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Lattice Ordered O-Minimal Structures

CARLO TOFFALORI

Abstract We propose a notion of o-minimality for partially ordered struc-
tures. Then we study o-minimal partially ordered structures (A,≤, . . .) such
that (A,≤) is a Boolean algebra. We prove that they admit prime models over
arbitrary subsets and we characterize ω-categoricity in their setting. Finally, we
classify o-minimal Boolean algebras as well as o-minimal measure spaces.

1 Introduction Totally ordered o-minimal structures were introduced by Van den
Dries in [9] and intensively studied in Pillay and Steinhorn [7] and Knight, Pillay, and
Steinhorn [4]. They are unstable according to the Shelah classification theory and yet
they enjoy some good model theoretic properties. For instance, it was shown in [7]
that if T is a complete theory whose models are totally ordered o-minimal structures
and � denotes a big saturated model of T, then

1. the algebraic closure in � satisfies the Steinitz exchange principle;

2. for each subset X of � (of smaller cardinality), there is a unique model of T
elementarily prime over X.

Definable sets in totally ordered o-minimal structures were largely studied also in
[4] where, in particular, it was proved that o-minimality is preserved by elemen-
tary equivalence in this setting. Other motivations and connections are explained in
Marker [6]. Of course, one may wonder what happens with respect to o-minimality
when one replaces total orders with arbitrary partial orders. But the class of partially
ordered structures may be too large to allow reasonably general and significant re-
sults. So we prefer a more particular starting point, and we deal here with Boolean
lattice ordered structures, namely, partially ordered structures A = (A,≤, . . .) such
that (A,≤) is a Boolean algebra. We explore o-minimality in this setting.

In particular, in Section 2 we propose a possible definition of o-minimality for
these structures. Accordingly, we classify o-minimal Boolean algebras; we see that
they are exactly the Boolean algebras with finitely many atoms. Then we point out
that for a complete theory T whose models are Boolean lattice ordered o-minimal
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structures, the exchange principle may fail but over each subset X of � (of smaller
cardinality) there does exist a model of T elementarily prime. This is the matter of
Section 3.

Section 4 is devoted to classifying the ω-categorical theories whose models are
Boolean lattice ordered o-minimal structures. It turns out that they do not exceed the
theories of expansions of o-minimal Boolean algebras by finitely many constants.

Finally, we investigate some other possible examples among measure spaces
(Section 5). These are not Boolean lattice ordered structures in a literal sense but,
of course, they are very near. The analysis again shows that the o-minimal structures
in this class are comparatively poor. So Section 4 and Section 5 may suggest that
the complete theories whose models are Boolean lattice ordered o-minimal structures
should be confined among some trivial expansions of the theories of Boolean alge-
bras with finitely many atoms and raise the question of finding, if possible, nontrivial
examples.

We refer to Hodges [3] for basic model theory and to Birkhoff [1] and Halmos [2]
for Boolean algebra. As already stated, for a given complete theory T, we fix a big
saturated model � of T and we work inside � by assuming that any model of T is an
elementary substructure of �.

2 o-minimal and quasi-o-minimal structures Let A = (A,≤, . . .) be a structure
partially ordered by ≤.

Definition 2.1 A is quasi-o-minimal if and only if the only subsets of A definable
in A are the finite Boolean combinations of sets defined by formulas a ≤ v or v ≤ b
with a and b in A. A is o-minimal if and only if for every X ⊆ A, the only X-definable
subsets of A are the finite Boolean combinations of sets defined by formulas a ≤ v

and v ≤ b with a and b in the algebraic closure acl (X) of X.

What happens for totally ordered structures? In this case, quasi-o-minimality implies
o-minimality as implicitly observed in [7], so the two notions are equivalent. Further-
more, if A = (A,≤, . . .) is a totally ordered o-minimal structure, then any definable
subset of A is a finite Boolean combination and even a finite union of points and open
intervals (possibly with endpoints ±∞). The latter are just a neighborhood basis for
a topology of A (the intrinsic topology).

When A = (A,≤, . . .) is a lattice ordered structure with a least element and
a greatest element (in particular, when A is Boolean lattice ordered), then a similar
topology can be defined on A by taking the convex subsets [a, b] = {x ∈ A : a ≤ x ≤
b} as a sub-basis of closed sets (see [1], 10.12). This is the so-called interval topology.
So when A is quasi-o-minimal, the definable subsets are just the finite Boolean com-
binations of closed sets in the sub-basis and hence are constructible sets in the interval
topology. Notice also that, for arbitrary partially ordered structures A = (A,≤, . . .),
o-minimality implies quasi o-minimality, but the converse is not always true: there
do exist partially ordered quasi-o-minimal structures which are not o-minimal. The
following is an example.

Example 2.2 Let A = (A,≤), where A is the disjoint union of a copy Q of the
rationals, a copy Z of the integers, and two additional elements 0A and 1A . Q and Z
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are ordered in the usual way; an element of Q and an element of Z are not compara-
ble with each other. 0A is the least element of A and 1A is the greatest one. Notice
that acl (∅) = {0A , 1A }; for any two elements in Q or in Z are in the same orbit of
Aut (A ), so any ∅-definable set overlapping Q or Z must include Q, Z, respectively,
and hence is infinite. Furthermore, Q is ∅-definable by the following formula.

∀w1∀w2∃u1∃u2(w1 < v < w2 → w1 < u1 < v < u2 < w2)

∧∃w1∃w2(w1 < v < w2).

But Q cannot be obtained as a finite Boolean combination of formulas a ≤ v or v ≤ b
with a and b in acl (∅). Consequently, A is not o-minimal. Nevertheless, A is quasi-
o-minimal. In fact, fix r ∈ Q. Then Q is defined in A by

¬(v ≤ 0A ) ∧ ¬(v ≥ 1A ) ∧ (v ≤ r ∨ r ≤ v).

Similarly, Z is definable in A . Now take any definable subset D of A. We claim that D
is a finite Boolean combination of sets defined by formulas a ≤ v or v ≤ b with a and
b in A. This is trivial for D ∩{0A , 1A }. So owing to the previous remarks on Q and Z,
it suffices to show our claim for D ∩ Q and D ∩ Z, and to assume correspondingly,
D ⊆ Q or D ⊆ Z. Then let D ⊆ Q, D = ϕ(A , �r, �s) with �r in Q and �s in Z. More
precisely, put �r = (r0, r1, . . . , rn) where with no loss of generality, r0 < r1 < · · · < rn.
Look at the open intervals

]0A , r0[, ]r0, r1[, . . . , ]rn, 1A [

in Q. It is easy to see that each of these intervals, when overlapping D, is included in
D. Hence, D is defined by

(v ≤ r0 ∨ v ≥ r0) ∧ ¬(v ≤ 0A ) ∧ ¬(v ≥ 1A ) ∧ ϕ�(v, �r),
where ϕ�(v, �r) defines the open intervals

]0A , r0[, ]r0, r1[, . . . , ]rn, 1A [

and the endpoints r0, . . . , rn contained in D. A similar (slightly more complicated)
procedure works when D ⊆ Z.

However, the equivalence

A o-minimal ⇐⇒ A quasi-o-minimal

holds when A is a pure Boolean algebra. But before proving this result, let us fix some
notation. Recall that a Boolean algebra A can be regarded as a structure in a language
with a unique 2-ary relation symbol for ≤. Let �,�, and ′ denote, respectively, the
meet, join, and complement operations in A , and 0A and 1A denote the least and the
greatest elements in A . All of them are ∅-definable in {≤}. So we can freely add the
corresponding symbols to our language because it is easy to see that no result below
depends on this additional alphabet. So when considering Boolean algebras, we work
in this extended language L0. Furthermore, if A is a Boolean algebra and a is an
element of A, A |a denotes the Boolean algebra having domain {x ∈ A : x ≤ a} and
the obvious structure.



450 CARLO TOFFALORI

Theorem 2.3 Let A be an infinite Boolean algebra. The following propositions are
equivalent:

(i) A is o-minimal;
(ii) A is quasi-o-minimal;

(iii) A has only finitely many atoms.

Proof: (i) =⇒ (ii) The proof is trivial. (ii) =⇒ (iii) Let At (A ) denote the set of
atoms in A . Obviously At (A ) is ∅-definable in A . If (ii) holds, then At (A ) can be
expressed as a finite union of sets D defined by a conjunction of formulas,

1. a0 ≤ v, . . . , as ≤ v,
2. v ≤ b0, . . . , v ≤ bt,
3. c0 �≤ v, . . . , cn �≤ v,
4. v �≤ d0, . . . , v �≤ dm,

with parameters from A. Assume At (A ) is infinite. Hence at least one set D is infinite
too. Fix such a D and the corresponding conjunction of formulas. By putting a0 =
0A , we can assume that at least one formula occurs in (1). By replacing a0, . . . , as

with their join a, we can suppose that (1) contains exactly one formula a ≤ v. In a
similar way, (2) can be restricted to a unique formula v ≤ b. Clearly a ≤ b. Further-
more, we can assume

ci � a = 0A , ci ≤ b ∀i ≤ n,

a ≤ d j ≤ b ∀ j ≤ m.

In fact, fix i ≤ n. For x ∈ A and x ≥ a,

x ≥ ci ⇐⇒ x ≥ ci � a′.

So we can replace ci with ci � a′. Moreover, if ci �≤ b, then no element x ≤ b in A
satisfies x ≥ ci and v �≥ ci can be taken out of (3). Proceed similarly for d j, j ≤ m.

We can also assume ci �= 0A for all i ≤ n and d j �= b, in fact, d j
′ � b �= 0A , for all

j ≤ m. By replacing c0, . . . , cn, d0
′ � b, . . . , dm

′ � b with the atoms of the subalgebra
A0 they generate, we can arrange that

c0, . . . , cn, d0
′ � b, . . . , dm

′ � b

are atoms in A0. In particular, c0, . . . , cn are pairwise disjoint and d0
′ � b, . . . , dm

′ � b
are pairwise disjoint (where disjointedness means that the meet is 0A ).

In conclusion, the atoms of A lying in D are just the elements x ∈ A satisfying
a ≤ x ≤ b and

x′ � ci �= 0A ∀i ≤ n,

x � (d j
′ � b) �= 0A ∀ j ≤ m.

Notice that this reduction does not use the hypotheses D ⊆ At (A ) and D infinite. But
these further assumptions force a = 0A , otherwise v ≥ a is satisfied by at most one
atom. Moreover, m ≤ 0 because no atom x in A can overlap two disjoint elements
�= 0A . But m = 0 implies that the only element in D is d0

′ � b and this contradicts the
fact that D is infinite. So no formula occurs in (4).
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At this point b � (�ci)
′ is in D, hence b � (�ci)

′ is an atom. If every ci is a finite
union of atoms, then the same holds for b, and D is not infinite. So there is i ≤ n
such that ci is not a finite union of atoms. Take x and y in A such that x, y �= 0A ,
x � y = 0A , and x � y < ci. Then x � y is not an atom, but x � y is in D. This is a
contradiction. So no D is infinite and At (A ) is finite.

(iii) =⇒ (i) Assume At (A ) is finite, for instance At (A ) = {x0, . . . , xm} where
x0 �= · · · �= xm. Put x = � j≤mx j. Notice that each element a ∈ A decomposes uniquely
as

(a � x) � (a � x′),

where either a � x is 0A or any element c �= 0A , c ≤ a � x, contains some atoms and
a � x′ does not contain any atoms. Hence A is separable according to the terminology
of [5]. We know (for instance from [5]) that the theory of separable Boolean algebras
is quantifier eliminable in the language L1 = L0 ∪ {R, Rn : n ∈ N, n > 0} where R,
Rn are 1-ary relation symbols to be interpreted within an arbitrary Boolean algebra B
as follows. For every b ∈ B,

1. b ∈ RB if and only if for every element c ∈ B satisfying 0B < c ≤ b, there is
some atom d in B such that d ≤ b,

2. b ∈ RB
n if and only if there are at least n atoms below b.

In particular, RB and RB
n are ∅-definable in L0. At this point let us come back to our

algebra A . Let ϕ(v, �y) be a formula of L0 with parameters �y from A. Hence ϕ(v, �y) is
L1-equivalent in the theory of A to a suitable finite Boolean combination of formulas

p(v, �y) ≤ q(v, �y), R(p(v, �y)), Rn(p(v, �y)),

where p(v, �y) and q(v, �y) are Boolean polynomials (namely, L1-terms) in v, �y and n
ranges over the positive integers. In the theory of A ,

1. p(v, �y) ≤ q(v, �y) is equivalent to p(v, �y) � (q(v, �y))′ = 0A ,
2. R(p(v, �y)) to p(v, �y) � x′ = 0A ,
3. Rn(p(v, �y)) to either

∨
0≤i1<···<in≤m

∧
1≤ j≤n

((p(v, �y))′ � xi j = 0A )

(when n ≤ m + 1) or v � 1A = 0A (otherwise).

To sum up, ϕ(v, �y) is equivalent in the theory of A to a Boolean combination of for-
mulas of the kind

r(v, �y, �x) = 0A

where r is a Boolean polynomial in v, �y and �x and �x = (x0, . . . , xm) is in acl (∅) be-
cause At (A ) is ∅-definable and finite. Hence (�y, �x) is in acl (�y). We can assume that
r(v, �y, �x) is a finite join of finite meets of elements among v, �y, �x and their comple-
ments. Thus r(v, �y, �x) = 0A implies that each meet is 0A (and conversely). But in
the theory of A , for a given a ∈ A,

1. v � a = 0A is equivalent to v ≤ a′,
2. v′ � a = 0A to v ≥ a,
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3. v � v′ � a = 0A is always satisfied.

In conclusion, ϕ(v, �y) is equivalent in the theory of A to a finite Boolean combination
of formulas a ≤ v, v ≤ b with a and b in acl (�y). Hence A is o-minimal. �
Actually, the previous proofs of (i) =⇒ (ii) and (ii) =⇒ (iii) work for arbitrary ex-
pansions of Boolean algebras and only (iii) =⇒ (i) needs the purity assumption. Ac-
cordingly one may ask the following.

Problem 2.4 Does

A quasi-o-minimal =⇒ A o-minimal

hold for any Boolean lattice ordered structure A = (A,≤, . . .)?

Corollary 2.5 Infinite o-minimal Boolean algebras A do not satisfy the exchange
principle: there are a, b, and c in A such that a ∈ acl (b, c)−acl (c) but b �∈ acl (a, c).

Proof: Decompose A as A0 × A1 where A1 is the (finite) subalgebra generated by
the atoms of A and A0 is atomless. Fix 0A0 < c < a < 1A0 in A0 and take b ∈ A0,
a � c′ < b < a. Then a = b � c ∈ acl (b, c) but a �∈ acl (c) and b �∈ acl (a, c). �

3 Prime models Let T be a complete theory and � still denote a big saturated model
of T . When X is a subset of � (of smaller cardinality), a model A of T whose domain
contains X is called (elementarily) prime over X if and only if for every model B of
T such that X ⊆ B, there is an elementary embedding of A in B acting identically on
X. The existence and the uniqueness (up to X-isomorphism) of prime models over
arbitrary subsets X is guaranteed for complete theories of totally ordered o-minimal
structures [7] as well as for the theories of Boolean algebras with finitely many atoms
(see [10]). This section is devoted to partly extending the existence theorem for the-
ories of Boolean lattice ordered o-minimal structures.

Theorem 3.1 Let T be a complete theory whose models are Boolean lattice ordered
o-minimal structures, X be a subset of � (of smaller cardinality). Then there exists
a model of T (elementarily) prime over X.

Proof: It is sufficient to show that, for every subset X of � (of smaller cardinality),
the isolated 1-types over X are dense in S1(X). We can restrict our analysis to alge-
braically closed sets X (so we shall assume X = acl (X)). Hence take a formula ϕ(v)

in the language L(X) obtained from the language L of T by adding a constant sym-
bol for every element in X. Assume ϕ(�) to be nonempty. By o-minimality, ϕ(v) is
equivalent to a disjunction of (consistent) conjunctions of formulas,

1. a ≤ v,
2. v ≤ b,
3. c0 �≤ v, . . . , cn �≤ v,
4. v �≤ d0, . . . , v �≤ dm,

with parameters from X = acl (X). We need to find a complete formula θ(v) of L(X)

such that θ(�) is not empty and θ(v) implies in � at least one of the conjunctions in
ϕ(v). Hence we can assume that ϕ(v) is just the conjunction (1) – (4), possibly with
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a = 0� and b = 1�. Here are some further permissible assumptions on c0, . . . , cn

and d0, . . . , dm (see Theorem 2.3):

(i) ∀i ≤ n, ci �= 0� and ci � a = 0�;
(ii) ∀ j ≤ m, a ≤ d j < b;

(iii) c0, . . . , cn, d0
′ � b, . . . , dm

′ � b are atoms in the subalgebra of � they generate
(notice that all these atoms still belong to X = acl (X)); in particular, c0, . . . , cn

are pairwise disjoint and d0
′ � b, . . . , dm

′ � b are pairwise disjoint.

Finally, we can also suppose

(iv) ∀i ≤ n, ci is not an atom of � (otherwise, for every s ∈ �, s �≥ ci if and only if
s ≤ ci

′, and by replacing b with b � ci
′, we can eliminate v �≥ ci in (3));

(v) ∀ j ≤ m, d j
′ � b is not an atom of � (otherwise, for every s ≤ b in �, s �≤ d j if

and only if s ≥ d j
′ � b, and by replacing a with a � (d j

′ � b), we can eliminate
v �≤ d j in (4)).

Now choose y0, . . . , yn, z0, . . . , zm ∈ � as follows.

(a) Let i ≤ n, ci �= d j
′ � b for every j ≤ m. Then take yi ∈ � satisfying 0� < yi < ci

(this is possible owing to (iv)); pick yi ∈ X when X overlaps ]0�, ci[.
(b) Let j ≤ m, d j

′ � b �= ci for every i ≤ n. Then choose z j ∈ � satisfying 0� <

z j < d j
′ � b (as allowed by (v)); again pick z j ∈ X if possible.

(c) Finally let i ≤ n, j ≤ m satisfy ci = d j
′ � b. Accordingly take yi, z j ∈ � such

that 0� < yi < ci, z j = yi
′ � ci; also in this case choose yi (hence z j) in X if

possible.

We emphasize that y0, . . . , yn, z0, . . . , zm are �= 0� and pairwise disjoint. Put

y = �i≤n yi, z = � j≤mz j.

Notice that, for every j ≤ m, z j ≤ d j
′ � b ≤ d j

′ ≤ a′. Now let

t = (a � z) � y′.

Then t ∈ ϕ(�), in fact

1. a ≤ t ((i) implies a ≤ ci
′ for all i ≤ n; hence a ≤ yi

′ for all i ≤ n and, conse-
quently, a ≤ y′; clearly a ≤ a � z);

2. t ≤ b (for every j ≤ m, z j ≤ d j
′ � b ≤ b; so z ≤ b and a � z ≤ b; this forces

t ≤ b);
3. for all i ≤ n, ci �≤ t (it suffices to notice that ci � t′ = ci � (y � (a′ � z′)) ≥

ci � y = yi > 0�);
4. for all j ≤ m, t �≤ d j (in fact, t � d j

′ = y′ � (a � z) � d j
′ = y′ � z � d j

′ because
a � d j

′ = 0�; hence t � d j
′ ≥ y′ � z j = z j > 0�).

To sum up, we have shown what follows. Fix, if possible,

xi ∈ X∩]0�, ci[ for i ≤ n,

t j ∈ X∩]0�, d j
′ � b[ for j ≤ m,

xi
′ � ci = t j when ci = d j

′ � b;
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put in L(X)

θ(v) : ∃y0, . . . ,∃yn∃z0, . . . ,∃zm

(∧
i≤n

0� < yi < ci

∧
∧
j≤m

0� < z j < d j
′ � b ∧

∧
i≤n,X∩]0�,ci[�=∅

yi = xi

∧
∧

j≤m,X∩]0�,d j
′�b[�=∅

z j = t j ∧
∧

i≤n, j≤m

yi � z j = 0�

∧ v = (a � � j≤mz j) � �i≤n yi
′
)
;

then θ(�) ⊆ ϕ(�).
At this point it is sufficient to show that θ(v) is complete in L(X), and hence that

two elements t and s in θ(�) have the same type over X in the language L of T . But
the 1-type of t (or s) over X is uniquely determined by its formulas

v ≤ x, v ≥ x

(or negations) when x ranges over X. For � is o-minimal. Accordingly, it is enough
to show that two elements t, s ∈ θ(�) satisfy the same type over X in {≤} (or also in
L0). So let

y0, . . . , yn, z0, . . . , zm ∈ �,

u0, . . . , un,w0, . . . , wm ∈ �

witness t ∈ θ(�), s ∈ θ(�), respectively. Recall the following.

(a) ∀i ≤ n, 0� < yi, ui < ci and yi = ui = xi ∈ X if X∩]0�, ci[�= ∅;

(b) ∀ j ≤ m, 0� < z j,w j < d j
′ � b and z j = w j = t j ∈ X if X∩]0�, d j

′ � b[ �=
∅;

(c) For i ≤ n, j ≤ m and ci = d j
′ � b,yi � z j = 0� and yi � z j = ci, ui � w j =

0� and ui � w j = ci.

Take i ≤ n, X∩]0�, ci[= ∅. Then all the elements �= 0�, ci in �|ci satisfy the same
type over ∅ in the language L0 (in �|ci). In fact, � is o-minimal also as a Boolean
algebra and hence admits only finitely many atoms; each of them is in acl (∅), hence
in X, because At (�) is ∅-definable. So no atom is in �|ci. As ci �= 0� and ci is
not an atom in �, �|ci is an infinite atomless Boolean algebra. Hence all the ele-
ments �= 0�, ci in �|ci—in particular, yi, ui, or also z j, w j when ci = d j

′ � b for some
j ≤ m—satisfy the same type over ∅ in L0. The same holds when X∩]0�, d j

′ � b[=
∅ with j ≤ m and d j

′ � b �= ci for every i ≤ n. Consequently there exist some L0-
automorphisms of �|ci (for i ≤ n), �|d j

′ � b (for j ≤ m) mapping, respectively,

yi into ui Case (a),

z j into w j Case (b),

yi into ui, z j into w j Case (c);
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of course, these automorphisms act just identically when yi = ui ∈ X or z j = w j ∈
X. Recalling the properties of c0, . . . , cn and d0

′ � b, . . . , dm
′ � b, we can glue these

L0-automorphisms to build an automorphism of � (in L0) fixing X pointwise and
mapping yi in ui for i ≤ n and z j in w j for j ≤ m, hence t in s. So t and s have the
same type over X in L0 or also in the language L of T , and we are done. �

Problem 3.2 Let T be a complete theory whose models are Boolean lattice or-
dered o-minimal structures, � be a big saturated model of T, X be a subset of � (of
smaller cardinality). Is the model of T elementarily prime over X unique (up to X-
isomorphism)?

4 The ω-categorical case Let T be a complete theory whose models are Boolean
lattice ordered o-minimal structures. As before, we work inside a big saturated model
� of T . L0 denotes the language for Boolean algebras and L is the language of T .
Our aim is to find the conditions ensuring that T is ω-categorical. For this purpose,
it may be worth recalling that, in particular, every o-minimal Boolean algebra (every
Boolean algebra with only finitely many atoms) has an ω-categorical complete theory.

Proposition 4.1 Let T be as before. The following propositions are equivalent:

(i) T is ω-categorical;
(ii) for every finite subset X of �, acl (X) is finite;

(iii) there is a function f from N in N such that, for every finite X ⊆ � of power n,
|acl (X)| ≤ f (n).

Proof: The implication (i) =⇒ (iii) follows from the Ryll-Nardzewski Theorem
and (iii) =⇒ (ii) is immediate. But (ii) =⇒ (i), and even (iii) =⇒ (i), may fail in
the general setting.

However we claim that, under our assumptions on T , (ii) =⇒ (i) holds. First of
all, it suffices to show that for every algebraically closed finite subset X of �, S1(X) is
finite. In fact, suppose that this is true. Notice that, consequently, for every finite X ⊆
�, S1(X) is finite because (ii) implies that acl (X) is finite and S1(acl (X)) projects
onto S1(X) by the restriction map. At this point an induction argument shows that
Sn(∅) is finite for every positive integer n (and consequently that T is ω-categorical).

So pick X ⊂ �, X finite, X algebraically closed. In particular, X is closed under
joint, meet, and complement and contains both 0� and 1�; in other words, X is a
finite Boolean subalgebra of �. Let x0, . . . , xk denote its atoms. Since � is o-minimal
even as a Boolean algebra, � contains only finitely many atoms. So, for every j ≤ k,
either x j is an atom of � or �|x j is an infinite atomless Boolean algebra. Furthermore,
1� = � j≤kx j and hence � decomposes up to L0-isomorphism (as a Boolean algebra)
in the following way:

� �
∏
j≤k

�|x j.

So every element a ∈ � can be expressed as a = � j≤ka j where a j abbreviates a � x j

for all j ≤ k. Notice also that all the elements in �|x j, excepting 0� and x j, have the
same type over ∅ in �|x j (as a Boolean algebra). Now observe that, for every a ∈ �,
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the L-type of a over X is fully determined by the ordered sequence of the L0-
types of the aj ’s ( j ≤ k) over ∅ in �|xj,

(so there are only finitely many 1-types over X in L and the claim is proved). In fact,
let b ∈ �, put b j = b � x j for every j ≤ k, and suppose tp(a j/∅) = tp(b j/∅) in
�|x j (as a structure of L0). So, for each j ≤ k, there is an automorphism of �|x j in
L0 mapping a j in b j. Glue these automorphisms for j ≤ k. One gets an automorphism
of � in L0 fixing each x j, hence X pointwise, and mapping a in b. So a and b have
the same type over X in L0 and, by o-minimality, in L. �
So if T is a theory satisfying the assumptions at the beginning of this section, and T is
ω-categorical, then acl (∅) is a finite Boolean subalgebra of � (viewed as a structure
of L0). Let x0, . . . , xk denote its atoms, then x0, . . . , xk generate acl (∅) as a Boolean
algebra. As before, as � has only finitely many atoms (say n atoms), for every j ≤ k,
either x j is an atom of � or �|x j is an infinite atomless Boolean algebra.

Lemma 4.2 Let T be an ω-categorical theory satisfying the assumptions at the be-
ginning of Section 4. Then, for every finite subset X of �,acl (X) is the Boolean
subalgebra generated byX ∪ {x0, . . . , xk}.
Actually, we already know that acl (X) is finite and is even a subalgebra: this depends
on the ω-categoricity of T and does not use o-minimality. What we want to emphasize
here is that the o-minimality of � implies that acl (X) is just the subalgebra generated
by X ∪ {x0, . . . , xk} in L0.

Proof: We proceed by induction on the power of X. The case X empty is clear. As-
sume X = {a} with a in �. As before, decompose a = � j≤ka j where, for every j ≤ k,
a j = a � x j. Then a0, . . . , ak ∈ acl (a) and acl (a) = acl (a0, . . . , ak). Let b ∈ acl (a),
decompose b = � j≤kb j, where b j = b � x j for every j ≤ k; hence b j ∈ acl (a). Let
0� < b j < a j. By arguing as in Proposition 4.1, a0 � · · · � b j � · · · � ak has the
same type as a over the empty set. Hence there is c j ∈ � such that 0� < c j < b j

and c j ∈ acl (a0, . . . , b j, . . . , ak) ⊆ acl (a). Repeating this procedure, one builds an
infinite strictly decreasing sequence of elements in acl (a) and this contradicts T ω-
categorical. In a similar way, one excludes a j < b j < x j. Hence either b j is among
0�, a j, x j, or b j, a j are not comparable. In the latter case, the previous remarks force
b j � a j = 0� and b j � a j = x j and so b j = a j

′ � x j. In both cases b j is in the Boolean
subalgebra generated by a j and x j. Hence b0, . . . , bk are in the Boolean subalgebra
generated by a, x0, . . . , xk and then the same is true for b. Therefore acl (a) is con-
tained in this subalgebra and consequently equals it.

Now let us deal with the general case. For every finite set X ⊆ � and for every
b ∈ �−acl (X), acl (X ∪{b}) equals the algebraic closure of b in the theory of �X (so
after adding the elements of X as parameters). Both ω-categoricity and o-minimality
are preserved under expanding the language by finitely many constants. So the al-
gebraic closure of b in the theory of �X is just the Boolean subalgebra generated by
the union of b and the algebraic closure of ∅ in �X (namely, the algebraic closure of
X in �); but, by induction, this is just the subalgebra generated by X ∪ {x0, . . . , xk}.
Hence the algebraic closure of X ∪ {b} in � is the Boolean subalgebra generated by
X ∪ {b, x0, . . . , xk}. �
Now we want to show that, by adding new constants for x0, . . . , xk to L (this affects
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neither ω-categoricity nor o-minimality), an ω-categorical theory T satisfying our as-
sumptions is, more or less, the theory of infinite Boolean algebras with n atoms (recall
n = |At (�)|). Here is the precise statement.

Theorem 4.3 Let T be an ω-categorical theory satisfying the assumptions at
the beginning of Section 4 and let x0, . . . , xk list, as above, the atoms in �

(so x0, . . . , xk generate acl (∅) as a Boolean algebra). For every L-formula ϕ(�v,w0,

. . . , wk), there is a formula ϕ0(�v,w0, . . . , wk) of L0 such that ϕ(�v, x0, . . . , xk) and
ϕ0(�v, x0, . . . , xk) are equivalent in �.

Proof: With no loss of generality, we can assume that L contains some constant
symbols for x0, . . . , xk, hence w0, . . . , wk do not occur in ϕ and ϕ0. As T is complete,
our claim is trivial when ϕ is a sentence (just choose ϕ0 : ∀v(v = v) when ϕ ∈ T and
ϕ0 : ¬(∀v(v = v)) otherwise).

When ϕ = ϕ(v) contains a unique free variable, then by o-minimality, ϕ(v)

is equivalent in T to a Boolean combination of formulas v ≥ p or v ≤ p where
p ∈ acl (∅) and hence p can be expressed as a Boolean polynomial in x0, . . . , xk.
This provides the required formula ϕ0(v). Finally, consider the case ϕ = ϕ(v, �v),
where �v = (v1, . . . , vm) is a sequence of variables of length m > 0. For every �y ∈ �m,
ϕ(v, �y) is equivalent in � to a Boolean combination of formulas v ≥ p or v ≤ p
where p ∈ acl (�y), and hence, owing to Lemma 4.2, is a Boolean polynomial in
�y, x0, . . . , xk. The decomposition of ϕ(v, �y) as a Boolean combination of formulas
v≥ p or v≤ p, as well as the decomposition of each p as a Boolean polynomial in
�y, x0, . . . , xk, do not depend directly on �y but only on its type over ∅, and so are pre-
served under replacing �y with another sequence in �m having the same type over ∅.

Since T is ω-categorical, there are only finitely many (say s + 1) m-types over
∅. Moreover, the type of a given sequence �y ∈ �m is fully determined by

(tp(yi+1/y1, . . . , yi) : 0 ≤ i < m)

in the following sense. Let �z ∈ �m and assume that

1. z1 has the same type as y1 over ∅ (so there is an automorphism f1 of � mapping
y1 into z1),

2. z2 has the same type as f1(y2) over z1 = f1(y1) (so there is an automorphism
f2 of � mapping y1, y2 into z1, z2 respectively),

and so on; then tp(�z/∅)= tp(�y/∅). By ω-categoricity, each type tp(yi+1/y1,. . . , yi)

(with 0 ≤ i < m) is isolated. By o-minimality, a formula isolating it can be expressed
as a Boolean combination of

vi+1 ≥ qi, vi+1 ≤ qi

where qi is a Boolean polynomial in x0, . . . , xk, y1, . . . , yi. Then tp(�y/∅) is isolated
by a Boolean combination of formulas

vi+1 ≥ qi, vi+1 ≤ qi

where 0 ≤ i < m and qi = qi(v1, . . . , vi, x0, . . . , xk) is a Boolean polynomial in
v1, . . . , vi, x0, . . . , xk (recall that all automorphisms of � fix x0, . . . , xk). Let
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θ0(�v), . . . , θs(�v) list the formulas defined in this way to isolate the s + 1 m-types
over ∅. As seen before, for every j ≤ s and every �y ∈ �m, ϕ(v, �y) is equiva-
lent to a Boolean combination η j(v, �y) of formulas v ≥ p or v ≤ p where p =
p(�y, x0, . . . , xk) is a Boolean polynomial in �y, x0, . . . , xk. Altogether, ϕ(v, �v) is
equivalent to

ϕ0(v, �v) :
∨
j≤s

(θ j(�v) ∧ η j(v, �v)),

which is a formula of L0 and even a Boolean combination of

vi+1 ≥ qi(v1, . . . , vi, x0, . . . , xk),

vi+1 ≤ qi(v1, . . . , vi, x0, . . . , xk)

(with 0 ≤ i < m) and
v ≥ p(�v, x0, . . . , xk),

v ≤ p(�v, x0, . . . , xk).

�

5 o-minimal measure spaces A measure space is a triple (A , F, m) where A is
a(n infinite) Boolean algebra, F is an ordered field, and m (the measure) is a function
of A in F satisfying

1. m(0A ) = 0F and for all a in A m(a) ≥ 0F ,
2. for every a and b in A such that a � b = 0A , m(a � b) = m(a) + m(b).

+, 0F denote here the addition in F and its zero element. So measure spaces can
be viewed as first order 2-sorted structures in a suitable language Lm extending L0

by a 1-ary operation symbol for m, two new constants for 0F and the multiplicative
identity 1F of F, three operation symbols for +, · and − in F; of course, we interpret
≤ into a relation extending the Boolean order on A and the linear order on F, and we
assume that an element of A and an element of F are not comparable with each other
with respect to this relation. In particular, every measure space can be considered a
partially ordered structure with respect to (the interpretation of) ≤; moreover, A and
F are ∅-definable in (A , F, m): A is the set of elements satisfying v ≥ 0A and F is
its complement.

We want to characterize the (quasi)-o-minimal measure spaces. Here is the clas-
sification theorem.

Theorem 5.1 Let (A , F, m) be a measure space. The following propositions are
equivalent:

(i) (A , F, m) is o-minimal;
(ii) (A , F, m) is quasi-o-minimal;

(iii) F is a real closed field; A � A0 ×A1 is the direct product of an infinite atomless
Boolean algebra A0 and a finite algebra A1; m(A0) = 0F.

Before beginning the proof, some comments. In this case (as well as in the previous
section), it turns out that o-minimal examples are comparatively trivial; in fact, the
measure functions m can take only finitely many values. Consequently
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no existentially closed measure space with a nonzero measure

as well as

no existentially closed measure space with an effective measure

is o-minimal (recall that m is said to be effective when 0A is the only element whose
measure is 0F; existentially closed measure spaces in the quoted classes are classified
in [8]). This remark suggests the following question (already raised in Section 1):
are there some significant examples of o-minimal Boolean lattice ordered structures
besides Boolean algebras with finitely many atoms, or trivial variations?

But now let us give the proof of Theorem 5.1. We know that (i) =⇒ (ii) is clear.

Proof of (ii) =⇒ (iii): Let (A , F, m) be a quasi-o-minimal measure space. Then
A—as a structure of Lm—is quasi-o-minimal. For, let X be a subset of A definable
in Lm inside A ; X is definable also in (A , F, m) (just conjunct ‘v ≥ 0A ’) and hence
is a Boolean combination of sets defined by formulas

v ≥ a, v ≤ b

with a, b ∈ A ∪ F. But actually no parameter in F is necessary because no element in
A is comparable with F. Then A is quasi-o-minimal in Lm. In particular A is quasi-
o-minimal, hence o-minimal, also as a Boolean algebra. Accordingly, A = A0 × A1

where A1 is a finite algebra and A0 is an infinite atomless algebra; if s denotes the join
of the atoms in A , then A1 is just isomorphic to A |s, and A0 to A |s′. As s ∈ dcl(∅),
both A0 and A1 are ∅-definable. In the same way, one sees that F (as a structure of
Lm or also as an ordered field) is quasi-o-minimal. By Theorem 2.3 in [7], F is real
closed.

So what we have still to check is that m(A0) = 0F . As A0 is ∅-definable in A ,
we can assume with no loss of generality A0 = A, hence A atomless (and infinite).
Suppose toward a contradiction m(A) �= 0F . In particular, we can normalize m and
fix m(1A ) = 1F .

Lemma 5.2 Let A = (A,≤, . . .) be an infinite Boolean lattice ordered quasi-o-
minimal structure such that the underlying Boolean algebra is atomless. Then every
filter (ideal) definable in A is principal.

Proof: By duality, we can limit our analysis to filters. Let U be a filter of (A,≤)

definable in A . By quasi o-minimality, U is a finite union of sets defined by formulas

1. v ≥ a,
2. v ≤ b,
3. v �≥ c0, . . . , v �≥ cn,
4. v �≤ d0, . . . , v �≤ dm

with parameters in A. As before, we can assume that

(i) ∀i ≤ n, ci �= 0A , ci � a = 0A and ci ≤ b;
(ii) ∀ j ≤ m, a ≤ d j < b;

(iii) c0, . . . , cn, d0
′ � b, . . . , dm

′ � b are atoms in the subalgebra they generate; in
particular, c0, . . . , cn are pairwise disjoint and d0

′ � b, . . . , dm
′ � b are pairwise

disjoint.
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Let x ∈ A satisfy a ≤ x ≤ b, x �≥ c0, . . . , cn, x �≤ d1, . . . , dm but x ≤ d0, namely,
x � d0

′ � b = 0A . As d0
′ � b �= 0A and A is atomless, there is some y in A, 0A <

y < d0
′ � b; put z0 = x � y, z1 = x � (y′ � d0

′ � b), so z0, z1 ∈ U because both z0

and z1 realize (1) – (4). However x = z0 � z1, hence also x is in U. In other words,
we can eliminate the condition v �≤ d0 in (4). By repeating the procedure, we can
conclude that (4) is unnecessary. Accordingly U is a finite union of sets S such that
each of them is defined by a conjunction of formulas in (1) – (3). So, for every S, the
corresponding a is in S ⊆ U; consequently every element x ≥ a in A is in U. Since
the meet of all possible a’s is in U, it follows that U is the principal filter generated
by some a. �
Let us come back now to our measure space (A , F, m). Recall that we assume A
atomless and m(1A ) = 1F . As a consequence of Lemma 5.2, we can obtain the fol-
lowing corollary.

Corollary 5.3 There exists d ∈ A such that for all x ∈ A, m(xF ) = 0F if and only
if x ≤ d.

Proof: Let I be the set of the elements in A whose measure is 0F . Then I is a
(proper) ideal of A ; furthermore, I is ∅-definable in A (as a structure of Lm). By
Lemma 5.2, I is principal. Let d ∈ A generate I. Then d is the required element. �
Clearly, d is unique, and owing to our assumptions, d �= 1A . Decompose A (up to
L0-isomorphism) as A |d × A |d′. d′ �= 0A implies that A |d′ is an infinite atomless
Boolean algebra. Furthermore, m is effective in A |d′; in other words, no element
x �= 0A in A |d′ satisfies m(x) = 0F . Without loss of generality, we can replace A
with A |d′ and assume that m is effective in A . Notice that if x ∈ A and x �= 0A , then
there is y ∈ A such that 0A < y < x; consequently,

0F < m(y), m(y′), m(x) = m(y) + m(y′),

hence either m(y) or m(y′) is ≤ 1
2 m(x).

Lemma 5.4 Let b ∈ A, b �= 0A . Then for every ε ∈ F with 0F < ε < m(b) there is
c ∈ A such that 0A < c < b and m(c) ≤ ε.

Proof: Let S be the set of the elements s ∈ F satisfying the following conditions:

1. 0F < s < m(b),
2. for all c ∈ A with 0A < c < b, m(c) > s.

S is definable in F (as a structure of Lm). So S (if nonempty) is a finite disjoint union
of points and intervals in F>0F . Furthermore, S is downward closed in F>0F and
upperly bounded (by m(b)). Hence S contains a maximal interval of the form ]0F, r[
or ]0F, r] with r ∈ F, r > 0F . In the former case, there is y ∈ A such that y ≤ b and
m(y) = r. For, if r = m(b), then y = b, of course; otherwise r < m(b), and there is
y ∈ A such that 0A < y < b and m(y) ≤ r; owing to the choice of r, m(y) = r. Then
there is c ∈ A such that 0A < c < y ≤ b and m(c) ≤ r

2 < r and this is impossible
because r

2 ∈ S. In the latter case, take r1 ∈ F with r < r1 < 2r, r1 �∈ S, r1 < m(b).
For some y ∈ A with 0A < y < b, m(y) ≤ r1. Then there is c ∈ A such that 0A < c < y
and m(c) ≤ r1

2 < r. Again we get a contradiction. So S must be empty. �
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Consider now X = {x ∈ A : m(x) < 1
2}. X is definable and nonempty, and hence is a

finite union of sets X0, . . . , Xk such that, for every t ≤ k, Xt is defined by a conjunction
of formulas:

1. v ≥ at,
2. v ≤ bt,
3. v �≥ ct0, . . . , v �≥ ctnt ,
4. v �≤ dt0, . . . , v �≤ dtmt

where the parameters at, bt, ct0, . . . , ctnt , dt0, . . . , dtmt satisfy the usual assumptions
(i), (ii), and (iii). Notice that

b0 � · · · � bk = 1A ;
otherwise b = (b0 � · · · � bk)

′ has measure > 0F and there is c < b in A such that
0F < m(c) < 1

2 (Lemma 5.4); but c �≤ bt for any t ≤ k, hence c �∈ X.
Now we claim that for every t ≤ k, m(bt) ≤ 1

2 . Assume not. Then m(bt) > 1
2 for

some t ≤ k. There is x ∈ A for which 0A < x < bt and m(x) < m(bt) − 1
2 (Lemma

5.4). Without loss of generality, we can assume x � at = 0A and

0A < x � cit < cit ∀i ≤ nt,

0A < x � d jt
′ � bt < d jt

′ � bt ∀ j ≤ mt

(use again Lemma 5.4). Hence x′ � bt ∈ Xt because at ≤ x′ � bt ≤ bt, 0A < x′ � bt �
cit < cit for all i ≤ nt and 0A < x′ � bt � d jt

′ < d jt
′ � bt for all j ≤ mt; consequently,

m(x′ � bt) < 1
2 . It follows that

m(bt) = m(x) + m(x′ � bt) < m(bt) − 1
2

+ 1
2

= m(bt),

and this is a contradiction.
Therefore, m(bt) ≤ 1

2 for all t ≤ k. Notice that, if m(bt) < 1
2 , then every element

x ≤ bt in A satisfies m(x) < 1
2 , whereas, if m(bt) = 1

2 , then, as m is effective, the
elements x ∈ A satisfying m(x) < 1

2 and x ≤ bt are just those < bt. In conclusion,
for all a ∈ A,

x ∈ X
if and only if

x ≤ bt for some t ≤ k, and x < bt when m(bt) = 1
2
.

Now suppose m(bt) < 1
2 and put mt = 1

2 − m(bt). So m(bt
′) = mt + 1

2 > 1
2 and one

can find ct ∈ A such that 0A < ct < bt
′ and m(ct) < mt. Form bt � ct and notice

m(bt � ct) = m(bt) + m(ct) <
1
2
.

Hence there is s ≤ k such that bt � ct ≤ bs. Clearly, t �= s because 0A < ct < bt
′. So

bt < bs for some s ≤ k, s �= t. Consequently, all the indices t ≤ k for which m(bt) <
1
2 can be eliminated and we can assume m(bt) = 1

2 for all t ≤ k. Notice that this
preserves �t≤kbt = 1A . Consequently, for all x ∈ A,

x ∈ X if and only if x < bt for some t ≤ k.
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Let k be minimal. If k = 0, then b0 = 1A , so m(x) < 1
2 for every x �= 1A in A and

this is obviously false. Hence k > 0. Owing to the minimality of k, for all t ≤ k, there
is xt ∈ A such that 0A < xt < bt (and m(xt) < 1

2 ) but xt � bs
′ �= 0A for every s ≤ k,

s �= t. By Lemma 5.4, we can choose xt such that

m(xt) <
1

2(k + 1)

(keeping the assumption xt � bs
′ �= 0A for s ≤ k and s �= t). Build x = �t≤kxt, then

m(x) ≤
∑
t≤k

m(xt) < (k + 1)
1

2(k + 1)
= 1

2
,

so x ∈ X and x ≤ bt for some t ≤ k. Choose s ≤ k, s �= t, then xs ≤ x ≤ bt. This is a
contradiction.

In conclusion m(A) = 0F . This completes the proof of (ii) =⇒ (iii). �

Proof of (iii) =⇒ (i): Let (A , F, m) be a measure space such that F is a real closed
field, A = A0 × A1 where A1 is finite, A0 is infinite and atomless, and m(A0) = 0F .

Fix a and b in A, X ⊆ A, X algebraically closed (in A with respect to L0). We
claim that

if tp(a/ X) = tp(b/ X) in A , then tp(a/ X ∪ F) = tp(b/ X ∪ F) in (A , F, m).

For, let (A , F, m) be a (big) saturated elementary extension of (A , F, m); in particu-
lar, A is a saturated elementary extension of A , hence there is an automorphism f of
A in L0 fixing X pointwise and mapping a in b; f fixes every atom in A , hence acts
identically on A0. Therefore, we can extend f to an automorphism g of (A , F, m)

fixing F pointwise; in fact, if s denotes the join of atoms in A (and in A ), then for all
x ∈ A,

m(x) = m(s � x) + m(s′ � x) = m(s � x)

and
f (x) = f ((s � x) � (s′ � x)) = (s � x) � (s′ � f (x)),

so that
g(m(x)) = m(x) = m(s � x) = m( f (x)) = m(g(x)).

In particular, a and b have the same type over X ∪ F in (A , F, m).
Now take a formula ϕ(v) of Lm having parameters in X ∪ F (and implying v ≥

0A , namely, “v ∈ A”). For every 1-type p over X ∪ F in (A , F, m) containing ϕ(v),
there is a formula ϕp(v) ∈ p in L0 with parameters in X such that ϕp(v) implies ϕ(v).
So ϕ(v) is equivalent to the (possibly infinite) disjunction ∨pϕp(v). By compactness,
ϕ(v) is equivalent to a finite disjunction ϕ�(v) of formulas ϕp(v). As A is o-minimal,
ϕ�(v) is in its turn equivalent to a Boolean combination of formulas a ≤ v, v ≤ b with
a and b in X (recall X = acl (X) in A ).

Now let a, b in F, Y ⊆ F. Notice that if

tp(a/Y ∪ m(A)) = tp(b/Y ∪ m(A)) in F,
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then

tp(a/A ∪ Y ) = tp(b/A ∪ Y ) in (A , F, m).

For, let (A , F, m) be as before. Then there is an automorphism f of F fixing Y ∪
m(A) pointwise and mapping a in b; glue f and the identity of A and get an auto-
morphism g of (A , F, m) (recall that f fixes m(A) pointwise). So a and b have the
same type over A ∪ Y in (A , F, m).

At this point, given a formula ϕ(v) of Lm having parameters from A ∪ Y (and
including ‘v ∈ F’), proceed as before to build an equivalent formula ϕ�(v) in the lan-
guage of ordered fields, with parameters in Y ∪ m(A). As F is real closed, hence o-
minimal, ϕ�(v) is in its turn equivalent to a Boolean combination of formulas a ≤ v,
v ≤ b where a and b are in the definable closure of Y ∪ m(A) in F. As m(A) is in-
cluded in the algebraic closure of ∅ in (A , F, m), a, b ∈ acl (Y ) in (A , F, m).

In conclusion (A , F, m) is o-minimal. �

Acknowledgments I thank the referee for suggesting several improvements.
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