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Lattice Ordered O-Minimal Structures

CARLO TOFFALORI

Abstract We propose a notion of o-minimality for partially ordered struc-
tures. Then we study o-minimal partially ordered structures (A, <, ...) such
that (A, <) isaBoolean algebra. We prove that they admit prime models over
arbitrary subsets and we characterize w-categoricity in their setting. Finaly, we
classify o-minimal Boolean algebras as well as o-minimal measure spaces.

1 Introduction Totally ordered o-minimal structures were introduced by Van den
Driesin [[9] and intensively studied in Pillay and Steinhorn [[Z] and K night, Pillay, and
Steinhorn [4]. They are unstable according to the Shelah classification theory and yet
they enjoy some good model theoretic properties. For instance, it was shown in [
that if T isacomplete theory whose models are totally ordered o-minimal structures
and Q2 denotes a big saturated model of T, then

1. thealgebraic closure in 2 satisfies the Steinitz exchange principle;

2. for each subset X of @ (of smaller cardinality), there is a unique model of T
elementarily prime over X.

Definable sets in totally ordered o-minimal structures were largely studied aso in
where, in particular, it was proved that o-minimality is preserved by elemen-
tary equivalence in this setting. Other motivations and connections are explained in
Marker [€]. Of course, one may wonder what happens with respect to o-minimality
when one replaces total orders with arbitrary partial orders. But the class of partially
ordered structures may be too large to allow reasonably general and significant re-
sults. So we prefer a more particular starting point, and we deal here with Boolean
lattice ordered structures, namely, partially ordered structures 4 = (A, <,...) such
that (A, <) isaBoolean agebra. We explore o-minimality in this setting.

In particular, in Section 2 we propose a possible definition of o-minimality for
these structures. Accordingly, we classify o-minimal Boolean algebras; we see that
they are exactly the Boolean algebras with finitely many atoms. Then we point out
that for a complete theory T whose models are Boolean lattice ordered o-minimal
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structures, the exchange principle may fail but over each subset X of  (of smaller
cardinality) there does exist a model of T elementarily prime. Thisis the matter of
Section 3.

Section 4 is devoted to classifying the w-categorical theories whose models are
Boolean lattice ordered o-minimal structures. It turns out that they do not exceed the
theories of expansions of o-minimal Boolean algebras by finitely many constants.

Finaly, we investigate some other possible examples among measure spaces
(Section 5). These are not Boolean lattice ordered structures in a literal sense but,
of course, they are very near. The analysis again shows that the o-minimal structures
in this class are comparatively poor. So Section 4 and Section 5 may suggest that
the compl ete theories whose models are Bool ean | attice ordered o-minimal structures
should be confined among some trivial expansions of the theories of Boolean alge-
braswith finitely many atoms and raise the question of finding, if possible, nontrivial
examples.

Werefer to Hodges (3] for basic model theory and to Birkhoff [ and Halmos [2]
for Boolean algebra. As aready stated, for a given complete theory T, we fix abig
saturated model © of T and wework inside ©2 by assuming that any model of T isan
elementary substructure of 2.

2 o-minimal and quasi-o-minimal structures Let 4 = (A, <,...) beastructure
partialy ordered by <.

Definition 2.1 A4 isquasi-o-minimal if and only if the only subsets of A definable
in A4 are the finite Boolean combinations of sets defined by formulasa <vorv <b
withaandbin A. 4iso-minimal if andonly if for every X C A, theonly X-definable
subsets of A are the finite Boolean combinations of sets defined by formulasa < v
and v < b with aand b in the algebraic closure acl(X) of X.

What happensfor totally ordered structures? In this case, quasi-o-minimality implies
o-minimality asimplicitly observed in [7], so thetwo notions are equivalent. Further-
more, if 4 = (A, <,...) isatotaly ordered o-minimal structure, then any definable
subset of Aisafinite Boolean combination and even afinite union of pointsand open
intervals (possibly with endpoints 00). The latter are just a neighborhood basis for
atopology of A (theintrinsic topology).

When 4 = (A, <,...) isalattice ordered structure with a least element and
agreatest element (in particular, when A4 is Boolean lattice ordered), then a similar
topology can be defined on A by taking the convex subsets[a, b] = {xe A:a<x <
b} asasub-basisof closed sets (see[II], 10.12). Thisisthe so-calledinterval topol ogy.
So when 4 is quasi-o-minimal, the definabl e subsets are just the finite Boolean com-
binations of closed setsin the sub-basis and hence are constructible setsin theinterval
topology. Notice also that, for arbitrary partialy ordered structures 4 = (A, <, ...),
o-minimality implies quasi o-minimality, but the converse is not always true: there
do exist partially ordered quasi-o-minimal structures which are not o-minimal. The
following is an example.

Example2.2 Let 4 = (A, <), where A isthe digoint union of a copy Q of the
rationals, acopy Z of the integers, and two additional elements04 and 147. Q and Z
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are ordered in the usual way; an element of Q and an element of Z are not compara-
ble with each other. 04 isthe least element of A and 14 isthe greatest one. Notice
that acl(@) = {04, 14}; for any two elementsin Q or in Z are in the same orbit of
Aut(A4), so any @-definable set overlapping Q or Z must include Q, Z, respectively,
and henceisinfinite. Furthermore, Q is @-definable by the following formula.

YwiVwoduduo(wg < v < wp — wp < U < v < Up < wo)

Adwidwr(wg < v < wy).

But Q cannot be obtained as afinite Boolean combination of formulasa<vorv <b
withaand bin acl(2). Conseguently, A4 isnot o-minimal. Nevertheless, 4 isquasi-
o-minimal. Infact, fixr € Q. Then Q isdefinedin A4 by

(=0 A-(w=1g)A(=TVr=<v).

Similarly, Z isdefinablein 4. Now take any definable subset D of A. Weclaimthat D
isafinite Boolean combination of setsdefined by formulasa < v or v < bwithaand
bin A. Thisistrivial for DN {04, 14}. So owing tothe previousremarksonQ and Z,
it suffices to show our claim for D N Q and D N Z, and to assume correspondingly,
DCQorDCZ. Thenlete DCQ, D =¢(A4,r,5 withfrinQandSinZ. More

precisely, putt = (ro, rq, ..., rn) wherewith nolossof generality, ro <ry < --- <rp.
Look at the open intervals
10a,r0l, Iro.ral, ..., Irn,14[

in Q. Itiseasy to seethat each of these intervals, when overlapping D, isincluded in
D. Hence, D isdefined by

(v=<rovVv>r9) A=(v<07) A=(v>19) Ag*(v,T),
where ¢* (v, ') defines the open intervals

]Oﬂ’rO[v ]rO, rl[v R ]rn,lﬂ[

and the endpaintsrg, ..., ry contained in D. A similar (dightly more complicated)
procedure workswhen D C Z.

However, the equivalence
A o-minimal <= A4 quasi-o-minimal

holdswhen A4 isapure Boolean algebra. But before proving thisresult, let usfix some
notation. Recall that aBoolean algebra A4 can beregarded asastructurein alanguage
with a unique 2-ary relation symbol for <. Let r, 1, and ' denote, respectively, the
meet, join, and complement operationsin A4, and 04 and 14 denote the least and the
greatest elementsin 4. All of them are -definablein {<}. So we can freely add the
corresponding symbols to our language because it is easy to see that no result below
depends on thisadditional a phabet. So when considering Boolean algebras, wework
in this extended language Ly. Furthermore, if A4 is a Boolean algebra and a is an
element of A, A4|a denotes the Boolean algebra having domain {x € A: x < a} and
the obvious structure.
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Theorem 2.3  Let 4 beaninfinite Boolean algebra. Thefollowing propositionsare
equivalent:
(i) Aiso-minimal;
(i) A isquasi-o-minimal;
(iii) A hasonly finitely many atoms.

Proof: (i) = (ii) Theproofistrivia. (il) = (iii) Let A¢(A) denotethe set of
atomsin 4. Obviously At(A4) is @-definablein 4. If (ii) holds, then At(A) can be
expressed as a finite union of sets D defined by a conjunction of formulas,

1L ag<v...,a5<v,
2. v<hbg,...,v<h,
3. C%v,...,Ch L,
4. v£dg,...,v £ dnp,

with parametersfrom A. Assume A¢(A4) isinfinite. Henceat least oneset D isinfinite
too. Fix such a D and the corresponding conjunction of formulas. By putting ag =
04, we can assume that at least one formula occursin (1). By replacing ag, .. ., as
with their join a, we can suppose that (1) contains exactly one formulaa < v. Ina
similar way, (2) can be restricted to aunique formulav < b. Clearly a < b. Further-
more, we can assume

¢na=04, ¢ <b Vi<n,

a<dj<b Vj<m

Infact, fixi <n. For xe Aand x > a,
X>C < x>¢cna.

So we can replace ¢; with ¢ ma’. Moreover, if ¢; £ b, thenno element x < bin A
satisfies X > ¢; and v # ¢; can be taken out of (3). Proceed similarly for dj, j < m.

We can also assumec; # 04 forall i < nanddj # b, infact, dj’r| b =£ 04, for all
j <m. Byreplacingco, ..., Cny, do'Mb, ..., dy' 1 bwiththe atomsof the subalgebra
Ay they generate, we can arrange that

CO,...,Cn,dO/rlb,...,dmlﬂb

areatomsin 4. Inparticular, cy, .. ., ¢, arepairwisedigointanddy'mb, ...,dy'mb
are pairwise disjoint (where disjointedness means that the meet is 04).
In conclusion, the atoms of A lyingin D arejust the elements x € A satisfying
a<x<band
Xmc #£0q Vi<n,

xn(dj'mb)#0q Vj<m

Noticethat thisreduction doesnot usethe hypotheses D C A¢(A4) and D infinite. But
these further assumptions force a = 04, otherwise v > a is satisfied by at most one
atom. Moreover, m < 0 because no atom x in A can overlap two disjoint elements
# 04. But m= O0impliesthat the only element in D isdy’ m b and this contradicts the
fact that D isinfinite. So no formulaoccursin (4).
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Atthispointbm (ug)’ isin D, hencebm (uc)’ isan atom. If every ¢; isafinite
union of atoms, then the same holds for b, and D is not infinite. So thereisi < n
such that ¢; is not a finite union of atoms. Take x and y in A such that X, y # Og,
XMy =04, and XUy < ¢. Then xu yisnot an atom, but xu yisin D. Thisisa
contradiction. So no D isinfiniteand At(A4) isfinite.

(iii) = (i) Assume At (A) isfinite, for instance At(A4) = {Xo, ..., Xm} Where
Xo # - - - # Xm. Put X = Uj<mX;. Noticethat each element a € A decomposesuniquely
as

@nx)u(anx),

where either am xis04 or any element ¢ #~ 04, ¢ < an x, contains some atoms and
an X' doesnot contain any atoms. Hence A4 is separabl e according to the terminol ogy
of [E] We know (for instance from [@) that the theory of separable Boolean algebras
is quantifier eliminable in thelanguage L; = Lo U {R, R, : n e N, n > 0} where R,
R, are 1-ary relation symbolsto be interpreted within an arbitrary Boolean algebra B
asfollows. For every b € B,

1. b e R%if and only if for every element ¢ € B satisfying O3 < ¢ < b, thereis
some atom din Bsuchthat d < b,
2. b e RZif and only if there are at least n atoms below b.

In particular, RZ and R? are o-definablein Lo. At this point let us come back to our
algebra 4. Let (v, y) beaformulaof Lo with parameters y from A. Hence ¢ (v, V) is
L1-equivalent in the theory of A to asuitable finite Boolean combination of formulas

P, ) =d@ ), R(P®Y), Ra(p,y),

where p(v, ¥) and q(v, y) are Boolean polynomials (namely, L1-terms) inv, y and n
ranges over the positive integers. In the theory of 4,

1. p(v, y) < q(v, y) isequivalent to p(v, ¥) 11 (q(v, ¥))' = 04,
2. R(p(v, y)) to p(v, y) M X =04,
3. Ra(p(v, ¥)) to either

\/ /\ ((p(v, ) 1, =02)

O<ij<--<ip<m 1<j<n

(whenn <m+ 1) or vulg = 0g (otherwise).

To sum up, ¢(v, ) isequivaent in the theory of 4 to a Boolean combination of for-
mulas of the kind

r(v,y,X) =0gq

wherer isaBoolean polynomial in v, yand Xand X = (X, . .., Xm) iSin acl(2) be-
cause At(A) is @-definable and finite. Hence (Y, X) isin acl(y). We can assume that
r(v, ¥, X) is afinite join of finite meets of elements among v, y, X and their comple-
ments. Thusr (v, ¥, X) = 04 implies that each meet is 04 (and conversely). But in
thetheory of 4, for agivena e A,

1. vma=0gisequivaenttov < &,
2. vnma=0gqtov>a,
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3. vmv' ma= 04 isaways satisfied.

Inconclusion, ¢(v, y) isequivalent inthetheory of 4 to afinite Boolean combination
of formulasa < v, v < bwithaand b in aci(y). Hence 4 is o-minimal. O

Actually, the previous proofs of (i) = (ii) and (ii) = (iii) work for arbitrary ex-
pansions of Boolean algebrasand only (iii) = (i) needsthe purity assumption. Ac-
cordingly one may ask the following.

Problem 2.4 Does
A quasi-o-minimal =— A4 o-minimal
hold for any Boolean lattice ordered structure 4 = (A, <,...)?

Corollary 2.5 Infinite o-minimal Boolean algebras A do not satisfy the exchange
principle: therearea, b, andcin Asuchthata € acl(b, ¢) — acl(c) butb & acl(a, c).

Proof: Decompose A4 as Ay x A; where 4, isthe (finite) subalgebra generated by
the atoms of 4 and A is atomless. Fix 04, < C < a < 1g,in Ag andtake b € Ay,
anc <b<a Thena=buce acl(b,c) butag acl(c) andb ¢ acl(a, c). O

3 Primemodels Let T beacompletetheory and 2 still denote abig saturated model
of T. When X isasubset of 2 (of smaller cardinality), amodel 4 of T whose domain
contains X is called (elementarily) prime over X if and only if for every model B of
T suchthat X € B, thereisan elementary embedding of A4 in B acting identically on
X. The existence and the uniqueness (up to X-isomorphism) of prime models over
arbitrary subsets X is guaranteed for complete theories of totally ordered o-minimal
structures [[Z] aswell asfor the theories of Boolean algebras with finitely many atoms
(see [[10]). This section is devoted to partly extending the existence theorem for the-
ories of Boolean lattice ordered o-minimal structures.

Theorem 3.1 Let T beacompletetheorywhose modelsare Boolean lattice ordered
o-minimal structures, X be a subset of 2 (of smaller cardinality). Then there exists
amodel of T (elementarily) prime over X.

Proof: Itissufficient to show that, for every subset X of @ (of smaller cardinality),
the isolated 1-types over X aredensein S;(X). We can restrict our analysisto alge-
braically closed sets X (so we shall assume X = acl(X)). Hencetakeaformulag(v)
in the language L (X) obtained from the language L of T by adding a constant sym-
bol for every element in X. Assume ¢(£2) to be nonempty. By o-minimality, ¢(v) is
equivalent to adisunction of (consistent) conjunctions of formulas,

1. a<wvo,

2. v<bh,

3. C%v,...,Ch %,

4. v£dg,...,v £ dn,
with parametersfrom X = acl(X). We need to find acomplete formulad(v) of L(X)
such that 8(£2) isnot empty and 6(v) impliesin 2 at least one of the conjunctionsin
¢(v). Hence we can assume that ¢(v) isjust the conjunction (1) —(4), possibly with
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a= 0q and b = 1. Here are some further permissible assumptions on ¢, ..., Cy
and dy, ..., dm (see Theorem2.3):

(i) Vi <n,c #0q and ¢ima = 0gq;
(i) Vi<ma<dj<b
(iii) co,...,cn, do'Mb, ..., dy mbareatomsin the subalgebraof Q2 they generate
(noticethat al theseatomsstill belongto X = acl(X)); inparticular, co, . .., Cy
are pairwisedisointand dy’ b, ..., dy 1 b are pairwise digoint.
Finally, we can aso suppose

(iv) Vi <n,c;isnot anatom of © (otherwise, for every se @, s # ¢; if and only if
s < ¢, and by replacing b with b ¢;’, we can eliminate v # ¢ in (3));

(v) Vj <m,d;’nbisnot anatom of Q (otherwise, for every s<bin , s £ d; if
andonly if s> d;’ nb, and by replacing awith au (dj’ mb), we can eliminate
v £ djin(4)).

Now choose vp, ..., V¥n, 2o, - .., Znm € Q2 asfollows.

(@ Leti <n,ci #d;'nbforevery j <m. Thentakey; € Q satisfyingOq < yi < Cj
(thisis possible owing to (iv)); pick y; € X when X overlaps]0q, Ci[.

(b) Let j <m, d;j’mb+# ¢ for every i < n. Then choose z; € Q satisfying O, <
z; < dj'nb (asalowed by (v)); again pick z; € X if possible.

(c) Findly leti <n, j <msatisfy ¢, = d;’ mb. Accordingly take y;, z; € € such
that O < yi < G, zj = yi’ N ¢;j; also in this case choose y; (hence z;j) in X if
possible.

We emphasize that vy, . .., ¥n, 2, - . . , Zm &€ # Og and pairwise digoint. Put
y=U<nYi, Z=Uj<mZ].
Noticethat, forevery j <m, z; < dj'mb < d;’ <a'. Now let
t=(auzny.

Thent € (), infact
1l a<t((i)impliesa<c/’fordli<n;hencea<y forali < nand, conse-
quently, a < y/; clearly a < au 2);
2. t<Db(forevery j <m, z de/l_lbfb;SJZS b and au z < b; thisforces

t < b),
3. fordli<n,c £t (it sufficesto noticethat ¢, Mt/ = ¢ n(yu@nz)) >
cny=y; > 0gq);

4. foral j<mt£dj(infact, tnd;’ =y n(auz nd;’ =y nznd; because
andj’ =0gq; hencetnd; > y' nz; = z; > Og).

To sum up, we have shown what follows. Fix, if possible,
X; € XN]0gq, ¢i[ fori <n,

tj € XN]0g, dj’ nb[ for j <m,

X' e = when ¢; =dj/l_|b;
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putin L(X)

o) ayo,...,aynazo,...,azm(/\og2 <yi<g

i<n

A NOa <z <dinba A\ Vi = X
j<m i<n, XN]0gq,Ci[#2

A /\ Zj=tjAn /\ yi M zj =0q
j<m, XN]0gq.d; nb[#2 i<n,j<m

then () C ().

Atthispoint it issufficient to show that (v) iscompletein L(X), and hencethat
two elementst and sin 6(2) have the same type over X inthelanguage L of T. But
the 1-type of t (or s) over X isuniquely determined by its formulas

vX, v=>=X

(or negations) when x ranges over X. For € iso-minimal. Accordingly, it isenough
to show that two elementst, s € 6(2) satisfy the sametype over Xin {<} (orasoin
Lo). Solet

yO»---,Yn»ZO,---,ZmE Qa
Uo,...,un,wo,...,meQ
witnesst € 6(R2), s € 6(R2), respectively. Recall the following.
@ VisnOg<y,U<c¢gandy =u =x € Xif XN]0q, ¢i[# &;
(b) Vj<m0q <zj,w; <djnbandz; = wj=tj € Xif XN]0gq, d;’ mb[#
a,
(c) Fori<n,j<mandc =dj’|—|b,yir|zj =0gandyiUz;=c,unwj=
Op and U U wj = G;.
Takei < n, XN]0gq, ¢i[= @. Then al the elements # 0q, ¢; in Q|¢; satisfy the same
type over & in the language Lo (in |¢;). Infact,  is o-minimal also as a Boolean
algebraand hence admits only finitely many atoms; each of themisin acl (@), hence
in X, because At(Q2) is @-definable. So no atom isin QJc;i. Asc # 0q and ¢; is
not an atom in 2, |c; is an infinite atomless Boolean algebra. Hence all the ele-
ments # Og, G in 2|c;i—in particular, y;, u;, or also zj, wj when ¢; = d;’ b for some
j < m—satisfy the same type over & in Lo. The same holdswhen XN]0g, d;’ mb[=
@ with j <mand d;' nb # ¢; for every i < n. Consequently there exist some Lo-
automorphisms of Q|c; (for i < n), Q|d;" mb (for j < m) mapping, respectively,

yi into y; Case (a),
zj into w; Case (b),

yi into uj, Zj into w Case (C);
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of course, these automorphisms act just identically when y; = uj € X or z; = wj €
X. Recalling the propertiesof ¢y, ..., chand dy' b, ..., dm' b, we can glue these
Lo-automorphisms to build an automorphism of €2 (in Lg) fixing X pointwise and
mapping y; in u; fori < nandzjinw;jfor j <m, hencetins. Sotand s havethe
sametypeover X in Ly or asointhelanguage L of T, and we are done. O

Problem 3.2 Let T be a complete theory whose models are Boolean lattice or-
dered o-minimal structures, 2 be a big saturated model of T, X be a subset of Q2 (of
smaller cardinality). Isthe model of T elementarily prime over X unigue (up to X-
isomorphism)?

4 The w-categorical case Let T be acomplete theory whose models are Boolean
|attice ordered o-minimal structures. Asbefore, wework inside abig saturated model
Q of T. Lo denotes the language for Boolean algebras and L is the language of T.
Our aim isto find the conditions ensuring that T is w-categorical. For this purpose,
it may be worth recalling that, in particular, every o-minimal Boolean algebra (every
Boolean a gebrawith only finitely many atoms) has an w-categorical completetheory.

Proposition 4.1 Let T be as before. The following propositions are equival ent:

(i) T isw-categorical;
(i) for every finite subset X of 2, acl(X) isfinite;
(iii) thereisafunction f from N in N such that, for every finite X C Q of power n,
lacl(X)| < f(n).

Proof: The implication (i) = (iii) follows from the Ryll-Nardzewski Theorem
and (iii) = (ii) isimmediate. But (ii) = (i), and even (iii) = (i), may fail in
the general setting.

However we claim that, under our assumptionson T, (ii) = (i) holds. First of
all, it sufficesto show that for every algebraically closed finite subset X of 2, S;(X) is
finite. Infact, supposethat thisistrue. Noticethat, consequently, for every finite X C
Q, S (X) isfinite because (ii) impliesthat acl(X) isfiniteand S;(acl(X)) projects
onto $;(X) by the restriction map. At this point an induction argument shows that
S (@) isfinitefor every positiveinteger n (and consequently that T is w-categorical).

Sopick X C 2, Xfinite, X algebraically closed. In particular, X isclosed under
joint, meet, and complement and contains both Og and 1q; in other words, X is a
finite Boolean subalgebraof Q. Let X, .. ., Xk denoteitsatoms. Since 2 iso-minimal
even as aBoolean algebra, 2 contains only finitely many atoms. So, for every j <Kk,
either x; isan atom of Q or Q2|x; isaninfinite atomless Boolean algebra. Furthermore,
1o = Uj<kX; and hence 2 decomposes up to Lo-isomorphism (as a Boolean algebra)
in the following way:

Q~[]elx.

i<k
So every element a € 2 can be expressed asa = Lij<aj Where a; abbreviates ar x;
foral j < k. Noticealso that all the elementsin 2|x;, excepting O, and Xx;, have the
sametypeover & in Q|X; (asaBoolean algebra). Now observe that, for every a € 2,
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the L-type of a over X isfully determined by the ordered sequence of the Lo-
types of the g s (j < k) over @ in Q|x,

(so there are only finitely many 1-typesover X in L and the claim is proved). Infact,
let b € @, put b; = b x; for every j <k, and suppose tp(aj/@) = tp(bj/@) in
Q|x;j (asastructure of Lg). So, for each j <k, there is an automorphism of Q|x; in
Lo mapping a; inb;. Gluethese automorphismsfor j < k. Onegetsan automorphism
of Q in Lo fixing each x;, hence X pointwise, and mapping ain b. So a and b have
the same type over X in Lo and, by o-minimality, in L. O

Soif T isatheory satisfying the assumptions at the beginning of thissection, and T is
w-categorical, then acl (@) isafinite Boolean subalgebra of 2 (viewed as a structure
of Lg). Let X, ..., Xk denoteitsatoms, then X, . . ., X generate acl () asaBoolean
algebra. Asbefore, as 2 has only finitely many atoms (say n atoms), for every j <Kk,
either x; isan atom of  or Q|X; isan infinite atomless Boolean algebra.

Lemmad4.2 LetT beanw-categorical theory satisfying the assumptions at the be-
ginning of Section[4] Then, for every finite subset X of Q, acl(X) is the Boolean
subalgebra generated by X U {Xo, . .., Xk}.

Actualy, weaready know that acl(X) isfiniteandiseven asubalgebra: thisdepends
onthe w-categoricity of T and doesnot use o-minimality. What wewant to emphasize
hereisthat the o-minimality of €2 impliesthat acl(X) isjust the subalgebragenerated
by XU {Xg, ..., X} in Lg.

Proof:  We proceed by induction on the power of X. The case X empty isclear. As-
sume X = {a} withain Q. Asbefore, decompose a = Lij<ka;j where, for every j <Kk,
aj=anx;. Thenay, ..., a € acl(a) and acl(a) = acl(ag, ..., a). Letb € acl(a),
decompose b = Lj<kbj, where bj = b x; for every j < k; hencebj € acl(a). Let
Oq < bj < aj. By arguing as in Proposition E1] ag L - - L bj U - -+ L & has the
same type as a over the empty set. Hence thereis ¢; € © such that O < ¢j < b
andcj € acl(ag, ..., bj,...,a) € acl(a). Repeating this procedure, one builds an
infinite strictly decreasing sequence of elementsin acl(a) and this contradicts T w-
categorical. Inasimilar way, one excludes a; < bj < xj. Hence either b;j is among
Oq, aj, Xj, or bj, a; arenot comparable. In thelatter case, the previous remarksforce
bjnaj; =0q andbjuaj = xj andso b; = a;’ M x;. Inboth cases b isin the Boolean
subalgebra generated by a; and x;. Hence by, . . ., by are in the Boolean subalgebra
generated by a, Xo, . .., Xk and then the same istrue for b. Therefore acl(a) is con-
tained in this subalgebra and consequently equalsit.

Now let us deal with the general case. For every finite set X C @ and for every
b e Q — acl(X), acl(XU{b}) equalsthealgebraic closure of binthetheory of Q2x (so
after adding the elements of X as parameters). Both w-categoricity and o-minimality
are preserved under expanding the language by finitely many constants. So the al-
gebraic closure of b in the theory of Q2x isjust the Boolean subalgebra generated by
the union of b and the algebraic closure of @ in Q2x (namely, the algebraic closure of
Xin ); but, by induction, thisis just the subalgebra generated by X U {xo, ..., X}
Hence the algebraic closure of X U {b} in Q2 is the Boolean subalgebra generated by
XU{b, Xg, ..., X¢}. O

Now we want to show that, by adding new constantsfor Xg, ..., Xk to L (this affects
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neither w-categoricity nor o-minimality), an w-categorical theory T satisfying our as-
sumptionsis, moreor less, thetheory of infinite Bool ean algebraswith n atoms (recall
n=|At(2)|). Hereisthe precise statement.

Theorem 4.3 Let T be an w-categorical theory satisfying the assumptions at
the beginning of Section [A]and let X, ..., X list, as above, the atoms in
(soXo, . .., Xx generate acl (@) asa Boolean algebra). For every L-formula ¢ (v, wo,
..., wg), thereisaformula po(v, wo, ..., wk) of Lo such that ¢(v, Xo, ..., Xx) and
@o(U, Xo, ..., Xx) areequivalent in €.

Proof:  With no loss of generality, we can assume that L contains some constant
symbolsfor Xg, ..., Xk, hencewy, ..., wy donot occuring and gpg. AsT iscomplete,
our claimistrivial when ¢ isasentence (just choose ¢g : Yv(v = v) wheng € T and
@o : = (Vv(v = v)) otherwise).

When ¢ = ¢(v) contains a unique free variable, then by o-minimality, ¢(v)
is equivalent in T to a Boolean combination of formulas v > p or v < p where
p € acl(2) and hence p can be expressed as a Boolean polynomial in X, ..., X.
This provides the required formula ¢g(v). Finally, consider the case ¢ = ¢(v, V),
wherev = (vy, ..., vym) isasequenceof variablesof lengthm > 0. For every y € Q™,
@(v, y) is equivalent in © to a Boolean combination of formulasv > porv < p
where p € acl(y), and hence, owing to Lemma[4.2] is a Boolean polynomial in

Y, X0, - .., Xc. The decomposition of ¢(v, ¥) as a Boolean combination of formulas
v>porv=<p, aswell asthe decomposition of each p as a Boolean polynomial in
Y, Xo, - . . , Xk, do not depend directly on y but only on itstype over &, and so are pre-

served under replacing y with another sequence in Q™ having the same type over &.
Since T is w-categorical, there are only finitely many (say s+ 1) m-types over
@. Moreover, the type of agiven sequence y € Q™ isfully determined by

(tp(yi+l/YL ey yl) : 05 I < m)

in the following sense. Let Z € Q™ and assume that

1. z; hasthesametypeasy; over & (sothereisan automorphism f; of & mapping
y1into z),
2. Z, hasthe sametype as f1(y») over z; = f1(y1) (so thereis an automorphism
fo of Q mapping y1, Y, into z;, 2, respectively),
and soon; thentp(Z/2)=tp(y/ o). By w-categoricity, eachtypetp(Yi11/Y1.. - -, Yi)
(withO <i < m)isisolated. By o-minimality, aformulaisolating it can be expressed
as a Boolean combination of

Vit1 = Ui, Vi1 = i

where g isaBoolean polynomia inXg, ..., Xk, Y1, ..., Yi. Thentp(y/@) isisolated
by a Boolean combination of formulas

Vi+1 = 0, Vi+1 =G

where 0 <i < mand g = qi(vy,..., vi, Xo, ..., Xx) iS a Boolean polynomial in
V1, ..., Vi, X0, ..., Xk (recal that all automorphisms of € fix Xg,...,Xxx). Let
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0o(V), ..., 0s(v) list the formulas defined in this way to isolate the s + 1 m-types
over @. As seen before, for every j < sand every y € QM (v, y) is equiva
lent to a Boolean combination (v, ¥) of formulas v > p or v < p where p =
p(Y, Xo, - .., Xx) is a Boolean polynomial in y, X, ..., Xc. Altogether, ¢(v, v) is
equivalent to
po(v,0) 1 \/(0;@) Anj(v, D)),
j<s

which isaformula of Ly and even a Boolean combination of
vi+1 Z qi(vl’ -~'svi9 X07 ---vxk)a

vi-‘rlfqi(vl""$vivxo’~~'$xk)
(withO <i < m)and
v > P, Xo, - -5 X,

v < PV, X0, - - . » Xk)-
O

5 o-minimal measure spaces A measure space is atriple (4, F, m) where 4 is
a(ninfinite) Boolean algebra, F isan ordered field, and m (the measure) isafunction
of Ain F satisfying

1. m(04) =0 andfor al ain Am(a) > O,
2. foreveryaandbin Asuchthatanb =04, m(aub) = m(a) + m(b).

+, O denote here the addition in F and its zero element. So measure spaces can
be viewed as first order 2-sorted structures in a suitable language Ly, extending Lg
by a 1-ary operation symbol for m, two new constants for O and the multiplicative
identity 1¢ of F, three operation symbolsfor +, - and — in F; of course, we interpret
< into arelation extending the Boolean order on A and the linear order on F, and we
assume that an element of A and an element of F are not comparable with each other
with respect to this relation. In particular, every measure space can be considered a
partially ordered structure with respect to (the interpretation of) <; moreover, A and
F are @-definablein (A4, F, m): Aisthe set of elements satisfying v > 04 and F is
its complement.

We want to characterize the (quasi )-o-minimal measure spaces. Hereistheclas-
sification theorem.

Theorem 5.1 Let (4, F, m) be a measure space. The following propositions are
equivalent:

@) (A4, F, m)iso-minimal;
(i) (A4, F, m) isquasi-o-minimal;
(iii) Fisareal closedfield; A4 ~ Ay x A4; isthedirect product of aninfinite atomless
Boolean algebra A, and a finite algebra A4;; m(Ag) = Of.

Before beginning the proof, some comments. In this case (as well asin the previous
section), it turns out that o-minimal examples are comparatively trivia; in fact, the
measure functions m can take only finitely many values. Consequently
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no existentially closed measure space with a nonzero measure
aswell as
no existentialy closed measure space with an effective measure

iso-minimal (recall that mis said to be effective when 04 isthe only element whose
measureisOf; existentially closed measure spacesin the quoted classes are classified
in [8]). This remark suggests the following question (already raised in Section 1):
are there some significant examples of o-minimal Boolean lattice ordered structures
besides Boolean agebras with finitely many atoms, or trivial variations?

But now let usgive the proof of Theorem[5.1] Weknow that (i) = (ii) isclear.

Proof of (ii) = (iii): Let (4, F, m) be a quasi-o-minimal measure space. Then
A—as a structure of Ly,—is quasi-o-minimal. For, let X be a subset of A definable
in Ly inside 4; Xisdefinableasoin (4, F, m) (just conjunct ‘v > 04') and hence
isaBoolean combination of sets defined by formulas

v>a v<b

witha, b e AU F. But actually no parameter in F isnecessary because no element in
Aiiscomparable with F. Then A4 isquasi-o-minimal in Ly,. In particular A4 is quasi-
o-minimal, hence o-minimal, also as a Boolean algebra. Accordingly, 4 = 4y x A4
where 4, isafinitealgebraand A4, isaninfinite atomless algebra; if sdenotesthejoin
of theatomsin 4, then A4, isjust isomorphic to A4|s, and Ay to 4|s. Ass e dcl (@),
both 4, and A4; are @-definable. In the same way, one seesthat F (as a structure of
Lm or aso as an ordered field) is quasi-o-minimal. By Theorem 2.3 in [7], F isreal
closed.

So what we have still to check isthat m(Ag) = Og. As 4 is @-definablein 4,
we can assume with no loss of generality Ag = A, hence 4 atomless (and infinite).
Suppose toward a contradiction m(A) # Og. In particular, we can normalize m and
fixm(lg) = 1.

Lemmab.2 Let A4 = (A <,...) bean infinite Boolean lattice ordered quasi-o-

minimal structure such that the underlying Boolean algebra is atomless. Then every
filter (ideal) definablein A4 is principal.

Proof: By duality, we can limit our analysis to filters. Let U be afilter of (A, <)
definablein A. By quasi o-minimality, U isafinite union of setsdefined by formulas

1. v>a,
2. v<bh,
3. v#Cy...,v¥#Cp
4. v£dg,...,v £dn

with parametersin A. As before, we can assume that

(i) Vi<n,c #04q,cima=0gandc <b;
(i) Vi<=ma<dj<b
(iii) co,...,cn,do' M b, ..., dyn b areaomsin the subalgebra they generate; in
particular, co, . .., cy arepairwisedigointanddy’ b, ..., dyn mbarepairwise
digoint.
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Letx e Asatisfya<x<b, X # Cg,...,Cn X £ dq,