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Uncompactness of Stit Logics Containing
Generalized Refref Conditionals

MING XU

Abstract In this paper we prove the uncompactness of every stit logic that
contains a generalized refref conditional and is a sublogic of the stit logic with
refref equivalence, a syntactical condition of uncompactness that covers in-
finitely many stit logics. This result is established through the uncompactness
of every stit logic whose semantic structures contain no chain of busy choice se-
quences with cardinality n, where n is any natural number > 0. The basic idea in
the proof is to apply the notion of companions to stit sentences in finding busy
choice sequences in structures, and to make use of a relation between chains
of busy choice sequences and generalized refref conditionals in connecting the
two conditions of uncompactness mentioned above.

1 Introduction Modal logic of agency has a long tradition which has been repre-
sented by many philosophers and logicians in this century.1 Following this tradition,
several theories of agency have been proposed by von Kutschera, Horty, Belnap, and
Perloff in a series of articles such as [26], [13], [16], [5], [6], and [7]. These theo-
ries are now often referred to as “stit theories.” They start with “stit sentences” such
as [α stit: A] (read “α sees to it that A,” where α is an agent term and A is any sen-
tence) whose semantic interpretation, based on the branching time theory proposed
by Prior [21] and Thomason [24], is roughly that A is guaranteed true due to a choice
made by α. If, in this context, the moment at which [α stit: A] is evaluated is the
same moment at which α makes the choice, the result theory is called the delibera-
tive stit, or dstit. If the moment at which [α stit: A] is evaluated is properly later than
the moment at which α makes the choice, the result theory is called the achievement
stit, or astit. Two close relatives of these theories are sometimes called bstit and cstit,
where b refers to Brown [9] and c to Chellas ([10] and [11]).2 Conceptual or techni-
cal discussions on astit, bstit, cstit, or dstit (including combinations of stit with other
branches of philosophical logic) can be found, in addition to those mentioned above,
in Bartha [1], Belnap and Bartha [4], Horty ([14] and [15]), von Kutschera [27], and
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Xu [31] and [34] (dstit), and Belnap ([2] and [3]) and Perloff ([19] and [20]) (astit).
The present paper focuses on astit theory. From now on, we use stit for astit.

The main purpose of this paper is to prove that for each stit logic L,

(1) L is uncompact if L contains a “generalized refref conditional” and is a
sublogic of the stit logic with “refref equivalence” (presented in Xu [29]);

(2) L is uncompact if the class of all L-structures includes all finite structures
and, for some n � 0, includes no structure containing a chain C of “busy
choice sequences” with |C| > n, where |C| is the cardinality of C.

Some explanations of the terms used in (1) and (2) seem necessary. “Generalized re-
fref conditionals” are those sentences that indicate, say, doing implies (or is implied
by) refraining from refraining, refraining implies (or is implied by) refraining from
refraining from refraining, and so on, each of which amounts to a postulate concern-
ing a certain relation between modes of actions/inactions. A “busy choice sequence”
is like a “super task” that indicates a situation in which an agent has infinitely many
choice points within a finite time. This notion of busy choice sequences, introduced
in Belnap [2] and discussed in Belnap and Perloff [6] and Xu ([29], [30], and [33]),
is central to a study of distinct modes of actions/inactions in stit theory. For instance,
that there is no busy choice sequence is equivalent to that doing implies (or is implied
by, or is equivalent to) refraining from refraining from doing, and hence there are only
eight distinct modes of actions/inactions when there is no busy choice sequence.3 Our
study of compactness of the stit theories amounts to a study that answers the following
questions (and incidentally, the answers are all negative).

(a) When doing is taken to imply (or to be implied by, or to be equivalent to)
refraining from refraining, does a sentence following from a set of premises
follow from finitely many of them?

(b) When we postulate that there is no busy choice sequence, does a sentence
following from a set of premises follow from finitely many of them?

(c) When refraining is taken to imply (or to be implied by, or to be equivalent
to) refraining from refraining from refraining, does a sentence following
from a set of premises follow from finitely many of them?

(d) When we postulate that there is no chain C of busy choice sequences with
|C| > 1, does a sentence following from a set of premises follow from
finitely many of them?

(e) . . .

Note that there are infinitely many stit logics satisfying the antecedent of (1) as well
as that of (2). Note also that to establish (1), (2) alone is not enough. We need to show
that

(3) each stit logic satisfying the antecedent of (1) satisfies that of (2).

Note, finally, that (1) provides a sufficient syntactical condition, whereas (2) provides
a sufficient semantic condition, of uncompactness. We establish (1) through (2), and
establish (2) through the use of “companions to stit sentences” applied in Xu ([29],
[32], [34], and [35]), though the reader’s familiarity with that notion is not presup-
posed. The notion of companions to stit sentences is a basic technical notion intro-
duced to obtain syntactical characterizations of astit and dstit logics. In this paper, for
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the first time, we apply this notion in the context of chains of busy choice sequences
to obtain the uncompactness results.

Uncompactness results in nonclassical logic are familiar phenomena. In modal
logic, for example, KM, KW, and KW.3 are known to be uncompact (see Wang [28]
and Hughes and Cresswell [18]4 and [17]); and in tense logic, the U,S -tense logic over
integer time is an example of uncompact logics (see Reynolds [22]). There are, nev-
ertheless, many modal logics and tense logics that are known to be compact, much
more than those that are known to be uncompact. In contrast to this, only two astit
logics are known to be compact—one is the minimal logic Lmin, with a single agent,
characterized by the class of all semantic structures, and the other is the largest con-
sistent stit logic Lmax, with a single agent, characterized by the class of all structures
containing no choice points (see [35] for details).5 This suggests that in the area of
astit, unlike the area of modal logic or tense logic, or even that of dstit (see [31]),
compactness might not be a common phenomenon.

Section 2 presents basic stit syntactical as well as semantic notions and defines
other preliminary notions such as generalized refref conditionals and busy choice se-
quences. Section 3 proves (3), and Section 4 establishes both (1) and (2) above. And
finally, Section 5 presents some remarks on our uncompactness results.

2 Preliminaries Although our results concerning “generalized refref conditionals”
and uncompactness hold for stit theories with multiple agents, the formal language
used in this paper contains only a single non-truth-functional operator
[α stit: ] in addition to denumerably many propositional variables and the truth-
functional operators ∼ and ∧ . Formulas are defined as usual, except that [αstit: A]
is a formula whenever A is. We will use A, B, C, and so on, to range over for-
mulas, and use �,�, and so on, to range over sets of formulas. Ordinary truth-
functional operators such as ∨ , → , and ←→ , and propositional constants �
and ⊥ are introduced as abbreviations. We will use [α]A as an abbreviation of
[α stit: A], and use Aα as an abbreviation of A ∧ ∼[α]A.

Let A be any formula. A-refraining formulas (with respect to α) is defined as
follows:

(i) [α]A is an A-refraining formula (with respect to α);

(ii) if B is an A-refraining formula (with respect to α), so is [α]∼B.

For each A-refraining formula B, the A-refraining degree of B, written RdgA(B), is
defined in a parallel way:

(i) RdgA([α]A) = 0;

(ii) if B is an A-refraining formula and RdgA(B) = n, RdgA([α]∼B) = n + 1.

Let us fix a propositional variable q. The q-refref equivalence (refref equivalence
for short) is the formula [α]q ←→ [α]∼[α]∼[α]q. A (q-)refref conditional is either
[α]q → [α]∼[α]∼[α]q or [α]∼[α]∼[α]q → [α]q. A generalized (q-)refref condi-
tional is any formula of the form A → [α]∼[α]∼A or [α]∼[α]∼A → A, where A
is a q-refraining formula. In this context, if Rdgq(A) = n, we call A → [α]∼[α]∼A
and [α]∼[α]∼A → A generalized refref conditionals with degree n. Clearly, a refref
conditional is a generalized refref conditional with degree 0.
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Based on branching time theory proposed by Prior and Thomason (see [21],
[24], and [25]), a semantic structure for astit (briefly, a structure) is any quintu-
ple F = 〈T,�, Instant, Agent, Choice〉 satisfying the following postulates: 〈T,�〉
is a tree-like frame, that is, T is a nonempty set, whose elements w, m, and so on,
are called moments, and � is a partial order on T subject to historical connection,
∀m∀m′∃w(w � m ∧ w � m′), and no downward branching, ∀m∀w∀w′(w � m ∧
w′ � m → w � w′ ∨ w′ � w). We use w < m for w � m and w = m. A maximal
chain h of moments in T (or a branch of the tree) is called a history, representing a
possible course of history. We use H, H ′ and so on, to range over sets of histories,
and for each w ∈ T , let H(w) = {h: w ∈ h}. Two histories h and h′ are undivided
at w, written h ≡w h′, if and only if ∃w′(w < w′ ∧ w′ ∈ h ∩ h′). Instant, whose ele-
ments i, i′, and so on, are called instants, is a partition of T satisfying unique intersec-
tion, ∀i∀h∃!m({m} = i ∩ h), and order preservation, ∀i∀i′∀h∀h′(m(i,h) � m(i′,h) ←→
m(i,h′) � m(i′,h′)) where {m(i,h)} = i ∩ h, and so on. We define i(m) to be the in-
stant to which m belongs, and w < i if and only if ∃m(m ∈ i ∧ w < m). Provided
w < i, we use i|>w for {m: m ∈ i ∧ w < m}. Agent is a nonempty set whose ele-
ments a, b, and so on, are called agents. Choice is a function on Agent × T such that
for each a ∈ Agent and each w ∈ T , Choice(a,w) is a partition of H(w). Elements of
Choice(a,w) are called possible choices for a at w. h and h′ are choice equivalent for
a at w, written h ≡a

w h′, if and only if ∃H(H ∈ Choice(a,w) ∧ h, h′ ∈ H). Provided
m, m′ ∈ i|>w, m and m′ are choice equivalent for a at w, written m ≡a

w m′, if and only
if ∃h∃h′(h ≡a

w h′ ∧ {m} = i ∩ h ∧{m′} = i ∩ h′). The function Choice is subject to the
conditions no choice between undivided histories, ∀h∀h′∀a∀w(h ≡w h′ → h ≡a

w h′),
and independence of agents: for each w ∈ T , and for each function sw on Agent such
that sw(a) ∈ Choice(a,w) for all a ∈ Agent,

⋂
a∈Agent sw(a) = ∅. An agent a has

vacuous choice at w if and only if Choice(a,w) = {H(w)}.
The following fact, which is a consequence of no choice between undivided his-

tories, is established as §1.2 in Xu [30].

Fact 2.1 Let F be any structure in which w′ < w < m ∈ i and m′ ∈ i|>w. Then for
every agent a, m′ ≡a

w′ m. And in particular, if w′ � w and m′ ≡a
w m, then m′ ≡a

w′ m.

A model M on F is a pair 〈F, V〉, where F = 〈T,�, Instant, Agent, Choice〉 is a struc-
ture, and V is a valuation assigning to each agent term α an agent V (α) = ᾱ ∈ Agent,6

and to each propositional variable a subset of {〈m, h〉: m ∈ h}. That a formula A is
true in M at a moment/history pair 〈m, h〉 with m ∈ h, written M |=m/h A, is defined
recursively as follows, where i = i(m) and q is any propositional variable:

M |=m/h q iff 〈m, h〉 ∈ V (q);
M |=m/h ∼A iff M |=m/h A (not M |=m/h A);
M |=m/h A ∧ B iff M |=m/h A and M |=m/h B;
M |=m/h [α]A iff there is a w < m and an m′′ ∈ i|>w such that

(i) ∀m′∀h′(m′ ≡ᾱ
w m ∧ m′ ∈ h′ → M |=m′/h′ A),

(ii) ∃h′′(m′′ ∈ h′′ ∧ M |=m′′/h′′ A).

With reference to the clause defining M |=m/h [α]A above, we call (i) the positive
condition, (ii) the negative condition, w a witness to [α]A at m, and m′′ a counter. A
is settled true at m in M, written M |=m A, if and only if M |=m/h A for all h in M



STIT LOGICS 489

with m ∈ h. For each set � of formulas, and for each model M, M |=m/h � if and
only if M |=m/h A for all A ∈ �, and M |=m � if and only if M |=m/h � for every
h in M with m ∈ h. A (or �) has a model M if M |=m/h A (M |=m/h �) for some
m, h in M with m ∈ h. F is a structure of A, or simply an A-structure (a structure of
�, or a �-structure), written F |= A (F |= �), if and only if M |=m A (M |=m �) for
every model M on F and every m in M. If F |= A, we also say that A is valid in F.

The following are easily provable consequences of our semantic definitions and
are useful for our upcoming discussions.

Fact 2.2 Let M = 〈T,�,Instant,Agent,Choice, V〉 be any model. Then the follow-
ing hold:

1. if M |=m/h [α]A, M |=m [α]A;

2. if M |=m [α]A, and if w is a witness to [α]A at m, then w is the unique witness
to [α]A at m;7

3. if M |=m [α]A with witness w, Choice(ᾱ,w) = {H(w)}.
It has been shown in [29] and [32] that each of the following A1 – A8 is valid in every
structure, where A, B, C are any formulas.

A1 ∼[α]�
A2 [α]A → A
A3 [α]A → [α][α]A
A4 [α]A ∧ [α]B → [α](A ∧ B)

A5 [α]([α]A ∧ B) → [α](A ∧ B)

A6 [α](A ∧ B) ∧ ∼[α]B → [α](A ∧ Bα)

A7 [α](∼[α](A ∧ B) ∧ Bα) ←→ [α](∼[α]A ∧ Bα)

A8 [α]A ←→ [α](A ∧ Bα) ∨ [α](A ∧ ∼[α](A ∧ Bα))

A stit logic with a single agent (stit logic for short) is a set L of formulas that con-
tains all instances of truth-functional tautologies and all instances of A1 – A8, and
is closed under substitution, modus ponens, and RE (i.e., A ←→ B ∈ L only if
[α]A ←→ [α]B ∈ L). For each stit logic L, let us use C(L) for the class of all L-
structures, that is, C(L) = {F: F |= L}. For the smallest stit logic Lmin = ⋂{L: L is
a stit logic}, C(Lmin) is the class of all structures (see [35]).8 The smallest stit logic
Lrefref containing refref equivalence is referred to as the stit logic with refref equiva-
lence, and is shown in [29] and [30] to be characterized by the class of all structures
containing no “busy choice sequences” (to be defined below) and C(Lrefref) = {F: F

contains no busy choice sequences}.9 The largest consistent stit logic Lmax = ⋃{L: L
is a consistent stit logic} is characterized by the class of all frames containing no
choice points, that is, frames containing no moments at which an agent has nonva-
cuous choice (see [35]).

Let C be any class of structures. A formula A follows from a set � of formulas
with respect to C, written � |=C A, if and only if for every F ∈ C, every M on F,
and every m, h in M with m ∈ h, M |=m/h � only if M |=m/h A. For any C, |=C is
compact if and only if whenever � |=C A, � |=C A for some finite subset � of �, or
equivalently, for every set � of formulas, � has a model M on an F ∈ C if each finite
subset � of � has a model M′ on an F′ ∈ C. Let L be any stit logic. We say that L is
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compact if |=C(L) is compact. The compactness of Lmin and Lmax are shown in [35].
We show in this paper that the following holds for every stit logic L.

(4) L is uncompact if L ⊆ Lrefref and L contains a generalized refref conditional.

In particular, Lrefref is uncompact since Lrefref contains [α]q → [α]∼[α]∼[α]q and
[α]∼[α]∼[α]q → [α]q.

As indicated at the beginning of this paper, we also want to establish a sufficient
semantic condition of uncompactness. To that end, we need the notion of busy choice
sequences. Let F = 〈T,�, Agent, Instant, Choice〉 be any structure with a ∈ Agent.
A busy a-choice sequence in F (or in M on F) is an upper- and lower-bounded infinite
chain of “a-choice points” (moments at which a has nonvacuous choice), as discussed
in [2] and [6]. For our purpose, we define a busy a-choice sequence in F (or in M on
F) as an upper- and lower-bounded chain of a-choice points that does not terminate
in the upward direction, that is, a nonempty chain BC of moments such that

(i) ∃w∃m∀w′(w′ ∈ BC → w � w′ < m),

(ii) ∀w(w ∈ BC → Choice(a,w) = {H(w)}),
(iii) ∀w(w ∈ BC → ∃w′(w′ ∈ BC ∧ w < w′)).

We will fix a single agent for our discussion, and therefore we will speak of “busy
choice sequences” rather than “busy a-choice sequences.” We will use BC,BC′, and
so on, to range over busy choice sequences. Let BC < BC′ if and only if ∀w∀w′(w ∈
BC ∧ w′ ∈ BC′ → w < w′). A chain of busy choice sequences in F (or in M) is
defined in an obvious way. Let us use C,C′, and so on, to range over chains of busy
choice sequences. We use w � BC for ∀w′(w′ ∈ BC → w � w′), BC < i for ∀w(w ∈
BC → w < i), w � C for ∀BC(BC ∈ C → w � BC), C < i for ∀BC(BC ∈ C → BC <

i), and BC < C for ∀BC′(BC′ ∈ C → BC < BC′). w < BC, w < C, BC < w, and
C < w, and so on, are defined in an obvious way. A past in a structure (or a model) is
a nonempty set p of moments that is upper-bounded and closed downward. Let p be
any past. p < w if and only if ∀w′(w′ ∈ p → w′ < w), p < i if and only if p < m
for some m ∈ i. We use i|>p for {m: m ∈ i ∧ p < m} (provided p < i), and use, for
each BC, pBC for the smallest past including BC, that is, pBC = {w: ∃w′(w′ ∈ BC ∧
w � w′)}. For each n � 0, ‖F‖ = n if and only if there is a chain C of busy choice
sequences in F such that |C| = n and there is no chain C′ of busy choice sequences in
F such that

∣∣C′∣∣ > n.10

It has been shown in [2], [29], and [30] that the following hold for every structure
F, where q is any propositional variable.

(5) ‖F‖ = 0 iff F |= [α]q ←→ [α]∼[α]∼[α]q
iff F |= [α]q → [α]∼[α]∼[α]q
iff F |= [α]∼[α]∼[α]q → [α]q.

Let F = 〈T,�, Instant, Agent, Choice〉 be any structure. We say that F is a finite
structure if T is finite. A model M on F is a finite model if F is a finite structure.
Let C f be the class of all finite structures, and for each n � 0, let Cn = {F: ‖F‖ � n}.
Obviously, C f ⊆ C0. In addition to establishing (4) above, we will establish the fol-
lowing for every stit logic L.

(6) L is uncompact if C f ⊆ C(L) ⊆ Cn for some n � 0.
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Although (6) may not be equivalent to (4) above,11 (6) does guarantee (4) if we can
show that the following hold for every stit logic L.

(7) for each n � 0, C(L) ⊆ Cn if L contains a refref generalized conditional with
degree n;

and
(8) C f ⊆ C(L) if L ⊆ Lrefref.

But (8) is trivial, for by (5), C f ⊆ C0 = C(Lrefref). We thus only need to show (6) and
(7) in order to establish (4). In Section 3 we prove that a generalized refref conditional
with degree n � 0 is valid in a structure F only if ‖F‖ � n, from which (7) follows.
Then in Section 4 we prove (6) (Theorem 4.6) and then (4) (Theorem 4.7).

3 Busy choice sequences and generalized refref conditionals In this section, we
prove that each chain C of busy choice sequences with |C| � n + 1 will suffice to
invalidate all generalized refref conditionals [α]∼[α]∼A → A and A → [α]∼[α]∼A
with q-refraining formulas A such that Rdgq(A) � n, from which (7) above follows.
The main lemma in this section is Lemma 3.7. Since we have only one agent term
α, we will use m′ ≡w m for m′ ≡ᾱ

w m. The fact below has been shown in [30] and is
useful later.

Fact 3.1 Let M be any model in which p < i and let A be any formula. Suppose
that M |=i|>p A, and that for every w ∈ p, there is a w′ ∈ p such that w < w′ and
M |=i|>w′ A. Then M |=i|>p ∼[α]A.

The following has been established as §2.3 in [30] which constitutes the base step of
the induction in our proof of Lemma 3.7.

Fact 3.2 Suppose that F is any structure in which there is a busy choice sequence
BC < m∗ ∈ i. Then there is a model M on F such that M |=i ∼[α]∼[α]q, and M |=i B
and M|=i∼B for every subformula B of [α]q.

Our proof of the main result in this section depends on a certain relation between
structures and their substructures and between models and their submodels. A sub-
structure of a structure F = 〈T,�, Instant, Agent, Choice〉 is any structure F′ =
〈T ′,�′, Instant′, Agent′, Choice′〉 satisfying the conditions T ′ ⊆ T , ∀w∀w′(w ∈ T ′ ∧
w′ ∈ T ∧w � w′ → w′ ∈ T ′), �′= �∩ (T ′ × T ′), Instant′ = {i′: ∃i(i ∈ Instant ∧ i′ =
i ∩ T ′ = ∅)}, Agent′ = Agent, and for every a ∈ Agent′ and w ∈ T ′,

Choice′(a,w) = { f (H): H ∈ Choice(a,w)}
where f (H) = {h′: ∃h(h ∈ H ∧ h′ = h ∩ T ′)}.

Note that if F′ is a substructure of F, then for any a ∈ Agent′ = Agent and any moment
w ∈ T ′, m′ ≡a

w m if and only if m′ ≡′a
w m for all m, m′ ∈ T , where m′ ≡′a

w m means
that in F′, m′ and m are choice equivalent for a at w.

A model M′ = 〈F′, V ′〉 is a submodel of a model M = 〈F, V〉 with respect to
an instant i′ in M′ if F′ is a substructure of F and for each agent term α, V ′(α) =
V (α); and for each m ∈ i′, each h in F with m ∈ h, and each propositional variable
q, 〈m, h′〉 ∈ V ′(q) if and only if 〈m, h〉 ∈ V (q), where h′ is the history in F′ such that
h′ = h ∩ T ′. The following has been obtained as §2.5 in [30].
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Fact 3.3 Let M′ = 〈
T ′,<′, Instant′, Agent′, Choice′〉 be a submodel of M with re-

spect to an instant i′ in M′, and let � be any set of formulas closed under subformulas.
Suppose that for each agent term α and each formula A, [α]A ∈ � only if M′ |=i′ A.
Then for every formula A ∈ �, every m ∈ i′, and every h in M with m ∈ h, M |=m/h A
if and only if M′ |=m/h′ A, where h′ is in M′ with h′ = h ∩ T ′.

Let F be any structure, and let T ′ be a subset of T and �′= � ∩ (T ′ × T ′) such
that historical connection and closed-upwardness are satisfied. Then T ′ determines
a unique substructure F′ of F. Suppose that c is a nonempty chain in T . We use Tc

for {w: w ∈ T ∧ ∃w′(w′ ∈ c ∧ w′ � w). It is easy to see that Tc determines a unique
substructure F′ of F such that T ′ = Tc. In this case, we use Fc for F′. Similarly, given
an instant i in F, we use ic for i ∩ Tc, and use Mc for the submodel M′ = 〈Fc, Vc〉
of M with respect to ic (ignoring the values of formulas at any m/h with m /∈ i). It
is easy to see by no downward branching that if p < c (i.e., ∀w(w ∈ c → p < w)),
ic = i|>p ∩ Tc ⊆ i|>p.

In the induction step of our proof of the main lemma, there are three respects we
need to consider. Given that |C| � n, BC < C < m∗ ∈ i and p = pBC. It is easy to see
that i = i|>p ∪ s ∪ s′ and that i|>p, s and s′ are mutually disjoint, where s = {m: m ∈
i − i|>p ∧ ∀w(w ∈ p ∧ w < m → m ≡w m∗)} and s′ = {m: m ∈ i − i|>p ∧ ∃w(w ∈
p ∧w < m ∧ m ≡w m∗)}. In order to work out the desired values that formulas should
have at moments in i, we will consider the desired values they have at moments in
i|>p, s, and s′ separately. Lemma 3.4 handles the first, Lemma 3.5 the second, and
Fact 3.6 the third.

Lemma 3.4 Let A be any formula in which the only agent term occurring is α, let
M be any model in which p < w∗ < i, and let c = {w: p < w � w∗}, ic = i ∩ Tc

and s = {m: m ∈ i|>p − ic ∧ ∀m′∀w(m′ ∈ ic ∧ w ∈ p → m′ ≡w m)}. Suppose that
(a) M |=ic B for every subformula B of A, and (b) M |=s q or M |=s ∼q for each
propositional variable q occurring in A. Then the following hold:

(i) M |=s B or M |=s ∼B for every subformula B of A;

(ii) M |=s ∼[α]B for every subformula B of A.12

Proof: By induction on the construction of B: the base case for (i) is provided by (b).
The induction steps for ∼ and ∧ are straightforward. It is thus sufficient to suppose
that (i) holds for B and show that (ii) holds for B. Note first that ic ⊆ i|>p. Suppose for
reductio that M |=m [α]B for some m ∈ s with witness w. Since w < m and m ∈ i|>p,
we have by no downward branching that either w ∈ p or p < w.

Case 1 (w ∈ p): By definition of s, m′ ≡w m for all m′ ∈ ic, and hence M |=ic B
since M |=m [α]B, contrary to (a).

Case 2 (p < w): Consider any counter m∗ to [α]B at m. Then

(9) M |=m∗ B.

We show as follows that m∗ ∈ s. First, since p < w < m∗, m∗ ∈ i|>p. Next, suppose
for reductio that m∗ ∈ ic. Since p < w < m∗ and since w1 < m∗ for some w1 ∈ c,
either w ∈ c or c < w by no downward branching. Hence in either case, w ∈ Tc. It
follows that m ∈ ic since w < m ∈ i|>p and ic = i|>p ∩ Tc, contrary to our assumption
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that m ∈ s. Hence m∗ /∈ ic. Finally, consider any m′ ∈ ic and any w′ ∈ p. Since
m ≡w′ m∗ by Fact 2.1 and the fact that w′ ∈ p < w < m∗, it is then clear that if m∗ ≡w′

m′, we would have m ≡w′ m′, contrary to our assumption that m ∈ s. It follows that
∀m′∀w′(m′ ∈ ic ∧w′ ∈ p → m′ ≡w′ m∗) holds, and hence m∗ ∈ s. But we know, by (i)
and the assumption that M |=m [α]B with m ∈ s, that M |=s B, and hence M |=m∗ B,
contrary to (9).

Since we have contradictions in both cases, it follows that our first assumption,
that is, M |=m [α]B for m ∈ s, must be false. Hence, (ii) must hold for B. �

Lemma 3.5 Let A be any formula in which the only agent term occurring is α, let
M be any model in which p < m∗ ∈ i, and let s = {m: m ∈ i − i|>p ∧∀w(w ∈ p ∧w <

m → m ≡w m∗)}. Suppose that for every propositional variable q occurring in A,
either M |=s q or M |=s ∼q, and

(10) for each w ∈ p, there is a w′ ∈ p such that w < w′ and M |=i|>w′ B for
every subformula B of A.

Then the following hold:

(i) for every subformula B of A, either M |=s B or M |=s ∼B;
(ii) for every subformula B of A, M |=s ∼[α]B.

Proof: Similar to our proof in Lemma 3.4, we suppose that (i) holds for B and prove
that (ii) holds for B. Suppose for reductio that M |=m [α]B for some m ∈ s with wit-
ness w. There are two cases.

Case 1 (w ∈ p): Since m /∈ i|>p, it is then clear that there is a w′ ∈ p such that
w′ ≮ m. It follows from our case assumption that w < w′, and hence by (10), there
is an m′ ∈ i|>p such that w′ < m′ and M |=m′ B. But Fact 2.1 implies that m′ ≡w m∗

and then, since m ≡w m∗ by definition of s, m′ ≡w m, and hence M |=m′ B, a contra-
diction.

Case 2 (w /∈ p): Consider any counter m′′ to [α]B at m. Then

(11) M |=m′′ B.

We show as follows that m′′ ∈ s. First, since w < m′′ and w /∈ p, we have the follow-
ing by no downward branching:

(12) for every w′′ ∈ p with w′′ < m′′, w′′ < w.

Then by Fact 2.1, for every w′′ ∈ p with w′′ < m′′, m′′ ≡w′′ m since w < m and
w < m′′, and hence, m′′ ≡w′′ m∗ since m ≡w′′ m∗ (m ∈ s). Next, if m′′ ∈ i|>p, we
would have p < m′′, and hence by (12), p < w, which implies m ∈ i|>p, contrary to
our assumption that m ∈ s. Hence, m′′ /∈ i|>p. It follows that m′′ ∈ s. But we know,
by (i) and the fact that M |=m [α]B with m ∈ s, that M |=s B, and hence M |=m′′ B,
contrary to (11). From this reductio we conclude that M |=s ∼[α]B. �

The following has been shown as §4.4 in Xu [33].

Fact 3.6 Let D be any formula, let A be any D-refraining formula, and let M be
any model in which p < m∗ ∈ i and s = {m : m ∈ i − i|>p ∧ ∃w(w ∈ p ∧ w < m ∧
m ≡w m∗}. Suppose that M |=i|>p C and M |=i|>p ∼C for each subformula C of
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A. Then, if M |=s D and RdgD(A) is odd, M |=s [α]∼A; and if M |=s ∼D and
RdgD(A) is even, M |=s [α]∼A.

Now we are ready for the main lemma.

Lemma 3.7 Let F be any structure in which there is a chain C of busy choice
sequences such that |C| � n + 1 and let A be a q-refraining formula such that
Rdgq(A) = n. Then there is a model M on F such that for some i in M, M |=i

∼[α]∼A, and M |=i B and M |=i ∼B for every subformula B of A.

Proof: Assume that |C| = n + 1 (or else select a subchain of C with cardinality
n + 1). By definitions of busy choice sequences and instants, there is an i in F such
that C < i. Our proof is by induction on n. Fact 3.2 has provided the base step
for n = 0. We assume that n � 1 and the lemma holds for n − 1 and show that
it holds for n. Since |C| = n + 1 and C < i, there are w∗, m∗,BC, and C1 such
that BC < w∗ � C1 < m∗ ∈ i, {BC} ∪ C1 = C, and |C1| = n. Let p = pBC and
c = {w: p < w � w∗}. Then c is a nonempty chain and Fc is a substructure of F. It is
easy to see that C1 is a chain of busy choice sequences in Fc and C1 < m∗ ∈ ic = i ∩ Tc.
Setting A = [α]∼B with B to be a q-refraining formula such that Rdgq(B) = n − 1,
we know by |C1| = n and the induction hypothesis that there is a model Mc on Fc

such that Mc |=ic ∼[α]∼B, and Mc |=ic C and Mc |=ic ∼C for every subformula C
of B, and hence

(13) Mc |=ic ∼[α]∼B, and Mc |=ic C and Mc |=ic ∼C for every subformula C
of ∼B.

We can define a model M on F in such a way that for each m ∈ i and each h in F

with m ∈ h, if m ∈ ic, 〈m, h〉 ∈ V (q) if and only if
〈
m, h′〉 ∈ Vc(q), where h′ = h ∩ Tc;

if m ∈ i|>p − ic, 〈m, h〉 ∈ V (q); and if m ∈ i − i|>p, 〈m, h〉 ∈ V (q) if and only if
Rdgq(A) is even. Then by (13) and Fact 3.3, we have M |=ic ∼[α]∼B, and M |=ic C
and M |=ic ∼C for every subformula C of ∼B. Let s0 = i|>p − ic. Consider any m ∈
s0 (⊆ i|>p), any m′ ∈ ic (⊆ i|>p) and any w ∈ p. Since p = pBC, there is a w′ ∈ p such
that w < w′, and hence, since w′ < m and w′ < m′, m′ ≡w m by Fact 2.1. It follows
that s0 = {m: m ∈ i|>p − ic ∧ ∀m′∀w(m ∈ ic ∧ w ∈ p → m′ ≡w m)}. By definition
of V and Lemma 3.4 (substituting ∼B here for A there), we have M |=s0 ∼[α]∼B.
It follows from i|>p = ic ∪ s0 that

(14) M |=i|>p ∼[α]∼B, and M |=i|>p C and M |=i|>p ∼C for every subformula
C of ∼B.

Let s = {m: m ∈ i − i|>p ∧ ∃w(w ∈ p ∧ w < m ∧ m ≡w m∗)} and s′ = (i − i|>p) −
s′ = {m: m ∈ i − i|>p ∧ ∀w(w ∈ p ∧ w < m → m ≡w m∗)}. It is easy to see that
i = i|>p ∪ s ∪ s′. Since Rdgq(A) is even if and only if Rdgq(B) is odd, it is then clear
by definition of V , (14), and Fact 3.6 that

(15) M |=s [α]∼B and M |=s ∼[α]∼[α]∼B (by truth definition).

Since p = pBC, it then follows, from (14), (15), and definition of busy choice se-
quences, that for each w ∈ p, there is a w′ ∈ p such that w < w′ and M |=i|>w′ C for
every subformula C of ∼[α]∼B. Then by Lemma 3.5, we have M |=s′ ∼[α]∼[α]∼B;
and by (14) and Fact 3.1, M |=i|>p ∼[α]∼[α]∼B, and hence, M |=i ∼[α]∼[α]∼B
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since i = i|>p ∪ s ∪ s′. It is easy to verify that M |=i C and M |=i ∼C for every
subformula C of [α]∼B. �
The following is our main result in this section.

Theorem 3.8 Let F be any structure with ‖F‖ � n +1 and let A be any q-refraining
formula with Rdgq(A) � n. Then

(i) F |= B → [α]∼[α]∼A and F |= ∼B → [α]∼[α]A for every subformula B of
A,

(ii) F |= [α]∼[α]∼A → B and M |= [α]∼[α]A → ∼B for every subformula B of
A.

Proof: Since ‖F‖ � n + 1, there is a chain C of busy choice sequences in F such
that |C| � n + 1. (i) By Lemma 3.7, there is a model M on F with an instant i in
F such that, on the one hand, for each subformula B of A, there are some m, m′ ∈ i
with M |=m B and M |=m′ ∼B; and on the other hand, M |=i ∼[α]∼A, and hence
M |= ∼[α]∼[α]∼A. It follows that (i) holds.

(ii) We may assume that C = {BC} ∪ C′ and BC < C′ and BC = {w0,w1, . . .}.
Let BC′ = BC− {w0}, C′′ = {BC′} ∪ C′, and c = {w: w0 < w � w1}. It is easy to see
that C′ is a chain of busy choice sequences in Fc and

∣∣C′′∣∣ � n + 1. By Lemma 3.7,
there is a model Mc on Fc such that for some ic in Fc,

(16) Mc |=ic ∼[α]∼A, and Mc |=ic B and Mc |=ic ∼B for each subformula B
of A.

Let i be the instant in F such that ic = i ∩ Tc. We define a model M on F in such a
way that for each m ∈ i and each h in F with m ∈ h, if m ∈ ic, 〈m, h〉 ∈ V(q) if and
only if

〈
m, h′〉 ∈ V ′(q), where h′ = h ∩ Tc; and if m /∈ ic, 〈m, h〉 ∈ V(q) if and only if

Rdgq(A) is odd. Then by (16) and Fact 3.3,

(17) M |=ic ∼[α]∼A, and M |=ic B and M |=ic ∼B for each subformula B of
A.

Let us fix an m∗ ∈ ic. Consider any m ∈ ic ⊆ i|>w0 . We know, by no downward
branching and definitions of c and Tc, that there is a w ∈ c such that w0 < w < m
and w < m∗, and hence by Fact 2.1, m ≡w0 m∗. It follows that

(18) ic ⊆ s = {m : m ∈ i|>w0 ∧ m ≡w0 m∗}.
Let s′ = s − ic = {m: m ∈ i|>w0 − ic ∧ m ≡w0 m∗}. Consider any m ∈ s′, any m′ ∈
ic, and any w′ � w0. By (18), m′ ≡w0 m∗, and hence, since m ≡w0 m∗, m′ ≡w0 m.
Fact 2.1 and w′ � w0 imply that m′ ≡w′ m. It follows that s′ = {m: m ∈ i|>w0 −
ic ∧ ∀m′∀w′(m′ ∈ ic ∧ w′ � w0 → m′ ≡w′ m)}, and hence by (17) and Lemma 3.4
(substituting {w′: w′ � w0} for p there), M |=s′ ∼[α]∼A, and hence by (17) and s =
ic ∪ s′,

(19) M |=s ∼[α]∼A.

Let s1 = {m: m ∈ i|>w0 ∧ m ≡w0 m∗}. We show as follows that M |=s1 [α]∼A. Our
definition of M implies that M |=s1 q if and only if Rdgq(A) is odd, and M |=s1 ∼q
if and only if Rdgq(A) is even. Assume that Rdgq(A) is odd. Then by (17) and truth
definition, M |=s1 [α]q. It is sufficient to show by induction on Rdgq(B) that for each
q-refraining subformula B of [α]∼A, M |=s1 B if Rdgq(B) is even. The base step
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has just been shown. Let B = [α]∼C for some q-refraining formula C. Suppose that
Rdgq(B) is even. Then Rdgq(C) is odd, and hence by induction hypothesis, M |=s1

∼C. Since C is a subformula of A, we know by (17) that M |=i|>w0
∼C. It follows

that M |=s1 B. Suppose that Rdgq(B) is odd. Then Rdgq(C) is even, and then by
induction hypothesis, M |=s1 C. It follows from truth definition that M |=s1 ∼B. A
similar induction handles the case that Rdgq(A) is even, which starts with the base
case that M |=s1 ∼[α]q.

By definition of busy choice sequences, Choice(ᾱ,w0) = {H(w0)}. Then s1 =
∅, and hence, since M |=s1 [α]∼A, M |=i|>w0

∼[α]∼A. It follows from (19) that
M |=s [α]∼[α]∼A. It is easy to see by (17) and (18) that M |=s B and M |=s ∼B for
every subformula B of A. �

Theorem 3.8 implies that if ‖F‖ � n + 1, and if A is a q-refraining formula with de-
gree n, then F |= [α]∼[α]∼A → A and F |= A → [α]∼[α]∼A. That is to say, no
generalized refref conditional with degree n is valid in any F ∈ Cn+1. Thus we have
the following.

Corollary 3.9 Let L be any stit logic containing a generalized refref conditional
with degree n � 0. Then C(L) ⊆ Cn.

4 Uncompactness of some stit logics In this section we prove two sufficient condi-
tions of uncompactness. The main idea of our proof is to use a feature of “companions
to stit formulas.” Let us briefly describe what a companion to a stit formula is. Let
M |=m [α]A with witness w, and let s = {m′: m′ ∈ i(m) ∧ m′ ≡w m}. It is easy to
see that M |=s [α]A. Consider any formula C. Since stit formulas are either settled
true or settled false at every moment, we know that either M |=m [α](A ∧ Cα) or
M |=m ∼[α](A ∧ Cα). In fact,

(20) if M |=m [α](A ∧ Cα), M |=s [α](A ∧ Cα); and if M |=m ∼[α](A ∧ Cα),
M |=s ∼[α](A ∧ Cα).

In the former case, we call [α](A ∧ Cα) a pos-companion to [α]A at m, and C a
pos-companion root of [α]A at m; and in the latter case, we call ∼[α](A ∧ Cα) a
neg-companion to [α]A at m, and C a neg-companion root of [α]A at m. Both pos-
companions and neg-companions to [α]A at m are companions to [α]A at m. Because
(20) holds for every formula C, we know that [α]A must be true together with all its
companions at every m′ ∈ i(m) choice equivalent to m for α at w. One feature of com-
panions to [α]A is that they are in general not consequences (semantic or deductive)
of [α]A but are nevertheless true together with [α]A. Thus when we study syntac-
tical characterizations of stit theories, we should not only consider consequences of
stit formulas, but rather, we should also take these companions into consideration, as
can be seen in [29], [32], [34], and [35]. Another feature of companions to stit for-
mulas is the following, which we will use in this section. Although in our language
there is no explicit tense operator, companions to stit formulas provide a sufficient
condition for determining the temporal order between witnesses to stit formulas. To
be more precise, let M |=m [α]A with witness w, and let m′ ∈ i|>w (possibly m = m′)
and M |=m′ [α]B with witness w′. Then, if any formula C is a pos-companion root
of [α]A at m but a neg-companion root of [α]B at m′, then we must have w′ < w.
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In this section, we use the second feature of companions mentioned above to
construct a set � of formulas in such a way that all formulas in � are companions to
some stit formulas, which will, when joined together, force each model of � to con-
tain a chain C of busy choice sequences with |C| � n for every n � 0 (Lemma 4.2).
After showing that each finite subset of � has a finite model (Lemma 4.5), we arrive
at a sufficient semantic condition of uncompactness (Theorem 4.6), and combining
the result presented in the previous section, a sufficient syntactical condition of un-
compactness (Theorem 4.7).

The following is useful and has been established in [29], where Fact 4.1(iv) is
called the Companion Theorem in [29], and Fact 4.1(v) presents the feature of com-
panions we will use in this section.

Fact 4.1 Let M = 〈T,�,Instant,Agent,Choice, V〉 be any model in which w < m
and i = i(m). Then the following hold, where s = {m′: m′ ∈ i ∧ m′ ≡w m}:

(i) if M |=s B and M |=m [α]A with witness w, M |=m [α](A ∧ B);

(ii) if M |=s A and M |=s [α]A, M |=i|>w
Aα; and thus, if M |=m [α](A ∧ B) with

witness w and M |=s [α]B, M |=i|>w
Bα and M |=s [α](A ∧ Bα);

(iii) if M |=m [α](A ∧ Bα) with witness w, M |=m [α]A with the same witness; and
if M |=m [α](A ∧ ∼[α](A ∧ Bα)) with witness w, M |=m [α]A with the same
witness;

(iv) if M |=m [α]A with witness w, then for each B, either M |=m [α](A ∧ Bα) with
witness w or M |=m [α](A ∧ ∼[α](A ∧ Bα)) with witness w;

(v) if M |=m [α](A ∧ Cα) with witness w, and if m′ ∈ i|>w and M |=m′ [α](B ∧
∼[α](B ∧ Cα)) with witness w′, then w′ < w.13

Let us arrange all propositional variables into two disjoint sets � = {pξ: 0 � ξ <

ω × ω} and � = {qξ: 0 � ξ < ω × ω}. For every ξ with 0 � ξ < ω × ω, let Aξ =
[α](pξ ∧ qα

ξ
), and let Bξ = ∼[α](pξ ∧ qα

ξ+1). Let �0 = {Ak: 0 � k < ω} ∪ {Bk: 0 �
k < ω}, and for each n � 0, let

�n+1 = �n ∪ {Aξ : ω × (n + 1) � ξ < ω × (n + 2)}
∪{Bξ : ω × (n + 1) � ξ < ω × (n + 2)}
∪{∼[α](pζ ∧ qα

ω×(n+1)) : 0 � ζ < ω × (n + 1)}.

Finally, let us fix � = ⋃
0�n<ω �n.

Lemma 4.2 Let n � 0, and let M be any model in which M |=m �n. Then there
is a chain w0 < w1 < · · · < wξ < wξ+1 < · · · < m (where 0 � ξ < ω × (n + 1)) of
moments in M such that for each ξ with 0 � ξ < ω × (n + 1), M |=m [α](pξ ∧ qα

ξ
)

with witness wξ.

Proof: Our proof is by induction on n.

Case 1 (n = 0): Since M |=m �0, we have by hypothesis and the definition of �0

that there is a w0 such that M |=m [α](p0 ∧ qα
0 ) with witness w0. Suppose that k � 0,

and that we have

(21) w0 < · · · < wk such that for each j with 0 � j � k, M |=m [α](p j ∧ qα
j )

with witness w j.
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We show below how to select wk+1 in such a way that (21) holds with k replaced by
k + 1. It follows from (21) and Fact 4.1(iii) that

(22) M |=m [α]pk with witness wk.

By hypothesis and the definition of �0, we know that

(23) M |=m ∼[α](pk ∧ qα
k+1)

and

(24) there is a wk+1 such that M |=m [α](pk+1 ∧ qα
k+1) with witness wk+1.

Applying Fact 4.1(iv) to (22) and (23), we have

(25) M |=m [α](pk ∧ ∼[α](pk ∧ qα
k+1)) with witness wk,

and applying Fact 4.1(v) to (24) and (25), we have wk < wk+1. It follows that there is
a chain w0 < w1 < · · · < m such that for each k with 0 � k < ω, M |=m [α](pk ∧ qα

k )

with witness wk.

Case 2 (n + 1): Assume that M |=m �n+1. Since �n ⊆ �n+1, we know by induc-
tion hypothesis that there is a chain w0 < w1 < · · · < wξ < wξ+1 < · · · < m such
that for each ξ with 0 � ξ < ω × (n + 1), M |=m [α](pξ ∧ qα

ξ
) with witness wξ. In

particular, we know by Fact 4.1(iii) that for each ζ with ω × n � ζ < ω × (n + 1),
M |=m [α]pζ with witness wζ. Since M |=m �n+1, we have by the definition of �n+1

that M |=m ∼[α](pζ ∧ qα
ω×(n+1)) for each ζ with 0 � ζ < ω× (n +1). It follows from

Fact 4.1(iv) that

(26) for each ζ with 0 � ζ < ω × (n + 1), M |=m [α](pζ ∧ ∼[α](pζ ∧
qα

ω×(n+1))) with witness wζ.

Applying the definition of �n+1, we have that M |=m [α](pω×(n+1) ∧ qα
ω×(n+1)) with

some witness wω×(n+1), and hence by (26) and Fact 4.1(v), wζ < wω×(n+1) for all ζ

with 0 � ζ < ω × (n + 1). The same argument in Case n = 0 will handle the rest of
our proof, except that we need to replace 0, j, k, and so on, by ω × (n + 1), ω × (n +
1) + j, ω × (n + 1) + k, and so on. �

Corollary 4.3 Let n � 0 and let M = 〈T,�,Instant,Agent,Choice,V〉 be any
model in which M |=m �n. Then there is a chain C of busy choice sequences in M

such that |C| = n + 1.

Proof: By Lemma 4.2 there is a chain w0 < w1 < · · · < wξ < wξ+1 < · · · < m
of moments in M such that for each ξ with 0 � ξ < ω × (n + 1), M |=m [α](pξ ∧
qα

ξ
) with witness wξ. It follows from Fact 2.2(iii) that Choice(ᾱ,wξ) = {H(wξ)} for

each ξ with 0 � ξ < ω × (n + 1). For each k with 0 � k � n, let us define BCk =
{wω×k,wω×k+1, . . .}. By definition, each BCk is clearly a busy choice sequence and
for each k with 0 � k < n, BCk < BCk+1. Setting C = {BC0, . . . ,BCn}, we have that
|C| = n + 1. �

Applying this corollary and our definitions of �, ‖F‖ , and Cn, we obtain the follow-
ing.
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Corollary 4.4 For each model M = 〈F, V〉, M is a model for � only if ‖F‖ > n
for every n � 0, that is, only if F /∈ Cn for every n � 0.

Our next step is to show that every finite subset of � has a finite model (Lemma 4.5
below). To that end, we use the following easily verifiable fact: for each finite subset
�′ of �, there are ξ1, . . . , ξn with n > 1 such that 0 � ξ1 < · · · < ξn < ω × ω, and,
setting � = {[α](pξ1 ∧ qα

ξ1
), . . . , [α](pξn ∧ qα

ξn
)} ∪ {∼[α](pξ j ∧ qα

ξk
): 0 � j < k � n},

� is a finite extension of �′.

Lemma 4.5 Each finite subset of � = ⋃
0�n<ω �n has a finite model.

Proof: By the fact mentioned above, it is sufficient to let 0 � ξ1 < · · · < ξn < ω×ω

and show that there is a model M with a moment m∗ in it such that

(27) M |=m∗ [α](pξk
∧ qα

ξk
) for each k with 1 � k � n,

and

(28) M |=m∗
∧

1� j�k ∼[α](pξ j ∧ qα
ξk+1

) for each k with 1 � k < n.

For convenience, let us use pk for pξk
, qk for qξk

, and so on, in the following discus-
sion. Let F = 〈T,�, Instant, Agent, Choice〉 be defined as follows, where m∗, xks,
yks, wks, uk, js, and vk, js are all different.

T = {m∗} ∪ {wk: 1 � k � n}
∪ {yk: 1 � k � n} ∪ {xk: 1 � k � n}
∪ {uk, j: 1 � k < j � n} ∪ {vk, j: 1 � k < j � n}.

� = {〈w,w〉: w ∈ T} ∪ {〈wk,w j
〉
: 1 � k < j � n}

∪ {〈wk, m∗〉: 1 � k � n}
∪ {〈uk, j, uk, j′

〉
: 1 � k < j < j′ � n}

∪ {〈vk, j, vk, j′
〉
: 1 � k < j < j′ � n}

∪ {〈wk, uk′, j
〉
: 1 � k � k′ < j � n}

∪ {〈wk, vk′, j
〉
: 1 � k � k′ < j � n}

∪ {〈wk, xk′ 〉: 1 � k � k′ � n}
∪ {〈wk, yk′ 〉: 1 � k � k′ � n}
∪ {〈uk, j, xk

〉
: 1 � k < j � n}

∪ {〈vk, j, yk
〉
: 1 � k < j � n}.

Instant = {{wk} ∪ {u j,k: 1 � j < k} ∪ {v j,k: 1 � j < k}: 1 � k � n}
∪{{m∗} ∪ {xk: 1 � k � n} ∪ {yk: 1 � k � n}}.

Agent = {a}.
Let i = {m∗} ∪ {xk: 1 � k � n} ∪ {yk: 1 � k � n}. It is easy to check that i is the last
instant in Instant. For each m ∈ i, let us use hm for the unique history passing through
m. Thus hm∗ = {w1, . . . , wn, m∗}, and for each k with 1 � k � n, hxk = {w: w ∈
T ∧ w � xk} = {w1, . . . , wk, uk,k+1, . . . , uk,n, xk}, and hyk = {w: w ∈ T ∧ w � yk} =
{w1, . . . , wk, vk,k+1, . . . , vk,n, yk}. We define Choice as follows:

Choice(a, m) = {{hm}} for each m ∈ i;
Choice(a, uk, j) = {{hxk}} for each k, j with 1 � k < j � n;
Choice(a, vk, j) = {{hyk}} for each k, j with 1 � k < j � n;
Choice(a,wk) = {{hxk}, H(wk ) − {hxk}} for each k with 1 � k � n.
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It is easy to see that for each k with 1 � k � n, H(wk ) − {hxk} = {hyk , hxk+1 ,

hyk+1 , . . . , hxn , hyn , hm∗}. Finally, we define M by letting V be an assignment such
that V (α) = a, and for each k with 1 � k � n, V (pk) = {〈m, h〉: m ∈ h ∩ i ∧ m = xk},
V (q1) = {〈m, h〉: m ∈ i ∧ m ∈ h}, and for each k with 1 < k � n, V(qk) = {〈m, h〉: m ∈
h ∩ i ∧ m = yk−1}. In the following diagram illustrating M, we only indicate at which
moment pk or qk is (settled) false. That is to say, at each moment m ∈ i, if pk or qk

with 1 � k � n is not indicated to be (settled) false at m, it should be understood that
it is (settled) true at m.

It is easy to see from our definition of M that for each k with 1 � k � n, xk ≡wk m∗,
M |=i−{xk} pk, and M |=xk pk. It follows that

(29) for each k with 1 � k � n, M |=m∗ [α]pk with witness wk.

It is also easy to see from the definition of M that

(30) for each k with 1 � k � n, M |=i|>wk
qk.

Consider any k with 1 � k � n. If k = 1, we know by the definition of M that M |=i qk

and hence M |=m∗ ∼[α]qk. Assume that k > 1. We know by the definition of F that
yk−1 ≡wk−1 m∗ and M |=yk−1 qk, and hence M |=s qk where s = {m: m ∈ i ∧ m ≡wk−1

m∗}. It follows from (30), Fact 2.1, and our definition above that for each w < m∗,
either M |=i|>w

qk or M |=s′ qk where s′ = {m: m ∈ i ∧ m ≡w m∗}, and hence M |=m∗

∼[α]qk. We thus have

(31) for each k with 1 � k � n, M |=m∗ ∼[α]qk.

To show that (27) holds, consider any k with 1 � k � n. Clearly, {m: m ∈ i ∧ m ≡wk

m∗} ⊆ i|>wk . We then know by (30), (31), and Fact 4.1(ii) that M |=i|>wk
qα

k , and
hence by (29) and Fact 4.1(i), M |=m∗ [α](pk ∧ qα

k ). It follows that (27) holds. To
show that (28) holds, let 1 � k < n. We show that M |=m∗

∧
1� j�k ∼[α](p j ∧ qα

k+1).
Suppose for reductio that there is a j such that 1 � j � k and M |=m∗ [α](p j ∧ qα

k+1)

with witness w. Then by Fact 4.1(iii), M |=m∗ [α]p j with witness w. It follows
from (29) and Fact 2.2(ii) that w = w j. The hypothesis of this reductio implies that
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M |=s j qk+1 ∧ ∼[α]qk+1, where s j = {m: m ∈ i ∧ m ≡w j m∗}. Hence by Fact 4.1(ii),
M |=i|>w j

qk+1. Since j � k, yk ∈ i|>wk ⊆ i|>w j . It follows that M |=yk qk+1. But by
our definition of M, M |=yk qk+1, a contradiction. It follows from this reductio that
M |=m∗

∧
1� j�k ∼[α](p j ∧ qα

k+1). Hence (28) holds. �

Now we establish our two sufficient conditions of uncompactness.

Theorem 4.6 Let L be any stit logic. Then, L is uncompact if C f ⊆ C(L) ⊆ Cn for
some n � 0.

Proof: Suppose that C f ⊆ C(L) ⊆ Cn for some n � 0. Consider the set � of formu-
las. By Lemma 4.5 we know that each finite subset � of � has a model M = 〈F, V〉
with F ∈ C(L), but by Corollary 4.4 � has no model M = 〈F, V〉 with F ∈ C(L). It
follows that |=C(L) is uncompact, that is, L is uncompact. �

Theorem 4.7 Let L be any stit logic. Then, L is uncompact if L ⊆ Lrefref and L
contains a generalized refref conditional.

Proof: If L ⊆ Lrefref, C(Lrefref) ⊆ C(L). We know that C(Lrefref) = C0 (see [29] and
[30]), and it is trivially true that C f ⊆ C0. It follows that if L ⊆ Lrefref then C f ⊆ C(L).
If in addition L contains a generalized refref conditional, we know by Corollary 3.9
that C(L) ⊆ Cn for some n � 0. It then follows from Theorem 4.6 that L is uncompact.

�

5 Remark We first show that there are infinitely many stit logics that satisfy the
antecedent of Theorem 4.7 and hence are uncompact. Let A0 be the conjunction of
[α]q → [α]∼[α]∼[α]q and [α]∼[α]∼[α]q → [α]q. For each n � 0, let An+1 =
An(∼[α]q/q), that is, the result of substituting ∼[α]q for q in An, and let Ln be the
smallest stit logic containing An. Clearly, each An is the conjunction of two general-
ized refref conditionals with degree n and each Ln+1 is a sublogic of Ln. Since L0 is
Lrefref, it follows from Theorem 4.7 that each Ln is uncompact. But are they all differ-
ent? By §3.7 in Xu [33], on the one hand, for each structure F such that Cdg(F) � n
(where Cdg(F) is the complexity degree of F defined in [33]), F |= Am for all m � n.
By §4.8 in [33], on the other hand, for each n � 0, there is a structure Fn such that
Cdg(Fn) = n + 1 and F |= An. Consequently, for each n � 0, there is a structure F

such that F |= An but F |= Am for all m > n. It follows that for each n � 0, Ln = Ln+1,
and hence Ln+1 is a proper sublogic of Ln. This completes the verification of our claim
that infinitely many stit logics satisfy the antecedent of Theorem 4.7.

Consider again our Theorem 4.6 that provides a sufficient semantic condition of
uncompactness, that is,

(32) L is uncompact if C f ⊆ C(L) ⊆ Cn for some n � 0.

We can actually generalize (32) in two directions—one is to find some C′ ⊂ C f and
the other is to find some C such that Cn ⊂ C for all n � 0—and thus obtain some more
general conditions of uncompactness:

(33) L is uncompact if C′ ⊆ C(L) ⊆ C.
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For instance, it is easy to see that our proof in Lemma 4.5 actually shows that every
finite subset of � has a finite model whose background structure is at-most-binary,
where a structure F = 〈T,�, Instant, Agent, Choice〉 is at-most-binary if for each a ∈
Agent and each w ∈ T , |Choice(a,w)| � 2. We can thus use C′ to be the class of
all finite at-most-binary structures. Some other suitable proper subclass of C f can
be found as well. The other direction in generalizing (32) seems less trivial. So far
we have only considered Cn for some n � 0, that is, the class of structures F with
‖F‖ � n. Since it is easy to see that

⋃
0�n<ω Cn is the class of all structures containing

no infinite chain of busy choice sequences, Corollary 4.4 enables us to obtain at most
that

(34) L is uncompact if C f ⊆ C(L) ⊆ ⋃
0�n<ω Cn.

There are, nevertheless, two ways to generalize (34) without extending our language.
The first is to use “ordinal-isomorphism” to distinguish structures containing infinite
chains of busy choice sequences. Let ξ be any ordinal such that |ξ| = ω and let C
be any chain of busy choice sequences. C ≈ ξ if and only if there is an isomorphism
between C and ξ with respect to the <-relation on C and the ordinary <-relation (or ⊂-
relation) on ξ (i.e., the busy choice sequences contained in C are arranged according to
the order type specified by ξ). [[F]] = ξ if and only if there is a chain C of busy choice
sequences in F such that C ≈ ξ, and there is no chain C′ of busy choice sequences in
F such that C′ ≈ ξ + 1. Finally, let Cξ = {F: [[F]] � ξ}. Clearly,

⋃
0�n<ω Cn ⊂ Cξ for

every ξ with |ξ| = ω. We can obtain that

(35) L is uncompact if C f ⊆ C(L) ⊆ Cξ for some ξ with |ξ| = ω

by adjusting our definition of � in the following way: given ξ with |ξ| = ω. We first
arrange all propositional variables into two disjoint sets �ξ = {pζ: 0 � ζ < ω × (ξ +
1)} and �ξ = {qζ: 0 � ζ < ω × (ξ + 1)}. Then for every ζ with 0 � ζ < ω × (ξ + 1),
let Aζ = [α](pζ ∧ qα

ζ ) and Bζ = ∼[α](pζ ∧ qα
ζ+1). Let �0 = {Ak: 0 � k < ω} ∪

{Bk: 0 � k < ω}; and for each ζ with 0 � ζ < ω × (ξ + 1), let

�ζ+1 = �ζ ∪ {Aη: ω × (ζ + 1) � η < ω × (ζ + 2)}
∪{Bη: ω × (ζ + 1) � η < ω × (ζ + 2)}
∪{∼[α](pη ∧ qα

ω×(ζ+1)): 0 � η < ω × (ζ + 1)};

and for each limit ordinal ζ with ω � ζ � ω × (ξ + 1), let

�ζ = (
⋃

η∈ζ �η) ∪ {Aη: ω × ζ � η < ω × (ζ + 1)}
∪{Bη: ω × ζ � η < ω × (ζ + 1)}
∪{∼[α](pη ∧ qα

ω×ζ): 0 � η < ω × ζ}.
It is easy to see that an argument similar to that in our proof of Lemma 4.2, with an
exception of the case concerning limit ordinals, will show that M = 〈F, V〉 is a model
for �ξ only if [[F]] � ξ+1. Then we obtain (35) above by applying the same argument
as that in the proof of Lemma 4.5.

The second way to generalize (34), without extending our language, is to use
“reversed ordinal-isomorphism” to distinguish structures containing infinite chains of
busy choice sequences. Let ξ be any ordinal such that |ξ| = ω and let C be any chain
of busy choice sequences. C ∼= ξ if and only if there is an isomorphism between C
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and ξ with respect to the reverse of <-relation among busy choice sequences con-
tained in C and the ordinary <-relation on ξ. [[F]]r = ξ if and only if there is a chain
C of busy choice sequences in F such that C ∼= ξ and there is no chain C′ of busy
choice sequences in F such that C′ ∼= ξ + 1. Finally, let Cr

ξ = {F: [[F]]r � ξ}. Clearly,⋃
n�0 Cn ⊂ Cr

ξ for every ξ with |ξ| = ω. In order to establish that

(36) L is uncompact if C f ⊆ C(L) ⊆ Cr
ξ for some ξ with |ξ| = ω,

we need to define a �ξ in a way similar to the way we defined �ξ above. More
precisely, we use the same strategy but arrange the pos-companion roots and neg-
companion roots in such a fashion that forces every model for �ξ to contain an infi-
nite chain of busy choice sequences that does not terminate toward the direction of
past rather than future. Let �ξ,�ξ, Aζ, Bζ be as specified above, and let �0 = �0.
For each ζ with 0 � ζ < ω × (ξ + 1), let

�ζ+1 = �ζ ∪ {Aη: ω × (ζ + 1) � η < ω × (ζ + 2)}
∪{Bη: ω × (ζ + 1) � η < ω × (ζ + 2)}
∪{[α](pη ∧ qα

ς ): 0 � η < ω × (ζ + 1)

∧ ω × (ζ + 1) � ς < ω × (ζ + 2)};

and for each limit ordinal ζ with ω � ζ � ω × (ξ + 1), let

�ζ = (
⋃

η∈ζ �ζ) ∪ {Aη: ω × ζ � η < ω × (ζ + 1)}
∪{Bη: ω × ζ � η < ω × (ζ + 1)}
∪{[α](pη ∧ qα

ς ): 0 � η < ω × ζ ∧ ω × ζ � ς < ω × (ζ + 1)}.

It can be shown that every model for �ξ contains a chain C of busy choice sequences
such that C ∼= ξ + 1, and it can also be shown that each finite subset of �ξ has a finite
model, and hence (36) holds. Details are omitted.

Our method applied in this paper has a limit. As the reader may have realized,
although we can handle the situations in which chains of busy choice sequences are
countable, there is no way to apply our strategy here to deal with situations in which
there are chains of busy choice sequences that are uncountable, unless we extend the
language. If we take order types into considerations, the following are among the
farthest we can reach by applying the strategy here:

if |PV| = κ, then L is uncompact if C f ⊆ C(L) ⊆ Cξ for some ξ with |ξ| = κ,

if |PV| = κ, then L is uncompact if C f ⊆ C(L) ⊆ Cr
ξ for some ξ with |ξ| = κ;

where PV is the set of propositional variables in the object language, and κ is any
cardinal, and Cξ and Cr

ξ are just like what we defined above, but replacing ω by κ.
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NOTES

1. See [2] or [23] for a historical review.

2. The names bstit and cstit are found in [16], [14], and [15], etc. Note that Horty and Bel-
nap used bstit and cstit as approximations of the operators that Chellas and Brown pro-
posed.

3. This corresponds to the result that over the class of stit structures containing no busy
choice sequences, there are only ten distinct stit modalities, where a stit modality is a
sequence of [α] and ∼, and two such modalities σ and τ are distinct over a class C of
stit structures if σp ←→ τp is not valid in all stit structures in C. These stit modalities,
when we write [α] as �, are exactly the same modalities as those in modal logic S4.2
(see [12]), though the two structures of modalities are different.

4. I am not sure who is the first person who proved that KW is uncompact. One can find
such a proof in [18], while in both [18] and [17], Hughes and Cresswell noted that the
idea of the proof there was suggested by Fine.

5. For axioms and rules of inference in Lmin, see Section 1. Lmax can be axiomatized by
taking ∼[α]p as the only (modal) axiom and taking modus ponens and substitution as
rules of inference. It has been shown in [35] that every consistent stit logic is a sublogic
of Lmax, which makes Lmax the only stit logic that is post complete.

6. That is to say, we use ᾱ for V (α), where V (α) ∈ Agent.

7. The uniqueness of witness follows immediately from the Witness Identity Lemma in
[11]. It also follows from our Fact 2.1 above, as has been shown in [33].

8. In [32], this logic is axiomatized as taking all A1 – A8 as axiom schemata and taking
modus ponens, RE and another rule RS as rules of inference. [35] eliminates the rule
RS. There is a gap in the proof presented in [32]. A modified proof can be found in [8].

9. In [29], Lrefref is shown to be decidable and is axiomatized with an extra axiom
[α](∼[α](A ∧ [α](B ∧ ∼[α](B ∧ Cα))) ∧ Cα) → [α]B. Because it is easy to verify
that this formula is a theorem of Lmin, we conclude that Lmin plus refref equivalence is
deductively equivalent to the logic given in [29].

10. For a discussion of busy choice sequences and a measure of complexity of chains of busy
choice sequences, the reader is referred to §2 in [33].

11. For all we know, a stit logic L satisfying the antecedent of (6) may not satisfy that of
(4)—there may be, e.g., an L containing [α]q → [α]∼[α]∼[α]q and some formula not
contained in Lrefref such that each finite structure is an L-structure, and thus C(L) ⊆ C0

(see (5) on p. 6) and C f ⊆ C(L). It is not clear now whether the two refref conditionals
are “deductively equivalent” or whether each proper extension L of Lrefref does not take
all finite structures as L-structures.

12. Regarding its application in the main lemma, Lemma 3.4 might have been formulated in
such a way that we replace “s = {m: m ∈ i|>p − ic ∧ ∀m′∀w(m′ ∈ ic ∧ w ∈ p → m′ ≡w

m)}” by “s = i|>w − ic and p has no greatest element”. We formulate Lemma 3.4 the
way it is now because we need to apply it to Theorem 3.8, under a situation different
from that in the main lemma.
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13. See §2.3, §2.4, §2.6, §2.8, and §2.9 in [29].
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