mathfrak{F}.

The following are easily provable consequences of our semantic definitions and are useful for our upcoming discussions.

Fact 2.2 Let $\mathfrak{M}=\langle T, \leqslant$, Instant,Agent, Choice, $V\rangle$ be any model. Then the following hold:

1. if $\mathfrak{M} \models_{m / h}[\alpha] A, \mathfrak{M} \models_{m}[\alpha] A$;
2. if $\mathfrak{M} \models_{m}[\alpha] A$, and if w is a witness to $[\alpha] A$ at m, then w is the unique witness to $[\alpha] A$ at m; ${ }^{7}$
3. if $\mathfrak{M} \models_{m}[\alpha] A$ with witness w, Choice $(\bar{\alpha}, w) \neq\left\{H_{(w)}\right\}$.

It has been shown in [29] and [32] that each of the following A1 - A8 is valid in every structure, where A, B, C are any formulas.

```
A1 \(\sim[\alpha] \top\)
A2 \(\quad[\alpha] A \rightarrow A\)
A3 \([\alpha] A \rightarrow[\alpha][\alpha] A\)
A4 \(\quad[\alpha] A \wedge[\alpha] B \rightarrow[\alpha](A \wedge B)\)
A5 \(\quad[\alpha]([\alpha] A \wedge B) \rightarrow[\alpha](A \wedge B)\)
A6 \(\quad[\alpha](A \wedge B) \wedge \sim[\alpha] B \rightarrow[\alpha]\left(A \wedge B^{\alpha}\right)\)
A7 \(\quad[\alpha]\left(\sim[\alpha](A \wedge B) \wedge B^{\alpha}\right) \longleftrightarrow[\alpha]\left(\sim[\alpha] A \wedge B^{\alpha}\right)\)
A8 \(\quad[\alpha] A \longleftrightarrow[\alpha]\left(A \wedge B^{\alpha}\right) \vee[\alpha]\left(A \wedge \sim[\alpha]\left(A \wedge B^{\alpha}\right)\right)\)
```

A stit logic with a single agent (stit logic for short) is a set L of formulas that contains all instances of truth-functional tautologies and all instances of A1-A8, and is closed under substitution, modus ponens, and RE (i.e., $A \longleftrightarrow B \in \mathrm{~L}$ only if $[\alpha] A \longleftrightarrow[\alpha] B \in \mathrm{~L})$. For each stit logic L , let us use $\mathfrak{C}(\mathrm{L})$ for the class of all L structures, that is, $\mathfrak{C}(L)=\{\mathfrak{F}: \mathfrak{F} \models L\}$. For the smallest stit logic $L_{\text {min }}=\bigcap\{L: L$ is a stit $\operatorname{logic}\}, \mathfrak{C}\left(\mathrm{L}_{\text {min }}\right)$ is the class of all structures (see [35]). ${ }^{8}$ The smallest stit logic $\mathrm{L}_{\text {refref }}$ containing refref equivalence is referred to as the stit logic with refref equivalence, and is shown in 29] and 30] to be characterized by the class of all structures containing no "busy choice sequences" (to be defined below) and $\mathfrak{C}\left(\mathrm{L}_{\text {refref }}\right)=\{\mathfrak{F}: \mathfrak{F}$ contains no busy choice sequences $\}.{ }^{9}$ The largest consistent stit $\operatorname{logic} L_{\text {max }}=\bigcup\{L: L$ is a consistent stit logic\} is characterized by the class of all frames containing no choice points, that is, frames containing no moments at which an agent has nonvacuous choice (see (35]).

Let \mathfrak{C} be any class of structures. A formula A follows from a set Φ of formulas with respect to \mathfrak{C}, written $\Phi \models_{\mathfrak{C}} A$, if and only if for every $\mathfrak{F} \in \mathfrak{C}$, every \mathfrak{M} on \mathfrak{F}, and every m, h in \mathfrak{M} with $m \in h, \mathfrak{M} \models_{m / h} \Phi$ only if $\mathfrak{M} \models_{m / h} A$. For any \mathfrak{C}, $\models_{\mathfrak{C}}$ is compact if and only if whenever $\Phi \models_{\mathfrak{C}} A, \Psi \models_{\mathfrak{C}} A$ for some finite subset Ψ of Φ, or equivalently, for every set Φ of formulas, Φ has a model \mathfrak{M} on an $\mathfrak{F} \in \mathfrak{C}$ if each finite subset Ψ of Φ has a model \mathfrak{M}^{\prime} on an $\mathfrak{F}^{\prime} \in \mathfrak{C}$. Let L be any stit logic. We say that L is
compact if $\models_{\mathfrak{C}(L)}$ is compact. The compactness of $\mathrm{L}_{\text {min }}$ and $\mathrm{L}_{\text {max }}$ are shown in 35]. We show in this paper that the following holds for every stit logic L .
(4) L is uncompact if $L \subseteq L_{\text {refref }}$ and L contains a generalized refref conditional.

In particular, $\mathrm{L}_{\text {refref }}$ is uncompact since $\mathrm{L}_{\text {refref }}$ contains $[\alpha] q \rightarrow[\alpha] \sim[\alpha] \sim[\alpha] q$ and $[\alpha] \sim[\alpha] \sim[\alpha] q \rightarrow[\alpha] q$.

As indicated at the beginning of this paper, we also want to establish a sufficient semantic condition of uncompactness. To that end, we need the notion of busy choice sequences. Let $\mathfrak{F}=\langle T, \leqslant$, Agent, Instant, Choice \rangle be any structure with $a \in$ Agent. A busy a-choice sequence in \mathfrak{F} (or in \mathfrak{M} on \mathfrak{F}) is an upper- and lower-bounded infinite chain of " a-choice points" (moments at which a has nonvacuous choice), as discussed in 2 and 6. For our purpose, we define a busy a-choice sequence in \mathfrak{F} (or in \mathfrak{M} on \mathfrak{F}) as an upper- and lower-bounded chain of a-choice points that does not terminate in the upward direction, that is, a nonempty chain BC of moments such that
(i) $\exists w \exists m \forall w^{\prime}\left(w^{\prime} \in \mathrm{BC} \rightarrow w \leqslant w^{\prime}<m\right)$,
(ii) $\forall w\left(w \in \mathrm{BC} \rightarrow \operatorname{Choice}(a, w) \neq\left\{H_{(w)}\right\}\right)$,
(iii) $\forall w\left(w \in \mathrm{BC} \rightarrow \exists w^{\prime}\left(w^{\prime} \in \mathrm{BC} \wedge w<w^{\prime}\right)\right)$.

We will fix a single agent for our discussion, and therefore we will speak of "busy choice sequences" rather than "busy a-choice sequences." We will use $\mathrm{BC}, \mathrm{BC}^{\prime}$, and so on, to range over busy choice sequences. Let $\mathrm{BC}<\mathrm{BC}^{\prime}$ if and only if $\forall w \forall w^{\prime}(w \in$ $\mathrm{BC} \wedge w^{\prime} \in \mathrm{BC}^{\prime} \rightarrow w<w^{\prime}$). A chain of busy choice sequences in \mathfrak{F} (or in \mathfrak{M}) is defined in an obvious way. Let us use $\mathrm{C}, \mathrm{C}^{\prime}$, and so on, to range over chains of busy choice sequences. We use $w \leqslant \mathrm{BC}$ for $\forall w^{\prime}\left(w^{\prime} \in \mathrm{BC} \rightarrow w \leqslant w^{\prime}\right)$, $\mathrm{BC}<i$ for $\forall w(w \in$ $\mathrm{BC} \rightarrow w<i), w \leqslant \mathrm{C}$ for $\forall \mathrm{BC}(\mathrm{BC} \in \mathrm{C} \rightarrow w \leqslant \mathrm{BC}), \mathrm{C}<i$ for $\forall \mathrm{BC}(\mathrm{BC} \in \mathrm{C} \rightarrow \mathrm{BC}<$ i), and $\mathrm{BC}<\mathrm{C}$ for $\forall \mathrm{BC}^{\prime}\left(\mathrm{BC}^{\prime} \in \mathrm{C} \rightarrow \mathrm{BC}<\mathrm{BC}^{\prime}\right)$. $w<\mathrm{BC}, w<\mathrm{C}, \mathrm{BC}<w$, and $\mathrm{C}<w$, and so on, are defined in an obvious way. A past in a structure (or a model) is a nonempty set p of moments that is upper-bounded and closed downward. Let p be any past. $p<w$ if and only if $\forall w^{\prime}\left(w^{\prime} \in p \rightarrow w^{\prime}<w\right), p<i$ if and only if $p<m$ for some $m \in i$. We use $\left.i\right|_{>p}$ for $\{m: m \in i \wedge p<m\}$ (provided $p<i$), and use, for each $B C, p_{\mathrm{BC}}$ for the smallest past including BC , that is, $p_{\mathrm{BC}}=\left\{w: \exists w^{\prime}\left(w^{\prime} \in B C \wedge\right.\right.$ $\left.\left.w \leqslant w^{\prime}\right)\right\}$. For each $n \geqslant 0,\|\mathfrak{F}\|=n$ if and only if there is a chain C of busy choice sequences in \mathfrak{F} such that $|\mathrm{C}|=n$ and there is no chain C^{\prime} of busy choice sequences in \mathfrak{F} such that $\left|\mathrm{C}^{\prime}\right|>n .{ }^{10}$

It has been shown in [2], 29], and 30] that the following hold for every structure \mathfrak{F}, where q is any propositional variable.

$$
\begin{array}{lll}
\|\mathfrak{F}\|=0 & \text { iff } & \mathfrak{F} \models[\alpha] q \longleftrightarrow[\alpha] \sim[\alpha] \sim[\alpha] q \tag{5}\\
& \text { iff } & \mathfrak{F} \models[\alpha] q \rightarrow[\alpha] \sim[\alpha] \sim[\alpha] q \\
& \text { iff } & \mathfrak{F} \models[\alpha] \sim[\alpha] \sim[\alpha] q \rightarrow[\alpha] q .
\end{array}
$$

Let $\mathfrak{F}=\langle T, \leqslant$, Instant, Agent, Choice \rangle be any structure. We say that \mathfrak{F} is a finite structure if T is finite. A model \mathfrak{M} on \mathfrak{F} is a finite model if \mathfrak{F} is a finite structure. Let \mathfrak{C}_{f} be the class of all finite structures, and for each $n \geqslant 0$, let $\mathfrak{C}_{n}=\{\mathfrak{F}:\|\mathfrak{F}\| \leqslant n\}$. Obviously, $\mathfrak{C}_{f} \subseteq \mathfrak{C}_{0}$. In addition to establishing (4) above, we will establish the following for every stit logic L .
(6) L is uncompact if $\mathfrak{C}_{f} \subseteq \mathfrak{C}(\mathrm{~L}) \subseteq \mathfrak{C}_{n}$ for some $n \geqslant 0$.

Although (6) may not be equivalent to (4) above, ${ }^{11}$ (6) does guarantee (4) if we can show that the following hold for every stit logic L .
(7) for each $n \geqslant 0, \mathfrak{C}(\mathrm{~L}) \subseteq \mathfrak{C}_{n}$ if L contains a refref generalized conditional with degree n;
and
(8) $\mathfrak{C}_{f} \subseteq \mathfrak{C}(\mathrm{~L})$ if $\mathrm{L} \subseteq \mathrm{L}_{\text {refref }}$.

But (8) is trivial, for by (5), $\mathfrak{C}_{f} \subseteq \mathfrak{C}_{0}=\mathfrak{C}\left(\mathrm{L}_{\text {refref }}\right)$. We thus only need to show (6) and (7) in order to establish (4). In Section 3 ve prove that a generalized refref conditional with degree $n \geqslant 0$ is valid in a structure \mathfrak{F} only if $\|\mathfrak{F}\| \leqslant n$, from which (7) follows. Then in Section 4 we prove (6) (Theorem 4.6 and then (4) (Theorem4.7).

3 Busy choice sequences and generalized refref conditionals In this section, we prove that each chain C of busy choice sequences with $|C| \geqslant n+1$ will suffice to invalidate all generalized refref conditionals $[\alpha] \sim[\alpha] \sim A \rightarrow A$ and $A \rightarrow[\alpha] \sim[\alpha] \sim A$ with q-refraining formulas A such that $\operatorname{Rdg}^{q}(A) \leqslant n$, from which (7) above follows. The main lemma in this section is Lemma 3.7. Since we have only one agent term α, we will use $m^{\prime} \equiv_{w} m$ for $m^{\prime} \equiv_{w}^{\bar{\alpha}} m$. The fact below has been shown in 30 and is useful later.

Fact 3.1 Let \mathfrak{M} be any model in which $p<i$ and let A be any formula. Suppose that $\mathfrak{M} \models_{\left.i\right|_{>p}} A$, and that for every $w \in p$, there is a $w^{\prime} \in p$ such that $w<w^{\prime}$ and $\mathfrak{M} \not \vDash_{\left.i\right|_{>w^{\prime}}}$ A. Then $\mathfrak{M} \models_{\left.i\right|_{>p}} \sim[\alpha] A$.
The following has been established as $\S 2.3$ in [30 which constitutes the base step of the induction in our proof of Lemma 3.7.

Fact 3.2 Suppose that \mathfrak{F} is any structure in which there is a busy choice sequence $\mathrm{BC}<m^{*} \in i$. Then there is a model \mathfrak{M} on \mathfrak{F} such that $\mathfrak{M} \models_{i} \sim[\alpha] \sim[\alpha] q$, and $\mathfrak{M} \not \models_{i} B$ and $\mathfrak{M} \not \models_{i} \sim B$ for every subformula B of $[\alpha] q$.
Our proof of the main result in this section depends on a certain relation between structures and their substructures and between models and their submodels. A substructure of a structure $\mathfrak{F}=\langle T, \leqslant$, Instant, Agent, Choice \rangle is any structure $\mathfrak{F}^{\prime}=$ $\left\langle T^{\prime}, \leqslant^{\prime}\right.$, Instant t^{\prime}, Agent ${ }^{\prime}$, Choice \rangle satisfying the conditions $T^{\prime} \subseteq T, \forall w \forall w^{\prime}\left(w \in T^{\prime} \wedge\right.$ $\left.w^{\prime} \in T \wedge w \leqslant w^{\prime} \rightarrow w^{\prime} \in T^{\prime}\right), \leqslant^{\prime}=\leqslant \cap\left(T^{\prime} \times T^{\prime}\right)$, Instant $t^{\prime}=\left\{i^{\prime}: \exists i\left(i \in\right.\right.$ Instant $\wedge i^{\prime}=$ $\left.\left.i \cap T^{\prime} \neq \varnothing\right)\right\}$, Agent $t^{\prime}=$ Agent, and for every $a \in$ Agent $^{\prime}$ and $w \in T^{\prime}$,

$$
\begin{aligned}
\text { Choice }^{\prime}(a, w) & =\{f(H): H \in \text { Choice }(a, w)\} \\
\text { where } f(H) & =\left\{h^{\prime}: \exists h\left(h \in H \wedge h^{\prime}=h \cap T^{\prime}\right)\right\} .
\end{aligned}
$$

Note that if \mathfrak{F}^{\prime} is a substructure of \mathfrak{F}, then for any $a \in$ Agent $^{\prime}=$ Agent and any moment $w \in T^{\prime}, m^{\prime} \equiv_{w}^{a} m$ if and only if $m^{\prime} \equiv^{\prime a}{ }_{w} m$ for all $m, m^{\prime} \in T$, where $m^{\prime} \equiv^{\prime a}{ }_{w} m$ means that in $\mathfrak{F}^{\prime}, m^{\prime}$ and m are choice equivalent for a at w.

A model $\mathfrak{M}^{\prime}=\left\langle\mathfrak{F}^{\prime}, V^{\prime}\right\rangle$ is a submodel of a model $\mathfrak{M}=\langle\mathfrak{F}, V\rangle$ with respect to an instant i^{\prime} in \mathfrak{M}^{\prime} if \mathfrak{F}^{\prime} is a substructure of \mathfrak{F} and for each agent term $\alpha, V^{\prime}(\alpha)=$ $V(\alpha)$; and for each $m \in i^{\prime}$, each h in \mathfrak{F} with $m \in h$, and each propositional variable $q,\left\langle m, h^{\prime}\right\rangle \in V^{\prime}(q)$ if and only if $\langle m, h\rangle \in V(q)$, where h^{\prime} is the history in \mathfrak{F}^{\prime} such that $h^{\prime}=h \cap T^{\prime}$. The following has been obtained as $\S 2.5$ in [30].

Fact 3.3 Let $\mathfrak{M}^{\prime}=\left\langle T^{\prime},<^{\prime}\right.$, Instant ${ }^{\prime}$, Agent ${ }^{\prime}$, Choice \rangle be a submodel of \mathfrak{M} with respect to an instant i^{\prime} in \mathfrak{M}^{\prime}, and let Γ be any set offormulas closed under subformulas. Suppose that for each agent term α and each formula $A,[\alpha] A \in \Gamma$ only if $\mathfrak{M}^{\prime} \not \vDash_{i^{\prime}} A$. Then for every formula $A \in \Gamma$, every $m \in i^{\prime}$, and every h in \mathfrak{M} with $m \in h, \mathfrak{M} \models_{m / h} A$ if and only if $\mathfrak{M}^{\prime}=_{m / h^{\prime}} A$, where h^{\prime} is in \mathfrak{M}^{\prime} with $h^{\prime}=h \cap T^{\prime}$.

Let \mathfrak{F} be any structure, and let T^{\prime} be a subset of T and $\leqslant^{\prime}=\leqslant \cap\left(T^{\prime} \times T^{\prime}\right)$ such that historical connection and closed-upwardness are satisfied. Then T^{\prime} determines a unique substructure \mathfrak{F}^{\prime} of \mathfrak{F}. Suppose that c is a nonempty chain in T. We use T_{c} for $\left\{w: w \in T \wedge \exists w^{\prime}\left(w^{\prime} \in c \wedge w^{\prime} \leqslant w\right)\right.$. It is easy to see that T_{c} determines a unique substructure \mathfrak{F}^{\prime} of \mathfrak{F} such that $T^{\prime}=T_{c}$. In this case, we use \mathfrak{F}_{c} for \mathfrak{F}^{\prime}. Similarly, given an instant i in \mathfrak{F}, we use i_{c} for $i \cap T_{c}$, and use \mathfrak{M}_{c} for the submodel $\mathfrak{M}^{\prime}=\left\langle\mathfrak{F}_{c}, V_{c}\right\rangle$ of \mathfrak{M} with respect to i_{c} (ignoring the values of formulas at any m / h with $m \notin i$). It is easy to see by no downward branching that if $p<c$ (i.e., $\forall w(w \in c \rightarrow p<w)$), $i_{c}=\left.\left.i\right|_{>p} \cap T_{c} \subseteq i\right|_{>p}$.

In the induction step of our proof of the main lemma, there are three respects we need to consider. Given that $|\mathrm{C}| \geqslant n, \mathrm{BC}<\mathrm{C}<m^{*} \in i$ and $p=p_{\mathrm{BC}}$. It is easy to see that $i=\left.i\right|_{>p} \cup s \cup s^{\prime}$ and that $\left.i\right|_{>p}, s$ and s^{\prime} are mutually disjoint, where $s=\{m: m \in$ $\left.i-\left.i\right|_{>p} \wedge \forall w\left(w \in p \wedge w<m \rightarrow m \equiv{ }_{w} m^{*}\right)\right\}$ and $s^{\prime}=\left\{m: m \in i-\left.i\right|_{>p} \wedge \exists w(w \in\right.$ $\left.\left.p \wedge w<m \wedge m \not \equiv_{w} m^{*}\right)\right\}$. In order to work out the desired values that formulas should have at moments in i, we will consider the desired values they have at moments in $\left.i\right|_{>p}, s$, and s^{\prime} separately. Lemma 3.4 handles the first, Lemma 3.5 the second, and Fact 3.6 the third.

Lemma 3.4 Let A be any formula in which the only agent term occurring is α, let \mathfrak{M} be any model in which $p<w^{*}<i$, and let $c=\left\{w: p<w \leqslant w^{*}\right\}, i_{c}=i \cap T_{c}$ and $s=\left\{m:\left.m \in i\right|_{>p}-i_{c} \wedge \forall m^{\prime} \forall w\left(m^{\prime} \in i_{c} \wedge w \in p \rightarrow m^{\prime} \equiv_{w} m\right)\right\}$. Suppose that (a) $\mathfrak{M} \not \vDash_{i_{c}} B$ for every subformula B of A, and (b) $\mathfrak{M} \models_{s} q$ or $\mathfrak{M} \models_{s} \sim q$ for each propositional variable q occurring in A. Then the following hold:
(i) $\mathfrak{M} \models_{s} B$ or $\mathfrak{M} \models_{s} \sim B$ for every subformula B of A;
(ii) $\mathfrak{M} \models_{s} \sim[\alpha] B$ for every subformula B of $A .{ }^{12}$

Proof: By induction on the construction of B : the base case for (i) is provided by (b). The induction steps for \sim and \wedge are straightforward. It is thus sufficient to suppose that (i) holds for B and show that (ii) holds for B. Note first that $\left.i_{c} \subseteq i\right|_{>p}$. Suppose for reductio that $\mathfrak{M} \models_{m}[\alpha] B$ for some $m \in s$ with witness w. Since $w<m$ and $\left.m \in i\right|_{>p}$, we have by no downward branching that either $w \in p$ or $p<w$.

Case $1(w \in p): \quad$ By definition of $s, m^{\prime} \equiv_{w} m$ for all $m^{\prime} \in i_{c}$, and hence $\mathfrak{M} \models_{i_{c}} B$ since $\mathfrak{M} \models_{m}[\alpha] B$, contrary to (a).

Case $2(p<w): \quad$ Consider any counter m^{*} to $[\alpha] B$ at m. Then
(9) $\mathfrak{M} \not{\neq m^{*}} B$.

We show as follows that $m^{*} \in s$. First, since $p<w<m^{*},\left.m^{*} \in i\right|_{>p}$. Next, suppose for reductio that $m^{*} \in i_{c}$. Since $p<w<m^{*}$ and since $w_{1}<m^{*}$ for some $w_{1} \in c$, either $w \in c$ or $c<w$ by no downward branching. Hence in either case, $w \in T_{c}$. It follows that $m \in i_{c}$ since $w<\left.m \in i\right|_{>p}$ and $i_{c}=\left.i\right|_{>p} \cap T_{c}$, contrary to our assumption
that $m \in s$. Hence $m^{*} \notin i_{c}$. Finally, consider any $m^{\prime} \in i_{c}$ and any $w^{\prime} \in p$. Since $m \equiv_{w^{\prime}} m^{*}$ by Fact 2.1 and the fact that $w^{\prime} \in p<w<m^{*}$, it is then clear that if $m^{*} \not \equiv_{w^{\prime}}$ m^{\prime}, we would have $m \not \equiv_{w^{\prime}} m^{\prime}$, contrary to our assumption that $m \in s$. It follows that $\forall m^{\prime} \forall w^{\prime}\left(m^{\prime} \in i_{c} \wedge w^{\prime} \in p \rightarrow m^{\prime} \equiv_{w^{\prime}} m^{*}\right)$ holds, and hence $m^{*} \in s$. But we know, by (i) and the assumption that $\mathfrak{M} \models_{m}[\alpha] B$ with $m \in s$, that $\mathfrak{M} \models_{s} B$, and hence $\mathfrak{M} \models_{m^{*}} B$, contrary to (9).

Since we have contradictions in both cases, it follows that our first assumption, that is, $\mathfrak{M} \models_{m}[\alpha] B$ for $m \in s$, must be false. Hence, (ii) must hold for B.

Lemma 3.5 Let A be any formula in which the only agent term occurring is α, let \mathfrak{M} be any model in which $p<m^{*} \in i$, and let $s=\left\{m: m \in i-\left.i\right|_{>p} \wedge \forall w(w \in p \wedge w<\right.$ $\left.\left.m \rightarrow m \equiv_{w} m^{*}\right)\right\}$. Suppose that for every propositional variable q occurring in A, either $\mathfrak{M} \models_{s} q$ or $\mathfrak{M} \models_{s} \sim q$, and
(10) for each $w \in p$, there is a $w^{\prime} \in p$ such that $w<w^{\prime}$ and $\mathfrak{M} \mid \forall_{\left.i\right|_{>w^{\prime}}} B$ for every subformula B of A.
Then the following hold:
(i) for every subformula B of A, either $\mathfrak{M} \models_{s} B$ or $\mathfrak{M} \models_{s} \sim B$;
(ii) for every subformula B of $A, \mathfrak{M} \models_{s} \sim[\alpha] B$.

Proof: Similar to our proof in Lemma 3.4 we suppose that (i) holds for B and prove that (ii) holds for B. Suppose for reductio that $\mathfrak{M} \models_{m}[\alpha] B$ for some $m \in s$ with witness w. There are two cases.

Case $1(w \in p)$: \quad Since $\left.m \notin i\right|_{>p}$, it is then clear that there is a $w^{\prime} \in p$ such that $w^{\prime} \nless m$. It follows from our case assumption that $w<w^{\prime}$, and hence by (10), there is an $\left.m^{\prime} \in i\right|_{>p}$ such that $w^{\prime}<m^{\prime}$ and $\mathfrak{M} \not \vDash_{m^{\prime}} B$. But Fact 2.1]implies that $m^{\prime} \equiv_{w} m^{*}$ and then, since $m \equiv_{w} m^{*}$ by definition of $s, m^{\prime} \equiv_{w} m$, and hence $\mathfrak{M} \models_{m^{\prime}} B$, a contradiction.

Case $2(w \notin p)$: Consider any counter $m^{\prime \prime}$ to $[\alpha] B$ at m. Then
(11) $\mathfrak{M} \not \vDash_{m^{\prime \prime}} B$.

We show as follows that $m^{\prime \prime} \in s$. First, since $w<m^{\prime \prime}$ and $w \notin p$, we have the following by no downward branching:
(12) for every $w^{\prime \prime} \in p$ with $w^{\prime \prime}<m^{\prime \prime}, w^{\prime \prime}<w$.

Then by Fact 2.1. for every $w^{\prime \prime} \in p$ with $w^{\prime \prime}<m^{\prime \prime}, m^{\prime \prime} \equiv_{w^{\prime \prime}} m$ since $w<m$ and $w<m^{\prime \prime}$, and hence, $m^{\prime \prime} \equiv_{w^{\prime \prime}} m^{*}$ since $m \equiv_{w^{\prime \prime}} m^{*}(m \in s)$. Next, if $\left.m^{\prime \prime} \in i\right|_{>p}$, we would have $p<m^{\prime \prime}$, and hence by (12), $p<w$, which implies $\left.m \in i\right|_{>p}$, contrary to our assumption that $m \in s$. Hence, $\left.m^{\prime \prime} \notin i\right|_{>p}$. It follows that $m^{\prime \prime} \in s$. But we know, by (i) and the fact that $\mathfrak{M} \models_{m}[\alpha] B$ with $m \in s$, that $\mathfrak{M} \models_{s} B$, and hence $\mathfrak{M} \models_{m^{\prime \prime}} B$, contrary to (11). From this reductio we conclude that $\mathfrak{M} \models_{s} \sim[\alpha] B$.

The following has been shown as $\S 4.4$ in Xu [33].
Fact 3.6 Let D be any formula, let A be any D-refraining formula, and let \mathfrak{M} be any model in which $p<m^{*} \in i$ and $s=\left\{m: m \in i-\left.i\right|_{>p} \wedge \exists w(w \in p \wedge w<m \wedge\right.$ $\left.m \not \equiv_{w} m^{*}\right\}$. Suppose that $\mathfrak{M} \not \vDash_{\left.i\right|_{>p}} C$ and $\mathfrak{M} \not \forall_{\left.i\right|_{>p}} \sim C$ for each subformula C of
A. Then, if $\mathfrak{M} \models_{s} D$ and $\operatorname{Rdg}^{D}(A)$ is odd, $\mathfrak{M} \models_{s}[\alpha] \sim A$; and if $\mathfrak{M} \models_{s} \sim D$ and $\operatorname{Rdg}^{D}(A)$ is even, $\mathfrak{M} \models_{s}[\alpha] \sim A$.

Now we are ready for the main lemma.
Lemma 3.7 Let \mathfrak{F} be any structure in which there is a chain C of busy choice sequences such that $|\mathrm{C}| \geqslant n+1$ and let A be a q-refraining formula such that $\operatorname{Rdg}^{q}(A)=n$. Then there is a model \mathfrak{M} on \mathfrak{F} such that for some i in $\mathfrak{M}, \mathfrak{M} \models_{i}$ $\sim[\alpha] \sim A$, and $\mathfrak{M} \not \models_{i} B$ and $\mathfrak{M} \nvdash_{i} \sim B$ for every subformula B of A.

Proof: Assume that $|\mathrm{C}|=n+1$ (or else select a subchain of C with cardinality $n+1$). By definitions of busy choice sequences and instants, there is an i in \mathfrak{F} such that $\mathrm{C}<i$. Our proof is by induction on n. Fact 3.2 has provided the base step for $n=0$. We assume that $n \geqslant 1$ and the lemma holds for $n-1$ and show that it holds for n. Since $|\mathrm{C}|=n+1$ and $\mathrm{C}<i$, there are $w^{*}, m^{*}, \mathrm{BC}$, and C_{1} such that $\mathrm{BC}<w^{*} \leqslant \mathrm{C}_{1}<m^{*} \in i,\{\mathrm{BC}\} \cup \mathrm{C}_{1}=\mathrm{C}$, and $\left|\mathrm{C}_{1}\right|=n$. Let $p=p_{\mathrm{BC}}$ and $c=\left\{w: p<w \leqslant w^{*}\right\}$. Then c is a nonempty chain and \mathfrak{F}_{c} is a substructure of \mathfrak{F}. It is easy to see that C_{1} is a chain of busy choice sequences in \mathfrak{F}_{c} and $\mathrm{C}_{1}<m^{*} \in i_{c}=i \cap T_{c}$. Setting $A=[\alpha] \sim B$ with B to be a q-refraining formula such that $\operatorname{Rgg}^{q}(B)=n-1$, we know by $\left|\mathrm{C}_{1}\right|=n$ and the induction hypothesis that there is a model \mathfrak{M}_{c} on \mathfrak{F}_{c} such that $\mathfrak{M}_{c} \models_{i_{c}} \sim[\alpha] \sim B$, and $\mathfrak{M}_{c} \not \models_{i_{c}} C$ and $\mathfrak{M}_{c} \not \vDash_{i_{c}} \sim C$ for every subformula C of B, and hence
(13) $\mathfrak{M}_{c} \models_{i_{c}} \sim[\alpha] \sim B$, and $\mathfrak{M}_{c} \not \models_{i_{c}} C$ and $\mathfrak{M}_{c} \not \vDash_{i_{c}} \sim C$ for every subformula C of $\sim B$.
We can define a model \mathfrak{M} on \mathfrak{F} in such a way that for each $m \in i$ and each h in \mathfrak{F} with $m \in h$, if $m \in i_{c},\langle m, h\rangle \in V(q)$ if and only if $\left\langle m, h^{\prime}\right\rangle \in V_{c}(q)$, where $h^{\prime}=h \cap T_{c}$; if $\left.m \in i\right|_{>p}-i_{c},\langle m, h\rangle \in V(q)$; and if $m \in i-\left.i\right|_{>p},\langle m, h\rangle \in V(q)$ if and only if $\operatorname{Rdg}^{q}(A)$ is even. Then by (13) and Fact 3.3 we have $\mathfrak{M} \models_{i_{c}} \sim[\alpha] \sim B$, and $\mathfrak{M} \nvdash_{i_{c}} C$ and $\mathfrak{M} \not \forall_{i_{c}} \sim C$ for every subformula C of $\sim B$. Let $s_{0}=\left.i\right|_{>p}-i_{c}$. Consider any $m \in$ $s_{0}\left(\left.\subseteq i\right|_{>p}\right)$, any $m^{\prime} \in i_{c}\left(\left.\subseteq i\right|_{>p}\right)$ and any $w \in p$. Since $p=p_{\mathrm{BC}}$, there is a $w^{\prime} \in p$ such that $w<w^{\prime}$, and hence, since $w^{\prime}<m$ and $w^{\prime}<m^{\prime}, m^{\prime} \equiv_{w} m$ by Fact 2.1. It follows that $s_{0}=\left\{m:\left.m \in i\right|_{>p}-i_{c} \wedge \forall m^{\prime} \forall w\left(m \in i_{c} \wedge w \in p \rightarrow m^{\prime} \equiv_{w} m\right)\right\}$. By definition of V and Lemma 3.4 (substituting $\sim B$ here for A there), we have $\mathfrak{M} \models_{s_{0}} \sim[\alpha] \sim B$. It follows from $\left.i\right|_{>p}=i_{c} \cup s_{0}$ that

$$
\begin{align*}
& \mathfrak{M} \models_{\left.i\right|_{>p}} \sim[\alpha] \sim B, \text { and } \mathfrak{M} \not \vDash_{i \mid>p} C \text { and } \mathfrak{M} \not \vDash_{i \mid>p} \sim C \text { for every subformula } \tag{14}\\
& C \text { of } \sim B .
\end{align*}
$$

Let $s=\left\{m: m \in i-\left.i\right|_{>p} \wedge \exists w\left(w \in p \wedge w<m \wedge m \not \equiv_{w} m^{*}\right)\right\}$ and $s^{\prime}=\left(i-\left.i\right|_{>p}\right)-$ $s^{\prime}=\left\{m: m \in i-\left.i\right|_{>p} \wedge \forall w\left(w \in p \wedge w<m \rightarrow m \equiv_{w} m^{*}\right)\right\}$. It is easy to see that $i=\left.i\right|_{>p} \cup s \cup s^{\prime}$. Since $\operatorname{Rdg}^{q}(A)$ is even if and only if $\operatorname{Rdg}^{q}(B)$ is odd, it is then clear by definition of V, (14), and Fact 3.6 that
(15) $\mathfrak{M} \models_{s}[\alpha] \sim B$ and $\mathfrak{M} \models_{s} \sim[\alpha] \sim[\alpha] \sim B \quad$ (by truth definition).

Since $p=p_{\mathrm{BC}}$, it then follows, from (14), (15), and definition of busy choice sequences, that for each $w \in p$, there is a $w^{\prime} \in p$ such that $w<w^{\prime}$ and $\mathfrak{M} \mid \forall_{\left.i\right|_{>w^{\prime}}} C$ for every subformula C of $\sim[\alpha] \sim B$. Then by Lemma 3.5] we have $\mathfrak{M} \models_{s^{\prime}} \sim[\alpha] \sim[\alpha] \sim B$; and by (14) and Fact $3.1, \mathfrak{M} \models_{i \mid>p} \sim[\alpha] \sim[\alpha] \sim B$, and hence, $\mathfrak{M} \models_{i} \sim[\alpha] \sim[\alpha] \sim B$
since $i=\left.i\right|_{>p} \cup s \cup s^{\prime}$. It is easy to verify that $\mathfrak{M} \not \forall_{i} C$ and $\mathfrak{M} \not \forall_{i} \sim C$ for every subformula C of $[\alpha] \sim B$.
The following is our main result in this section.
Theorem 3.8 Let \mathfrak{F} be any structure with $\|\mathfrak{F}\| \geqslant n+1$ and let A be any q-refraining formula with $\operatorname{Rdg}^{q}(A) \leqslant n$. Then
(i) $\mathfrak{F} \not \vDash B \rightarrow[\alpha] \sim[\alpha] \sim A$ and $\mathfrak{F} \not \vDash \sim B \rightarrow[\alpha] \sim[\alpha] A$ for every subformula B of A,
(ii) $\mathfrak{F} \notin[\alpha] \sim[\alpha] \sim A \rightarrow B$ and $\mathfrak{M} \not \vDash[\alpha] \sim[\alpha] A \rightarrow \sim B$ for every subformula B of A.

Proof: \quad Since $\|\mathfrak{F}\| \geqslant n+1$, there is a chain C of busy choice sequences in \mathfrak{F} such that $|\mathrm{C}| \geqslant n+1$. (i) By Lemma 3.7, there is a model \mathfrak{M} on \mathfrak{F} with an instant i in \mathfrak{F} such that, on the one hand, for each subformula B of A, there are some $m, m^{\prime} \in i$ with $\mathfrak{M} \not \vDash_{m} B$ and $\mathfrak{M} \not \vDash_{m^{\prime}} \sim B$; and on the other hand, $\mathfrak{M} \models_{i} \sim[\alpha] \sim A$, and hence $\mathfrak{M} \models \sim[\alpha] \sim[\alpha] \sim A$. It follows that (i) holds.
(ii) We may assume that $\mathrm{C}=\{\mathrm{BC}\} \cup \mathrm{C}^{\prime}$ and $\mathrm{BC}<\mathrm{C}^{\prime}$ and $\mathrm{BC}=\left\{w_{0}, w_{1}, \ldots\right\}$. Let $\mathrm{BC}^{\prime}=\mathrm{BC}-\left\{w_{0}\right\}, \mathrm{C}^{\prime \prime}=\left\{\mathrm{BC}^{\prime}\right\} \cup \mathrm{C}^{\prime}$, and $c=\left\{w: w_{0}<w \leqslant w_{1}\right\}$. It is easy to see that C^{\prime} is a chain of busy choice sequences in \mathfrak{F}_{c} and $\left|\mathrm{C}^{\prime \prime}\right| \geqslant n+1$. By Lemma 3.7. there is a model \mathfrak{M}_{c} on \mathfrak{F}_{c} such that for some i_{c} in \mathfrak{F}_{c},
$\mathfrak{M}_{c} \models_{i_{c}} \sim[\alpha] \sim A$, and $\mathfrak{M}_{c} \not \vDash_{i_{c}} B$ and $\mathfrak{M}_{c} \not \vDash_{i_{c}} \sim B$ for each subformula B of A.
Let i be the instant in \mathfrak{F} such that $i_{c}=i \cap T_{c}$. We define a model \mathfrak{M} on \mathfrak{F} in such a way that for each $m \in i$ and each h in \mathfrak{F} with $m \in h$, if $m \in i_{c},\langle m, h\rangle \in V(q)$ if and only if $\left\langle m, h^{\prime}\right\rangle \in V^{\prime}(q)$, where $h^{\prime}=h \cap T_{c}$; and if $m \notin i_{c},\langle m, h\rangle \in V(q)$ if and only if $\operatorname{Rdg}^{q}(A)$ is odd. Then by (16) and Fact 3.3.

$$
\begin{equation*}
\mathfrak{M} \models \models_{i_{c}} \sim[\alpha] \sim A \text {, and } \mathfrak{M} \not \vDash_{i_{c}} B \text { and } \mathfrak{M} \not \vDash_{i_{c}} \sim B \text { for each subformula } B \text { of } \tag{17}
\end{equation*}
$$ A.

Let us fix an $m^{*} \in i_{c}$. Consider any $\left.m \in i_{c} \subseteq i\right|_{>w_{0}}$. We know, by no downward branching and definitions of c and T_{c}, that there is a $w \in c$ such that $w_{0}<w<m$ and $w<m^{*}$, and hence by Fact 2.1, $m \equiv \equiv_{w_{0}} m^{*}$. It follows that
(18) $i_{c} \subseteq s=\left\{m:\left.m \in i\right|_{>w_{0}} \wedge m \equiv_{w_{0}} m^{*}\right\}$.

Let $s^{\prime}=s-i_{c}=\left\{m:\left.m \in i\right|_{>w_{0}}-i_{c} \wedge m \equiv{ }_{w_{0}} m^{*}\right\}$. Consider any $m \in s^{\prime}$, any $m^{\prime} \in$ i_{c}, and any $w^{\prime} \leqslant w_{0}$. By (18), $m^{\prime} \equiv_{w_{0}} m^{*}$, and hence, since $m \equiv_{w_{0}} m^{*}, m^{\prime} \equiv_{w_{0}} m$. Fact 2.1 and $w^{\prime} \leqslant w_{0}$ imply that $m^{\prime} \equiv_{w^{\prime}} m$. It follows that $s^{\prime}=\left\{m:\left.m \in i\right|_{>w_{0}}-\right.$ $\left.i_{c} \wedge \forall m^{\prime} \forall w^{\prime}\left(m^{\prime} \in i_{c} \wedge w^{\prime} \leqslant w_{0} \rightarrow m^{\prime} \equiv_{w^{\prime}} m\right)\right\}$, and hence by (17) and Lemma 3.4 (substituting $\left\{w^{\prime}: w^{\prime} \leqslant w_{0}\right\}$ for p there), $\mathfrak{M} \models_{s^{\prime}} \sim[\alpha] \sim A$, and hence by (17) and $s=$ $i_{c} \cup s^{\prime}$,
(19) $\mathfrak{M} \models_{s} \sim[\alpha] \sim A$.

Let $s_{1}=\left\{m:\left.m \in i\right|_{>w_{0}} \wedge m \not \equiv{\overline{w_{0}}} m^{*}\right\}$. We show as follows that $\mathfrak{M} \models_{s_{1}}[\alpha] \sim A$. Our definition of \mathfrak{M} implies that $\mathfrak{M} \models_{s_{1}} q$ if and only if $\operatorname{Rdg}^{q}(A)$ is odd, and $\mathfrak{M} \models_{s_{1}} \sim q$ if and only if $\operatorname{Rdg}^{q}(A)$ is even. Assume that $\operatorname{Rdg}^{q}(A)$ is odd. Then by (17) and truth definition, $\mathfrak{M} \models_{s_{1}}[\alpha] q$. It is sufficient to show by induction on $\operatorname{Rdg}^{q}(B)$ that for each q-refraining subformula B of $[\alpha] \sim A, \mathfrak{M} \models_{s_{1}} B$ if $\operatorname{Rdg}^{q}(B)$ is even. The base step
has just been shown. Let $B=[\alpha] \sim C$ for some q-refraining formula C. Suppose that $\operatorname{Rdg}^{q}(B)$ is even. Then $\operatorname{Rdg}^{q}(C)$ is odd, and hence by induction hypothesis, $\mathfrak{M} \models_{s_{1}}$ $\sim C$. Since C is a subformula of A, we know by (17) that $\mathfrak{M} \not \forall_{i \mid>w_{0}} \sim C$. It follows that $\mathfrak{M} \models_{s_{1}} B$. Suppose that $\operatorname{Rdg}^{q}(B)$ is odd. Then $\operatorname{Rdg}^{q}(C)$ is even, and then by induction hypothesis, $\mathfrak{M} \models_{s_{1}} C$. It follows from truth definition that $\mathfrak{M} \models_{s_{1}} \sim B$. A similar induction handles the case that $\operatorname{Rdg}^{q}(A)$ is even, which starts with the base case that $\mathfrak{M} \models_{s_{1}} \sim[\alpha] q$.

By definition of busy choice sequences, Choice $\left(\bar{\alpha}, w_{0}\right) \neq\left\{H_{\left(w_{0}\right)}\right\}$. Then $s_{1} \neq$ \varnothing, and hence, since $\mathfrak{M} \models_{s_{1}}[\alpha] \sim A, \mathfrak{M} \not \vDash_{i \mid>w_{0}} \sim[\alpha] \sim A$. It follows from (19) that $\mathfrak{M} \models_{s}[\alpha] \sim[\alpha] \sim A$. It is easy to see by (17) and (18) that $\mathfrak{M} \not \models_{s} B$ and $\mathfrak{M} \not \models_{s} \sim B$ for every subformula B of A.

Theorem 3.8 implies that if $\|\mathfrak{F}\| \geqslant n+1$, and if A is a q-refraining formula with degree n, then $\mathfrak{F} \not \vDash[\alpha] \sim[\alpha] \sim A \rightarrow A$ and $\mathfrak{F} \not \vDash A \rightarrow[\alpha] \sim[\alpha] \sim A$. That is to say, no generalized refref conditional with degree n is valid in any $\mathfrak{F} \in \mathfrak{C}_{n+1}$. Thus we have the following.

Corollary 3.9 Let L be any stit logic containing a generalized refref conditional with degree $n \geqslant 0$. Then $\mathfrak{C}(\mathrm{L}) \subseteq \mathfrak{C}_{n}$.

4 Uncompactness of some stit logics In this section we prove two sufficient conditions of uncompactness. The main idea of our proof is to use a feature of "companions to stit formulas." Let us briefly describe what a companion to a stit formula is. Let $\mathfrak{M} \models_{m}[\alpha] A$ with witness w, and let $s=\left\{m^{\prime}: m^{\prime} \in i_{(m)} \wedge m^{\prime} \equiv_{w} m\right\}$. It is easy to see that $\mathfrak{M} \models_{s}[\alpha] A$. Consider any formula C. Since stit formulas are either settled true or settled false at every moment, we know that either $\mathfrak{M} \models_{m}[\alpha]\left(A \wedge C^{\alpha}\right)$ or $\mathfrak{M} \models_{m} \sim[\alpha]\left(A \wedge C^{\alpha}\right)$. In fact,

$$
\begin{align*}
& \text { if } \mathfrak{M} \models_{m}[\alpha]\left(A \wedge C^{\alpha}\right), \mathfrak{M} \models_{s}[\alpha]\left(A \wedge C^{\alpha}\right) ; \text { and if } \mathfrak{M} \models_{m} \sim[\alpha]\left(A \wedge C^{\alpha}\right), \tag{20}\\
& \mathfrak{M} \models_{s} \sim[\alpha]\left(A \wedge C^{\alpha}\right) .
\end{align*}
$$

In the former case, we call $[\alpha]\left(A \wedge C^{\alpha}\right)$ a pos-companion to $[\alpha] A$ at m, and C a pos-companion root of $[\alpha] A$ at m; and in the latter case, we call $\sim[\alpha]\left(A \wedge C^{\alpha}\right)$ a neg-companion to $[\alpha] A$ at m, and C a neg-companion root of $[\alpha] A$ at m. Both poscompanions and neg-companions to $[\alpha] A$ at m are companions to $[\alpha] A$ at m. Because (20) holds for every formula C, we know that $[\alpha] A$ must be true together with all its companions at every $m^{\prime} \in i_{(m)}$ choice equivalent to m for α at w. One feature of companions to $[\alpha] A$ is that they are in general not consequences (semantic or deductive) of $[\alpha] A$ but are nevertheless true together with $[\alpha] A$. Thus when we study syntactical characterizations of stit theories, we should not only consider consequences of stit formulas, but rather, we should also take these companions into consideration, as can be seen in [29], [32], [34], and [35]. Another feature of companions to stit formulas is the following, which we will use in this section. Although in our language there is no explicit tense operator, companions to stit formulas provide a sufficient condition for determining the temporal order between witnesses to stit formulas. To be more precise, let $\mathfrak{M} \models_{m}[\alpha] A$ with witness w, and let $\left.m^{\prime} \in i\right|_{>w}$ (possibly $m=m^{\prime}$) and $\mathfrak{M} \models_{m^{\prime}}[\alpha] B$ with witness w^{\prime}. Then, if any formula C is a pos-companion root of $[\alpha] A$ at m but a neg-companion root of $[\alpha] B$ at m^{\prime}, then we must have $w^{\prime}<w$.

In this section, we use the second feature of companions mentioned above to construct a set Φ of formulas in such a way that all formulas in Φ are companions to some stit formulas, which will, when joined together, force each model of Φ to contain a chain C of busy choice sequences with $|C| \geqslant n$ for every $n \geqslant 0$ (Lemma4.2). After showing that each finite subset of Φ has a finite model (Lemma 4.5), we arrive at a sufficient semantic condition of uncompactness (Theorem4.6), and combining the result presented in the previous section, a sufficient syntactical condition of uncompactness (Theorem 4.7).

The following is useful and has been established in [29], where Fact 4.1 iv) is called the Companion Theorem in 29], and Fact 4.1 v) presents the feature of companions we will use in this section.

Fact 4.1 Let $\mathfrak{M}=\langle T, \leqslant$,Instant,Agent, Choice, $V\rangle$ be any model in which $w<m$ and $i=i_{(m)}$. Then the following hold, where $s=\left\{m^{\prime}: m^{\prime} \in i \wedge m^{\prime} \equiv_{w} m\right\}$:
(i) if $\mathfrak{M} \models_{s} B$ and $\mathfrak{M} \models_{m}[\alpha] A$ with witness $w, \mathfrak{M} \models_{m}[\alpha](A \wedge B)$;
(ii) if $\mathfrak{M} \models_{s} A$ and $\mathfrak{M} \not \models_{s}[\alpha] A, \mathfrak{M} \models_{\left.i\right|_{>w}} A^{\alpha}$; and thus, if $\mathfrak{M} \models_{m}[\alpha](A \wedge B)$ with witness w and $\mathfrak{M} \mid \models_{s}[\alpha] B, \mathfrak{M} \models_{\left.i\right|_{>w}} B^{\alpha}$ and $\mathfrak{M} \models_{s}[\alpha]\left(A \wedge B^{\alpha}\right)$;
(iii) if $\mathfrak{M}=_{m}[\alpha]\left(A \wedge B^{\alpha}\right)$ with witness $w, \mathfrak{M}=_{m}[\alpha] A$ with the same witness; and if $\mathfrak{M} \models_{m}[\alpha]\left(A \wedge \sim[\alpha]\left(A \wedge B^{\alpha}\right)\right)$ with witness $w, \mathfrak{M} \models_{m}[\alpha] A$ with the same witness;
(iv) if $\mathfrak{M} \models_{m}[\alpha] A$ with witness w, then for each B, either $\mathfrak{M} \models_{m}[\alpha]\left(A \wedge B^{\alpha}\right)$ with witness w or $\mathfrak{M} \models_{m}[\alpha]\left(A \wedge \sim[\alpha]\left(A \wedge B^{\alpha}\right)\right)$ with witness w;
(v) if $\mathfrak{M} \models_{m}[\alpha]\left(A \wedge C^{\alpha}\right)$ with witness w, and if $\left.m^{\prime} \in i\right|_{>w}$ and $\mathfrak{M} \models_{m^{\prime}}[\alpha](B \wedge$ $\left.\sim[\alpha]\left(B \wedge C^{\alpha}\right)\right)$ with witness w^{\prime}, then $w^{\prime}<w .{ }^{13}$

Let us arrange all propositional variables into two disjoint sets $\Sigma=\left\{p_{\xi}: 0 \leqslant \xi<\right.$ $\omega \times \omega\}$ and $\Pi=\left\{q_{\xi}: 0 \leqslant \xi<\omega \times \omega\right\}$. For every ξ with $0 \leqslant \xi<\omega \times \omega$, let $A_{\xi}=$ $[\alpha]\left(p_{\xi} \wedge q_{\xi}^{\alpha}\right)$, and let $B_{\xi}=\sim[\alpha]\left(p_{\xi} \wedge q_{\xi+1}^{\alpha}\right)$. Let $\Phi_{0}=\left\{A_{k}: 0 \leqslant k<\omega\right\} \cup\left\{B_{k}: 0 \leqslant\right.$ $k<\omega\}$, and for each $n \geqslant 0$, let

$$
\begin{aligned}
\Phi_{n+1}= & \Phi_{n} \cup\left\{A_{\xi}: \omega \times(n+1) \leqslant \xi<\omega \times(n+2)\right\} \\
& \cup\left\{B_{\xi}: \omega \times(n+1) \leqslant \xi<\omega \times(n+2)\right\} \\
& \cup\left\{\sim[\alpha]\left(p_{\zeta} \wedge q_{\omega \times(n+1)}^{\alpha}\right): 0 \leqslant \zeta<\omega \times(n+1)\right\}
\end{aligned}
$$

Finally, let us fix $\Phi=\bigcup_{0 \leqslant n<\omega} \Phi_{n}$.
Lemma 4.2 Let $n \geqslant 0$, and let \mathfrak{M} be any model in which $\mathfrak{M} \models_{m} \Phi_{n}$. Then there is a chain $w_{0}<w_{1}<\cdots<w_{\xi}<w_{\xi+1}<\cdots<m$ (where $0 \leqslant \xi<\omega \times(n+1)$) of moments in \mathfrak{M} such that for each ξ with $0 \leqslant \xi<\omega \times(n+1), \mathfrak{M} \models_{m}[\alpha]\left(p_{\xi} \wedge q_{\xi}^{\alpha}\right)$ with witness w_{ξ}.

Proof: Our proof is by induction on n.
Case $1(n=0)$: \quad Since $\mathfrak{M} \models_{m} \Phi_{0}$, we have by hypothesis and the definition of Φ_{0} that there is a w_{0} such that $\mathfrak{M} \models_{m}[\alpha]\left(p_{0} \wedge q_{0}^{\alpha}\right)$ with witness w_{0}. Suppose that $k \geqslant 0$, and that we have
(21) $w_{0}<\cdots<w_{k}$ such that for each j with $0 \leqslant j \leqslant k, \mathfrak{M} \models_{m}[\alpha]\left(p_{j} \wedge q_{j}^{\alpha}\right)$ with witness w_{j}.

We show below how to select w_{k+1} in such a way that (21) holds with k replaced by $k+1$. It follows from (21) and Fact4.1 iiii) that
(22) $\mathfrak{M} \models_{m}[\alpha] p_{k}$ with witness w_{k}.

By hypothesis and the definition of Φ_{0}, we know that
(23) $\mathfrak{M} \models_{m} \sim[\alpha]\left(p_{k} \wedge q_{k+1}^{\alpha}\right)$
and
(24) there is a w_{k+1} such that $\mathfrak{M} \models_{m}[\alpha]\left(p_{k+1} \wedge q_{k+1}^{\alpha}\right)$ with witness w_{k+1}.

Applying Fact 4.1 iviv) to (22) and (23), we have

$$
\begin{equation*}
\mathfrak{M} \models_{m}[\alpha]\left(p_{k} \wedge \sim[\alpha]\left(p_{k} \wedge q_{k+1}^{\alpha}\right)\right) \text { with witness } w_{k}, \tag{25}
\end{equation*}
$$

and applying Fact4.1 v) to (24) and (25), we have $w_{k}<w_{k+1}$. It follows that there is a chain $w_{0}<w_{1}<\cdots<m$ such that for each k with $0 \leqslant k<\omega, \mathfrak{M} \models_{m}[\alpha]\left(p_{k} \wedge q_{k}^{\alpha}\right)$ with witness w_{k}.

Case $2(n+1)$: Assume that $\mathfrak{M} \models_{m} \Phi_{n+1}$. Since $\Phi_{n} \subseteq \Phi_{n+1}$, we know by induction hypothesis that there is a chain $w_{0}<w_{1}<\cdots<w_{\xi}<w_{\xi+1}<\cdots<m$ such that for each ξ with $0 \leqslant \xi<\omega \times(n+1), \mathfrak{M} \models_{m}[\alpha]\left(p_{\xi} \wedge q_{\xi}^{\alpha}\right)$ with witness w_{ξ}. In particular, we know by Fact4.1(iii) that for each ζ with $\omega \times n \leqslant \zeta<\omega \times(n+1)$, $\mathfrak{M} \models_{m}[\alpha] p_{\zeta}$ with witness w_{ζ}. Since $\mathfrak{M} \models_{m} \Phi_{n+1}$, we have by the definition of Φ_{n+1} that $\mathfrak{M} \models_{m} \sim[\alpha]\left(p_{\zeta} \wedge q_{\omega \times(n+1)}^{\alpha}\right)$ for each ζ with $0 \leqslant \zeta<\omega \times(n+1)$. It follows from Fact4.1(iv) that
(26) for each ζ with $0 \leqslant \zeta<\omega \times(n+1), \mathfrak{M} \models_{m}[\alpha]\left(p_{\zeta} \wedge \sim[\alpha]\left(p_{\zeta} \wedge\right.\right.$ $\left.\left.q_{\omega \times(n+1)}^{\alpha}\right)\right)$ with witness w_{ζ}.
Applying the definition of Φ_{n+1}, we have that $\mathfrak{M} \models_{m}[\alpha]\left(p_{\omega \times(n+1)} \wedge q_{\omega \times(n+1)}^{\alpha}\right)$ with some witness $w_{\omega \times(n+1)}$, and hence by (26) and Fact $4.1(\mathrm{v}), w_{\zeta}<w_{\omega \times(n+1)}$ for all ζ with $0 \leqslant \zeta<\omega \times(n+1)$. The same argument in Case $n=0$ will handle the rest of our proof, except that we need to replace $0, j, k$, and so on, by $\omega \times(n+1), \omega \times(n+$ $1)+j, \omega \times(n+1)+k$, and so on.

Corollary 4.3 Let $n \geqslant 0$ and let $\mathfrak{M}=\langle T, \leqslant$, Instant,Agent,Choice, $V\rangle$ be any model in which $\mathfrak{M} \models_{m} \Phi_{n}$. Then there is a chain C of busy choice sequences in \mathfrak{M} such that $|\mathrm{C}|=n+1$.

Proof: By Lemma 4.2 there is a chain $w_{0}<w_{1}<\cdots<w_{\xi}<w_{\xi+1}<\cdots<m$ of moments in \mathfrak{M} such that for each ξ with $0 \leqslant \xi<\omega \times(n+1), \mathfrak{M} \models_{m}[\alpha]\left(p_{\xi} \wedge\right.$ $\left.q_{\xi}^{\alpha}\right)$ with witness w_{ξ}. It follows from Fact 2.2iii) that $\operatorname{Choice}\left(\bar{\alpha}, w_{\xi}\right) \neq\left\{H_{\left(w_{\xi}\right)}\right\}$ for each ξ with $0 \leqslant \xi<\omega \times(n+1)$. For each k with $0 \leqslant k \leqslant n$, let us define $\mathrm{BC}_{k}=$ $\left\{w_{\omega \times k}, w_{\omega \times k+1}, \ldots\right\}$. By definition, each BC_{k} is clearly a busy choice sequence and for each k with $0 \leqslant k<n, \mathrm{BC}_{k}<\mathrm{BC}_{k+1}$. Setting $\mathrm{C}=\left\{\mathrm{BC}_{0}, \ldots, \mathrm{BC}_{n}\right\}$, we have that $|C|=n+1$.

Applying this corollary and our definitions of $\Phi,\|\mathfrak{F}\|$, and \mathfrak{C}_{n}, we obtain the following.

Corollary 4.4 For each model $\mathfrak{M}=\langle\mathfrak{F}, V\rangle, \mathfrak{M}$ is a model for Φ only if $\|\mathfrak{F}\|>n$ for every $n \geqslant 0$, that is, only if $\mathfrak{F} \notin \mathfrak{C}_{n}$ for every $n \geqslant 0$.

Our next step is to show that every finite subset of Φ has a finite model (Lemma 4.5 below). To that end, we use the following easily verifiable fact: for each finite subset Φ^{\prime} of Φ, there are ξ_{1}, \ldots, ξ_{n} with $n>1$ such that $0 \leqslant \xi_{1}<\cdots<\xi_{n}<\omega \times \omega$, and, setting $\Psi=\left\{[\alpha]\left(p_{\xi_{1}} \wedge q_{\xi_{1}}^{\alpha}\right), \ldots,[\alpha]\left(p_{\xi_{n}} \wedge q_{\xi_{n}}^{\alpha}\right)\right\} \cup\left\{\sim[\alpha]\left(p_{\xi_{j}} \wedge q_{\xi_{k}}^{\alpha}\right): 0 \leqslant j<k \leqslant n\right\}$, Ψ is a finite extension of Φ^{\prime}.

Lemma 4.5 Each finite subset of $\Phi=\bigcup_{0 \leqslant n<\omega} \Phi_{n}$ has a finite model.
Proof: By the fact mentioned above, it is sufficient to let $0 \leqslant \xi_{1}<\cdots<\xi_{n}<\omega \times \omega$ and show that there is a model \mathfrak{M} with a moment m^{*} in it such that

$$
\begin{equation*}
\mathfrak{M} \models_{m^{*}}[\alpha]\left(p_{\xi_{k}} \wedge q_{\xi_{k}}^{\alpha}\right) \text { for each } k \text { with } 1 \leqslant k \leqslant n \tag{27}
\end{equation*}
$$

and
(28) $\quad \mathfrak{M} \models_{m^{*}} \bigwedge_{1 \leqslant j \leqslant k} \sim[\alpha]\left(p_{\xi_{j}} \wedge q_{\xi_{k+1}}^{\alpha}\right)$ for each k with $1 \leqslant k<n$.

For convenience, let us use p_{k} for $p_{\xi_{k}}, q_{k}$ for $q_{\xi_{k}}$, and so on, in the following discussion. Let $\mathfrak{F}=\langle T, \leqslant$, Instant, Agent, Choice \rangle be defined as follows, where $m^{*}, x_{k} \mathrm{~s}$, $y_{k} \mathrm{~s}, w_{k} \mathrm{~s}, u_{k, j} \mathrm{~s}$, and $v_{k, j} \mathrm{~s}$ are all different.

$$
\begin{aligned}
T= & \left\{m^{*}\right\} \cup\left\{w_{k}: 1 \leqslant k \leqslant n\right\} \\
& \cup\left\{y_{k}: 1 \leqslant k \leqslant n\right\} \cup\left\{x_{k}: 1 \leqslant k \leqslant n\right\} \\
& \cup\left\{u_{k, j}: 1 \leqslant k<j \leqslant n\right\} \cup\left\{v_{k, j}: 1 \leqslant k<j \leqslant n\right\} . \\
\leqslant=\quad & \{\langle w, w\rangle: w \in T\} \cup\left\{\left\langle w_{k}, w_{j}\right\rangle: 1 \leqslant k<j \leqslant n\right\} \\
& \cup\left\{\left\langle w_{k}, m^{*}\right\rangle: 1 \leqslant k \leqslant n\right\} \\
& \cup\left\{\left\langle u_{k, j}, u_{k, j^{\prime}}\right\rangle: 1 \leqslant k<j<j^{\prime} \leqslant n\right\} \\
& \cup\left\{\left\langle v_{k, j}, v_{k, j^{\prime}}\right): 1 \leqslant k<j<j^{\prime} \leqslant n\right\} \\
& \cup\left\{\left\langle w_{k}, u_{k^{\prime}, j}\right\rangle: 1 \leqslant k \leqslant k^{\prime}<j \leqslant n\right\} \\
& \cup\left\{\left\langle w_{k}, v_{k^{\prime}, j}\right\rangle: 1 \leqslant k \leqslant k^{\prime}<j \leqslant n\right\} \\
& \cup\left\{\left\langle w_{k}, x_{k^{\prime}}\right\rangle: 1 \leqslant k \leqslant k^{\prime} \leqslant n\right\} \\
& \cup\left\{\left\langle w_{k}, y_{k^{\prime}}\right\rangle: 1 \leqslant k \leqslant k^{\prime} \leqslant n\right\} \\
& \cup\left\{\left\langle u_{k, j}, x_{k}\right\rangle: 1 \leqslant k<j \leqslant n\right\} \\
& \cup\left\{\left\langle v_{k, j}, y_{k}\right\rangle: 1 \leqslant k<j \leqslant n\right\} . \\
& \left\{\left\{w_{k}\right\} \cup\left\{u_{j, k}: 1 \leqslant j<k\right\} \cup\left\{v_{j, k}: 1 \leqslant j<k\right\}: 1 \leqslant k \leqslant n\right\} \\
& \cup\left\{\left\{m^{*}\right\} \cup\left\{x_{k}: 1 \leqslant k \leqslant n\right\} \cup\left\{y_{k}: 1 \leqslant k \leqslant n\right\}\right\} . \\
& \{a\} .
\end{aligned}
$$

Let $i=\left\{m^{*}\right\} \cup\left\{x_{k}: 1 \leqslant k \leqslant n\right\} \cup\left\{y_{k}: 1 \leqslant k \leqslant n\right\}$. It is easy to check that i is the last instant in Instant. For each $m \in i$, let us use h_{m} for the unique history passing through m. Thus $h_{m^{*}}=\left\{w_{1}, \ldots, w_{n}, m^{*}\right\}$, and for each k with $1 \leqslant k \leqslant n, h_{x_{k}}=\{w: w \in$ $\left.T \wedge w \leqslant x_{k}\right\}=\left\{w_{1}, \ldots, w_{k}, u_{k, k+1}, \ldots, u_{k, n}, x_{k}\right\}$, and $h_{y_{k}}=\left\{w: w \in T \wedge w \leqslant y_{k}\right\}=$ $\left\{w_{1}, \ldots, w_{k}, v_{k, k+1}, \ldots, v_{k, n}, y_{k}\right\}$. We define Choice as follows:

Choice $(a, m)=\left\{\left\{h_{m}\right\}\right\}$ for each $m \in i$;
Choice $\left(a, u_{k, j}\right)=\left\{\left\{h_{x_{k}}\right\}\right\}$ for each k, j with $1 \leqslant k<j \leqslant n$;
$\operatorname{Choice}\left(a, v_{k, j}\right)=\left\{\left\{h_{y_{k}}\right\}\right\}$ for each k, j with $1 \leqslant k<j \leqslant n$;
$\operatorname{Choice}\left(a, w_{k}\right)=\left\{\left\{h_{x_{k}}\right\}, H_{\left(w_{k}\right)}-\left\{h_{x_{k}}\right\}\right\}$ for each k with $1 \leqslant k \leqslant n$.

It is easy to see that for each k with $1 \leqslant k \leqslant n, H_{\left(w_{k}\right)}-\left\{h_{x_{k}}\right\}=\left\{h_{y_{k}}, h_{x_{k+1}}\right.$, $\left.h_{y_{k+1}}, \ldots, h_{x_{n}}, h_{y_{n}}, h_{m^{*}}\right\}$. Finally, we define \mathfrak{M} by letting V be an assignment such that $V(\alpha)=a$, and for each k with $1 \leqslant k \leqslant n, V\left(p_{k}\right)=\left\{\langle m, h\rangle: m \in h \cap i \wedge m \neq x_{k}\right\}$, $V\left(q_{1}\right)=\{\langle m, h\rangle: m \in i \wedge m \in h\}$, and for each k with $1<k \leqslant n, V\left(q_{k}\right)=\{\langle m, h\rangle: m \in$ $\left.h \cap i \wedge m \neq y_{k-1}\right\}$. In the following diagram illustrating \mathfrak{M}, we only indicate at which moment p_{k} or q_{k} is (settled) false. That is to say, at each moment $m \in i$, if p_{k} or q_{k} with $1 \leqslant k \leqslant n$ is not indicated to be (settled) false at m, it should be understood that it is (settled) true at m.

It is easy to see from our definition of \mathfrak{M} that for each k with $1 \leqslant k \leqslant n, x_{k} \not \equiv_{w_{k}} m^{*}$, $\mathfrak{M} \models_{i-\left\{x_{k}\right\}} p_{k}$, and $\mathfrak{M} \not \models_{x_{k}} p_{k}$. It follows that
(29) for each k with $1 \leqslant k \leqslant n, \mathfrak{M} \models_{m^{*}}[\alpha] p_{k}$ with witness w_{k}.

It is also easy to see from the definition of \mathfrak{M} that

$$
\begin{equation*}
\text { for each } k \text { with } 1 \leqslant k \leqslant n, \mathfrak{M} \models_{\left.i\right|_{>w_{k}}} q_{k} \text {. } \tag{30}
\end{equation*}
$$

Consider any k with $1 \leqslant k \leqslant n$. If $k=1$, we know by the definition of \mathfrak{M} that $\mathfrak{M} \models_{i} q_{k}$ and hence $\mathfrak{M} \models_{m^{*}} \sim[\alpha] q_{k}$. Assume that $k>1$. We know by the definition of \mathfrak{F} that $y_{k-1} \equiv_{w_{k-1}} m^{*}$ and $\mathfrak{M} \not \models_{y_{k-1}} q_{k}$, and hence $\mathfrak{M} \not \vDash_{s} q_{k}$ where $s=\left\{m: m \in i \wedge m \equiv{ }_{w_{k-1}}\right.$ $\left.m^{*}\right\}$. It follows from (30), Fact 2.1. and our definition above that for each $w<m^{*}$, either $\mathfrak{M} \models_{\left.i\right|_{>w}} q_{k}$ or $\mathfrak{M} \not \models_{s^{\prime}} q_{k}$ where $s^{\prime}=\left\{m: m \in i \wedge m \equiv_{w} m^{*}\right\}$, and hence $\mathfrak{M} \models_{m^{*}}$ $\sim[\alpha] q_{k}$. We thus have
(31) for each k with $1 \leqslant k \leqslant n, \mathfrak{M} \models_{m^{*}} \sim[\alpha] q_{k}$.

To show that (27) holds, consider any k with $1 \leqslant k \leqslant n$. Clearly, $\left\{m: m \in i \wedge m \equiv{ }_{w_{k}}\right.$ $\left.m^{*}\right\}\left.\subseteq i\right|_{>w_{k}}$. We then know by (30), (31), and Fact4.1(jii) that $\mathfrak{M} \models_{\left.i\right|_{>w_{k}}} q_{k}^{\alpha}$, and hence by (29) and Fact 4.11 i$), \mathfrak{M} \models_{m^{*}}[\alpha]\left(p_{k} \wedge q_{k}^{\alpha}\right)$. It follows that (27) holds. To show that (28) holds, let $1 \leqslant k<n$. We show that $\mathfrak{M} \models_{m^{*}} \bigwedge_{1 \leqslant j \leqslant k} \sim[\alpha]\left(p_{j} \wedge q_{k+1}^{\alpha}\right)$. Suppose for reductio that there is a j such that $1 \leqslant j \leqslant k$ and $\mathfrak{M} \models_{m^{*}}[\alpha]\left(p_{j} \wedge q_{k+1}^{\alpha}\right)$ with witness w. Then by Fact 4.1 1 iii), $\mathfrak{M} \models_{m^{*}}[\alpha] p_{j}$ with witness w. It follows from (29) and Fact 2.2 (ii) that $w=w_{j}$. The hypothesis of this reductio implies that
$\mathfrak{M} \models_{s_{j}} q_{k+1} \wedge \sim[\alpha] q_{k+1}$, where $s_{j}=\left\{m: m \in i \wedge m \equiv_{w_{j}} m^{*}\right\}$. Hence by Fact 4.1 1 ii , $\mathfrak{M} \models_{\left.i\right|_{>w_{j}}} q_{k+1}$. Since $j \leqslant k,\left.\left.y_{k} \in i\right|_{>w_{k}} \subseteq i\right|_{>w_{j}}$. It follows that $\mathfrak{M} \models_{y_{k}} q_{k+1}$. But by our definition of $\mathfrak{M}, \mathfrak{M} \not \models_{y_{k}} q_{k+1}$, a contradiction. It follows from this reductio that $\mathfrak{M} \models_{m^{*}} \bigwedge_{1 \leqslant j \leqslant k} \sim[\alpha]\left(p_{j} \wedge q_{k+1}^{\alpha}\right)$. Hence (28) holds.
Now we establish our two sufficient conditions of uncompactness.
Theorem 4.6 Let L be any stit logic. Then, L is uncompact if $\mathfrak{C}_{f} \subseteq \mathfrak{C}(\mathrm{~L}) \subseteq \mathfrak{C}_{n}$ for some $n \geqslant 0$.

Proof: Suppose that $\mathfrak{C}_{f} \subseteq \mathfrak{C}(\mathrm{~L}) \subseteq \mathfrak{C}_{n}$ for some $n \geqslant 0$. Consider the set Φ of formulas. By Lemma 4.5 we know that each finite subset Ψ of Φ has a model $\mathfrak{M}=\langle\mathfrak{F}, V\rangle$ with $\mathfrak{F} \in \mathfrak{C}(\mathrm{L})$, but by Corollary 4.4Φ has no model $\mathfrak{M}=\langle\mathfrak{F}, V\rangle$ with $\mathfrak{F} \in \mathfrak{C}(\mathrm{L})$. It follows that $\models_{\mathfrak{C}(L)}$ is uncompact, that is, L is uncompact.

Theorem 4.7 Let L be any stit logic. Then, L is uncompact if $\mathrm{L} \subseteq \mathrm{L}_{\text {refref }}$ and L contains a generalized refref conditional.

Proof: If $\mathrm{L} \subseteq \mathrm{L}_{\text {refrefe }}, \mathfrak{C}\left(\mathrm{L}_{\text {refref }}\right) \subseteq \mathfrak{C}(\mathrm{L})$. We know that $\mathfrak{C}\left(\mathrm{L}_{\text {refref }}\right)=\mathfrak{C}_{0}$ (see 29] and (307), and it is trivially true that $\mathfrak{C}_{f} \subseteq \mathfrak{C}_{0}$. It follows that if $\mathrm{L} \subseteq \mathrm{L}_{\text {refref }}$ then $\mathfrak{C}_{f} \subseteq \mathfrak{C}(\mathrm{~L})$. If in addition L contains a generalized refref conditional, we know by Corollary 3.9 that $\mathfrak{C}(\mathrm{L}) \subseteq \mathfrak{C}_{n}$ for some $n \geqslant 0$. It then follows from Theorem 4.6 hat L is uncompact.

5 Remark We first show that there are infinitely many stit logics that satisfy the antecedent of Theorem 4.7 and hence are uncompact. Let A_{0} be the conjunction of $[\alpha] q \rightarrow[\alpha] \sim[\alpha] \sim[\alpha] q$ and $[\alpha] \sim[\alpha] \sim[\alpha] q \rightarrow[\alpha] q$. For each $n \geqslant 0$, let $A_{n+1}=$ $A_{n}(\sim[\alpha] q / q)$, that is, the result of substituting $\sim[\alpha] q$ for q in A_{n}, and let L_{n} be the smallest stit logic containing A_{n}. Clearly, each A_{n} is the conjunction of two generalized refref conditionals with degree n and each L_{n+1} is a sublogic of L_{n}. Since L_{0} is $\mathrm{L}_{\text {refref }}$, it follows from Theorem 4.7 that each L_{n} is uncompact. But are they all different? By $\S 3.7$ in Xu [33], on the one hand, for each structure \mathfrak{F} such that $\operatorname{Cdg}(\mathfrak{F}) \leqslant n$ (where $\operatorname{Cdg}(\mathfrak{F})$ is the complexity degree of \mathfrak{F} defined in 33]), $\mathfrak{F} \models A_{m}$ for all $m \geqslant n$. By $\S 4.8$ in [33], on the other hand, for each $n \geqslant 0$, there is a structure \mathfrak{F}_{n} such that $\operatorname{Cdg}\left(\mathfrak{F}_{n}\right)=n+1$ and $\mathfrak{F} \notin A_{n}$. Consequently, for each $n \geqslant 0$, there is a structure \mathfrak{F} such that $\mathfrak{F} \notin A_{n}$ but $\mathfrak{F} \models A_{m}$ for all $m>n$. It follows that for each $n \geqslant 0, \mathrm{~L}_{n} \neq \mathrm{L}_{n+1}$, and hence L_{n+1} is a proper sublogic of L_{n}. This completes the verification of our claim that infinitely many stit logics satisfy the antecedent of Theorem 4.7.

Consider again our Theorem 4.6 hat provides a sufficient semantic condition of uncompactness, that is,
(32) L is uncompact if $\mathfrak{C}_{f} \subseteq \mathfrak{C}(\mathrm{~L}) \subseteq \mathfrak{C}_{n}$ for some $n \geqslant 0$.

We can actually generalize (32) in two directions-one is to find some $\mathfrak{C}^{\prime} \subset \mathfrak{C}_{f}$ and the other is to find some \mathfrak{C} such that $\mathfrak{C}_{n} \subset \mathfrak{C}$ for all $n \geqslant 0$-and thus obtain some more general conditions of uncompactness:

L is uncompact if $\mathfrak{C}^{\prime \prime} \subseteq \mathfrak{C}(\mathrm{L}) \subseteq \mathfrak{C}$.

For instance, it is easy to see that our proof in Lemma 4.5 actually shows that every finite subset of Φ has a finite model whose background structure is at-most-binary, where a structure $\mathfrak{F}=\langle T, \leqslant$, Instant, Agent, Choice \rangle is at-most-binary if for each $a \in$ Agent and each $w \in T,|\operatorname{Choice}(a, w)| \leqslant 2$. We can thus use \mathfrak{C}^{\prime} to be the class of all finite at-most-binary structures. Some other suitable proper subclass of \mathfrak{C}_{f} can be found as well. The other direction in generalizing (32) seems less trivial. So far we have only considered \mathfrak{C}_{n} for some $n \geqslant 0$, that is, the class of structures \mathfrak{F} with $\|\mathfrak{F}\| \leqslant n$. Since it is easy to see that $\bigcup_{0 \leqslant n<\omega} \mathfrak{C}_{n}$ is the class of all structures containing no infinite chain of busy choice sequences, Corollary 4.4 enables us to obtain at most that
(34) L is uncompact if $\mathfrak{C}_{f} \subseteq \mathfrak{C}(\mathrm{~L}) \subseteq \bigcup_{0 \leqslant n<\omega} \mathfrak{C}_{n}$.

There are, nevertheless, two ways to generalize (34) without extending our language. The first is to use "ordinal-isomorphism" to distinguish structures containing infinite chains of busy choice sequences. Let ξ be any ordinal such that $|\xi|=\omega$ and let C be any chain of busy choice sequences. $\mathrm{C} \approx \xi$ if and only if there is an isomorphism between C and ξ with respect to the <-relation on C and the ordinary <-relation (or \subset relation) on ξ (i.e., the busy choice sequences contained in C are arranged according to the order type specified by ξ). $\llbracket \mathfrak{F} \rrbracket=\xi$ if and only if there is a chain C of busy choice sequences in \mathfrak{F} such that $\mathrm{C} \approx \xi$, and there is no chain C^{\prime} of busy choice sequences in \mathfrak{F} such that $\mathrm{C}^{\prime} \approx \xi+1$. Finally, let $\mathfrak{C}_{\xi}=\{\mathfrak{F}: \llbracket \mathfrak{F} \rrbracket \leqslant \xi\}$. Clearly, $\bigcup_{0 \leqslant n<\omega} \mathfrak{C}_{n} \subset \mathfrak{C}_{\xi}$ for every ξ with $|\xi|=\omega$. We can obtain that
(35) L is uncompact if $\mathfrak{C}_{f} \subseteq \mathfrak{C}(\mathrm{~L}) \subseteq \mathfrak{C}_{\xi}$ for some ξ with $|\xi|=\omega$
by adjusting our definition of Φ in the following way: given ξ with $|\xi|=\omega$. We first arrange all propositional variables into two disjoint sets $\Sigma_{\xi}=\left\{p_{\zeta}: 0 \leqslant \zeta<\omega \times(\xi+\right.$ $1)\}$ and $\Pi_{\xi}=\left\{q_{\zeta}: 0 \leqslant \zeta<\omega \times(\xi+1)\right\}$. Then for every ζ with $0 \leqslant \zeta<\omega \times(\xi+1)$, let $A_{\zeta}=[\alpha]\left(p_{\zeta} \wedge q_{\zeta}^{\alpha}\right)$ and $B_{\zeta}=\sim[\alpha]\left(p_{\zeta} \wedge q_{\zeta+1}^{\alpha}\right)$. Let $\Phi_{0}=\left\{A_{k}: 0 \leqslant k<\omega\right\} \cup$ $\left\{B_{k}: 0 \leqslant k<\omega\right\}$; and for each ζ with $0 \leqslant \zeta<\omega \times(\xi+1)$, let

$$
\begin{aligned}
\Phi_{\zeta+1}= & \Phi_{\zeta} \cup\left\{A_{\eta}: \omega \times(\zeta+1) \leqslant \eta<\omega \times(\zeta+2)\right\} \\
& \cup\left\{B_{\eta}: \omega \times(\zeta+1) \leqslant \eta<\omega \times(\zeta+2)\right\} \\
& \cup\left\{\sim[\alpha]\left(p_{\eta} \wedge q_{\omega \times(\zeta+1)}^{\alpha}\right): 0 \leqslant \eta<\omega \times(\zeta+1)\right\} ;
\end{aligned}
$$

and for each limit ordinal ζ with $\omega \leqslant \zeta \leqslant \omega \times(\xi+1)$, let

$$
\begin{aligned}
\Phi_{\zeta}= & \left(\cup_{\eta \in \zeta} \Phi_{\eta}\right) \cup\left\{A_{\eta}: \omega \times \zeta \leqslant \eta<\omega \times(\zeta+1)\right\} \\
& \cup\left\{B_{\eta}: \omega \times \zeta \leqslant \eta<\omega \times(\zeta+1)\right\} \\
& \cup\left\{\sim[\alpha]\left(p_{\eta} \wedge q_{\omega \times \zeta}^{\alpha}\right): 0 \leqslant \eta<\omega \times \zeta\right\} .
\end{aligned}
$$

It is easy to see that an argument similar to that in our proof of Lemma 4.2. with an exception of the case concerning limit ordinals, will show that $\mathfrak{M}=\langle\mathfrak{F}, V\rangle$ is a model for Φ_{ξ} only if $\llbracket \mathfrak{F} \rrbracket \geqslant \xi+1$. Then we obtain (35) above by applying the same argument as that in the proof of Lemma 4.5.

The second way to generalize (34), without extending our language, is to use "reversed ordinal-isomorphism" to distinguish structures containing infinite chains of busy choice sequences. Let ξ be any ordinal such that $|\xi|=\omega$ and let C be any chain of busy choice sequences. $\mathrm{C} \cong \xi$ if and only if there is an isomorphism between C
and ξ with respect to the reverse of <-relation among busy choice sequences contained in C and the ordinary <-relation on ξ. $\llbracket \mathfrak{F} \rrbracket^{r}=\xi$ if and only if there is a chain C of busy choice sequences in \mathfrak{F} such that $\mathrm{C} \cong \xi$ and there is no chain C^{\prime} of busy choice sequences in \mathfrak{F} such that $\mathrm{C}^{\prime} \cong \xi+1$. Finally, let $\mathfrak{C}_{\xi}^{r}=\left\{\mathfrak{F}: \llbracket \mathfrak{F} \rrbracket^{r} \leqslant \xi\right\}$. Clearly, $\bigcup_{n \geqslant 0} \mathfrak{C}_{n} \subset \mathfrak{C}_{\xi}^{r}$ for every ξ with $|\xi|=\omega$. In order to establish that

$$
\begin{equation*}
\mathrm{L} \text { is uncompact if } \mathfrak{C}_{f} \subseteq \mathfrak{C}(\mathrm{~L}) \subseteq \mathfrak{C}_{\xi}^{r} \text { for some } \xi \text { with }|\xi|=\omega \text {, } \tag{36}
\end{equation*}
$$

we need to define a Ψ_{ξ} in a way similar to the way we defined Φ_{ξ} above. More precisely, we use the same strategy but arrange the pos-companion roots and negcompanion roots in such a fashion that forces every model for Ψ_{ξ} to contain an infinite chain of busy choice sequences that does not terminate toward the direction of past rather than future. Let $\Sigma_{\xi}, \Pi_{\xi}, A_{\zeta}, B_{\zeta}$ be as specified above, and let $\Psi_{0}=\Phi_{0}$. For each ζ with $0 \leqslant \zeta<\omega \times(\xi+1)$, let

$$
\begin{aligned}
\Psi_{\zeta+1}= & \Psi_{\zeta} \cup\left\{A_{\eta}: \omega \times(\zeta+1) \leqslant \eta<\omega \times(\zeta+2)\right\} \\
& \cup\left\{B_{\eta}: \omega \times(\zeta+1) \leqslant \eta<\omega \times(\zeta+2)\right\} \\
& \cup\left\{[\alpha]\left(p_{\eta} \wedge q_{\zeta}^{\alpha}\right): 0 \leqslant \eta<\omega \times(\zeta+1)\right. \\
& \wedge \omega \times(\zeta+1) \leqslant \varsigma<\omega \times(\zeta+2)\} ;
\end{aligned}
$$

and for each limit ordinal ζ with $\omega \leqslant \zeta \leqslant \omega \times(\xi+1)$, let

$$
\begin{aligned}
\Psi_{\zeta}= & \left(\cup_{\eta \in \zeta} \Psi_{\zeta}\right) \cup\left\{A_{\eta}: \omega \times \zeta \leqslant \eta<\omega \times(\zeta+1)\right\} \\
& \cup\left\{B_{\eta}: \omega \times \zeta \leqslant \eta<\omega \times(\zeta+1)\right\} \\
& \cup\left\{[\alpha]\left(p_{\eta} \wedge q_{\zeta}^{\alpha}\right): 0 \leqslant \eta<\omega \times \zeta \wedge \omega \times \zeta \leqslant \varsigma<\omega \times(\zeta+1)\right\} .
\end{aligned}
$$

It can be shown that every model for Ψ_{ξ} contains a chain C of busy choice sequences such that $\mathrm{C} \cong \xi+1$, and it can also be shown that each finite subset of Ψ_{ξ} has a finite model, and hence (36) holds. Details are omitted.

Our method applied in this paper has a limit. As the reader may have realized, although we can handle the situations in which chains of busy choice sequences are countable, there is no way to apply our strategy here to deal with situations in which there are chains of busy choice sequences that are uncountable, unless we extend the language. If we take order types into considerations, the following are among the farthest we can reach by applying the strategy here:

$$
\begin{aligned}
& \text { if }|\mathrm{PV}|=\kappa \text {, then } \mathrm{L} \text { is uncompact if } \mathfrak{C}_{f} \subseteq \mathfrak{C}(\mathrm{~L}) \subseteq \mathfrak{C}_{\xi} \text { for some } \xi \text { with }|\xi|=\kappa, \\
& \text { if }|\mathrm{PV}|=\kappa \text {, then } \mathrm{L} \text { is uncompact if } \mathfrak{C}_{f} \subseteq \mathfrak{C}(\mathrm{~L}) \subseteq \mathfrak{C}_{\xi}^{r} \text { for some } \xi \text { with }|\xi|=\kappa \text {; }
\end{aligned}
$$

where PV is the set of propositional variables in the object language, and κ is any cardinal, and \mathfrak{C}_{ξ} and \mathfrak{C}_{ξ}^{r} are just like what we defined above, but replacing ω by κ.

NOTES

1. See 2] or 23] for a historical review.
2. The names bstit and cstit are found in [16, 14], and 15], etc. Note that Horty and Belnap used bstit and cstit as approximations of the operators that Chellas and Brown proposed.
3. This corresponds to the result that over the class of stit structures containing no busy choice sequences, there are only ten distinct stit modalities, where a stit modality is a sequence of $[\alpha]$ and \sim, and two such modalities σ and τ are distinct over a class \mathfrak{C} of stit structures if $\sigma p \longleftrightarrow \tau p$ is not valid in all stit structures in \mathfrak{C}. These stit modalities, when we write $[\alpha]$ as \square, are exactly the same modalities as those in modal logic S4.2 (see [12]), though the two structures of modalities are different.
4. I am not sure who is the first person who proved that KW is uncompact. One can find such a proof in [18], while in both 18] and 17], Hughes and Cresswell noted that the idea of the proof there was suggested by Fine.
5. For axioms and rules of inference in $L_{\min }$, see Section 1. $L_{\max }$ can be axiomatized by taking $\sim[\alpha] p$ as the only (modal) axiom and taking modus ponens and substitution as rules of inference. It has been shown in [35] that every consistent stit logic is a sublogic of $L_{\text {max }}$, which makes $L_{\text {max }}$ the only stit logic that is post complete.
6. That is to say, we use $\bar{\alpha}$ for $V(\alpha)$, where $V(\alpha) \in$ Agent.
7. The uniqueness of witness follows immediately from the Witness Identity Lemma in 111. It also follows from our Fact 2.1 above, as has been shown in 33 .
8. In [32], this logic is axiomatized as taking all $\mathrm{A} 1-\mathrm{A} 8$ as axiom schemata and taking modus ponens, RE and another rule RS as rules of inference. 35] eliminates the rule RS. There is a gap in the proof presented in [32]. A modified proof can be found in [8].
9. In 29], $\mathrm{L}_{\text {refref }}$ is shown to be decidable and is axiomatized with an extra axiom $[\alpha]\left(\sim[\alpha]\left(A \wedge[\alpha]\left(B \wedge \sim[\alpha]\left(B \wedge C^{\alpha}\right)\right)\right) \wedge C^{\alpha}\right) \rightarrow[\alpha] B$. Because it is easy to verify that this formula is a theorem of $\mathrm{L}_{\text {min }}$, we conclude that $\mathrm{L}_{\text {min }}$ plus refref equivalence is deductively equivalent to the logic given in 29 .
10. For a discussion of busy choice sequences and a measure of complexity of chains of busy choice sequences, the reader is referred to $\S 2$ in 33 .
11. For all we know, a stit logic L satisfying the antecedent of (6) may not satisfy that of (4)—there may be, e.g., an L containing $[\alpha] q \rightarrow[\alpha] \sim[\alpha] \sim[\alpha] q$ and some formula not contained in $\mathrm{L}_{\text {refref }}$ such that each finite structure is an L -structure, and thus $\mathfrak{C}(\mathrm{L}) \subseteq \mathfrak{C}_{0}$ (see (5) on p. 6) and $\mathfrak{C}_{f} \subseteq \mathfrak{C}(\mathrm{~L})$. It is not clear now whether the two refref conditionals are "deductively equivalent" or whether each proper extension L of $L_{\text {refref }}$ does not take all finite structures as L-structures.
12. Regarding its application in the main lemma, Lemma 3.4 night have been formulated in such a way that we replace " $s=\left\{m:\left.m \in i\right|_{>p}-i_{c} \wedge \forall m^{\prime} \forall w\left(m^{\prime} \in i_{c} \wedge w \in p \rightarrow m^{\prime} \equiv{ }_{w}\right.\right.$ $m)\}$ " by " $s=\left.i\right|_{>w}-i_{c}$ and p has no greatest element". We formulate Lemma 3.4 the way it is now because we need to apply it to Theorem 3.8, under a situation different from that in the main lemma.
13. See $\S 2.3, \S 2.4, \S 2.6, \S 2.8$, and $\S 2.9$ in 29 .

REFERENCES

[1] Bartha, P., "Conditional obligation, deontic paradoxes, and the logic of agency," Annals of Mathematics and Artificial Intelligence, vol. 9 (1993), pp. 1-23. Zbl 0866.03010 MR 95c:03037 1
[2] Belnap, N., "Backwards and forwards in the modal logic of agency," Philosophy and Phenomenological Research, vol. 51 (1991), pp. 777-807. 1.1.|2.|2.5
[3] Belnap, N., "Before refraining: concepts for agency," Erkenntnis, vol. 34 (1991), pp. 137-69. 1
[4] Belnap, N., and Bartha, P., "Marcus and the problem of nested deontic modalities," pp. 174-97 in Modality, Morality, and Belief, edited by W. Sinnott-Armstrong, D. Raffman, and N. Asher, Cambridge University Press, Cambridge, 1995.
[5] Belnap, N., and Perloff, M., "Seeing to it that: a canonical form for agentives," Theoria, vol. 54 (1988), pp. 175-99. MR 11312961
[6] Belnap, N., and Perloff, M., "The way of the agent," Studia Logica, vol. 51 (1992), pp. 463-84. Zbl 0789.03023MR 94a:03024 1.1.2
[7] Belnap, N., and Perloff, M., "In the realm of agents," Annals of Mathematics and Artificial Intelligence, vol. 9 (1993), pp. 25-48. Zbl 0866.03009|MR 95b:03016 1
[8] Belnap, N., M. Perloff, and M. Xu, Facing the Future: A Modal Logic of Agency in Our Indeterminist World, Oxford University Press, Oxford, forthcoming. 5
[9] Brown, M., "On the logic of ability," Journal of Philosophical Logic, vol. 7 (1988), pp. 1-26. Zbl 0653.03003MR 89e:03023 1
[10] Chellas, B. F., The Logical Form of Imperatives, Perry Lane Press, Stanford, 1969.
[11] Chellas, B. F., "Time and modality in the logic of agency," Studia Logica, vol. 51 (1992), pp. 485-517. Zbl 0788.03002/MR 94g:03057 1.15
[12] Dummett, M., and Lemmon, E., "Modal logics between S4 and S5," Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 5 (1959), pp. 250-64. MR 28:27 5
[13] Horty, J. F., "An alternative stit operator," manuscript, Department of Philosophy, University of Maryland, College Park, 1989.
[14] Horty, J. F., "Agency and obligation," Synthese, vol. 108 (1996), pp. 269-307. Zbl 0935.03014|MR 97e:03023 1.15
[15] Horty, J. F., Agency and Deontic Logic, Oxford University Press, Oxford, forthcoming. 1.5
[16] Horty, J. F., and N. Belnap, "The deliberative stit: a study of action, omission, ability, and obligation," Journal of Philosophical Logic, vol. 24 (1995), pp. 583-644. Zbl 0846.03001|MR 98c:03046 1,5
[17] Hughes, G. E., and Cresswell, M. J., A Companion to Modal Logic, Methuen, London, 1984. Zbl 0625.03005MMR 86j:03014
[18] Hughes, G. E., and Cresswell, M. J., A New Introduction to Modal Logic, Routledge, London, 1996. Zbl 0855.03002 MR 99j:03011 1.5.5
[19] Perloff, M., "Stit and the language of agency," Synthese, vol. 86 (1991), pp. 379-408. \square
[20] Perloff, M., "On the logical grammar of imperatives," manuscript, Department of Philosophy, University of Pittsburgh, Pittsburgh, 1993. 1
[21] Prior, A., Past, Present and Future, Oxford University Press, Oxford, 1967. Zbl 0169.29802|MR 36:38 1.2
[22] Reynolds, M. "Axiomatizing U and S over integer time", pp. 117-132 in Proceedings of 1 st International Conference on Temporal Logic, Bonn, edited by D. M. Gabbay and J. J. Ohlbach, Springer-Verlag, Berlin, 1994. Zbl 0949.03507MR 95k:03031
[23] Segerberg, K., "Getting started: Beginnings in the logic of action," Studia Logica, vol. 51 (1992), pp. 347-78. Zbl 0786.03003MR 93k:03028 5
[24] Thomason, R. H., "Indeterminist time and truth-value gaps," Theoria, vol. 36 (1970), pp. 264-81. Zbl 0269.02007MR 47:19 1.2
[25] Thomason, R. H., "Combinations of tense and modality," pp. 135-65 in Handbook of Philosophical Logic, vol. 2, edited by D. Gabbay and G. Guenthner, D. Reidel, Dordrecht, 1984. Zbl 0875.03047 MR 8445982
[26] von Kutschera, F., "Bewirken," Erkenntnis, vol. 24 (1986), pp. 253-81. 1
[27] von Kutschera, F., "Causation," Journal of Philosophical Logic, vol. 22 (1993), pp. 563-88. Zbl 0790.03004MR 95d:03026 1
[28] Wang, X., "The McKinsey axiom is not compact," The Journal of Symbolic Logic, vol. 57 (1992), pp. 1230-38. Zbl 0785.03009 MR 93c:03017 1
[29] Xu, M., "Decidability of stit theory with a single agent and refref equivalence," Studia Logica, vol. 53 (1994), pp. 259-98. Zbl 0802.03007|MR 95g:0302]_1.1.|.1.2.|2.|...4. 4.4.4.5.5.5.5
[30] Xu, M., "Doing and refraining from refraining," Journal of Philosophical Logic, vol. 23 (1994), pp. 621-32. Zbl 0813.03004|MR 95h:03050 1.|2.|2.|2.|3.|3.|3.4
[31] Xu, M., "Decidability of deliberative stit theories with multiple agents," pp. 332-48 in Proceedings of 1st International Conference on Temporal Logic, Bonn, edited by D. M. Gabbay and J. J. Ohlbach, Springer-Verlag, Berlin, 1994. Zbl 0949.03501 MR 95k:03035 1,1
[32] Xu, M., "On the basic logic of stit with a single agent," The Journal of Symbolic Logic, vol. 60 (1995), pp. 459-83. Zbl 0827.03003MR 97b:03045 1, 2, 4. 5. 5
[33] Xu, M., "Busy choice sequences, refraining formulas and modalities," Studia Logica, vol. 54 (1995), pp. 267-301. Zbl 0824.03008 MR 96g:03039, 1., 3. 5. 5. 5. 5. 5. 5
[34] Xu, M., "Axioms for deliberative stit," Journal of Philosophical Logic, vol. 27 (1998), pp. 505-52. Zbl 0917.03007MR 99d:03017 1, 1, 4
[35] Xu, M., "Choice sets and axioms for achievement stit," manuscript, Department of Philosophy, Indiana University at Bloomington, 1998. 1.1 .12 .2 .12 .14 .5 .5

Department of Philosophy
Indiana University at Bloomington
Bloomington, IN 47405
email: mxu@indiana.edu
mxu@indiana.edu

Cycorp Inc.
3721 Executive Center Dr.
Suite 100
Austin, TX 78731
mingxu@cyc.com
mingxu01@hotmail.com

