
6 Lp-viscosity solutions

In this section, we discuss the Lp-viscosity solution theory for uniformly
elliptic PDEs:

F (x,Du,D2u) = f(x) in Ω, (6.1)

where F : Ω×Rn ×Sn → R and f : Ω → R are given. Since we will use the
fact that u + C (for a constant C ∈ R) satisfies the same (6.1), we suppose
that F does not depend on u itself. Furthermore, to compare with classical
results, we prefer to have the inhomogeneous term (the right hand side of
(6.1)).

The aim in this section is to obtain the a priori estimates for Lp-viscosity
solutions without assuming any continuity of the mapping x → F (x, q,X),
and then to establish an existence result of Lp-viscosity solutions for Dirichlet
problems.

Remark. In general, without the continuity assumption of x→ F (x, p,X),
even if X → F (x, p,X) is uniformly elliptic, we cannot expect the unique-
ness of Lp-viscosity solutions. Because Nadirashvili (1997) gave a counter-
example of the uniqueness.

6.1 A brief history

Let us simply consider the Poisson equation in a “smooth” domain Ω with
zero-Dirichlet boundary condition:

{

−△u = f in Ω,
u = 0 on ∂Ω.

(6.2)

In the literature of the regularity theory for uniformly elliptic PDEs of
second-order, it is well-known that

“if f ∈ Cσ(Ω) for some σ ∈ (0, 1), then u ∈ C2,σ(Ω)”. (6.3)

Here, Cσ(U) (for a set U ⊂ Rn) denotes the set of functions f : U → R such
that

sup
x∈U

|f(x)|+ sup
x,y∈U,x 6=y

|f(x)− f(y)|
|x− y|σ <∞.
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Also, Ck,σ(U), for an integer k ≥ 1, denotes the set of functions f : U → R
so that for any multi-index α = (α1, . . . , αn) ∈ {0, 1, 2, . . .}n with |α| :=
∑n

i=1 αi ≤ k, Dαf ∈ Cσ(U), where

Dαf :=
∂|α|f

∂xα1

1 · · ·∂xαn
n

.

These function spaces are called Hölder continuous spaces and the implication
in (6.3) is called the Schauder regularity (estimates). Since the PDE in
(6.2) is linear, the regularity result (6.3) may be extended to

“if f ∈ Ck,σ(Ω) for some σ ∈ (0, 1), then u ∈ Ck+2,σ(Ω)”. (6.4)

Moreover, we obtain that (6.4) holds for the following PDE:

−trace(A(x)D2u(x)) = f(x) in Ω, (6.5)

where the coefficient A(·) ∈ C∞(Ω, Sn) satisfies that

λ|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ|ξ|2 for ξ ∈ Rn and x ∈ Ω.

Furthermore, we can obtain (6.4) even for linear second-order uniformly
elliptic PDEs if the coefficients are smooth enough.

Besides the Schauder estimates, we know a different kind of regularity
results: For a solution u of (6.5), and an integer k ∈ {0, 1, 2, . . .},

“if f ∈ W k,p(Ω) for some p > 1, then u ∈ W k+2,p(Ω)”. (6.6)

Here, for an open set O ⊂ Rn, we say f ∈ Lp(O) if |f |p is integrable in O,
and f ∈ W k,p(O) if for any multi-index α with |α| ≤ k, Dαf ∈ Lp(O). Notice
that Lp(Ω) = W 0,p(Ω).

This (6.6) is called the Lp regularity (estimates). For a later con-
venience, for p ≥ 1, we recall the standard norms of Lp(O) and W k,p(O),
respectively:

‖u‖Lp(O) :=

(
∫

O

|u(x)|pdx
)1/p

, and ‖u‖W k,p(O) :=
∑

|α|≤k

‖Dαu‖Lp(O).

In Appendix, we will use the quantity ‖u‖Lp(Ω) even for p ∈ (0, 1) although
this is not the “norm” (i.e. the triangle inequality does not hold).
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We refer to [13] for the details on the Schauder and Lp regularity theory
for second-order uniformly elliptic PDEs.

As is known, a difficulty occurs when we drop the smoothness of Aij.
An extreme case is that we only suppose that Aij are bounded (possibly

discontinuous, but still satisfy the uniform ellipticity). In this case, what can
we say about the regularity of “solutions” of (6.5) ?

The extreme case for PDEs in divergence form is the following:

−
n
∑

i,j=1

∂

∂xi

(

Aij(x)
∂u

∂xj
(x)

)

= f(x) in Ω. (6.7)

De Giorgi (1957) first obtained Hölder continuity estimates on weak so-
lutions of (6.7) in the distribution sense; for any φ ∈ C∞

0 (Ω),

∫

Ω

(〈A(x)Du(x), Dφ(x)〉 − f(x)φ(x)) dx = 0.

Here, we set

C∞
0 (Ω) :=

{

φ : Ω → R

∣

∣

∣

∣

φ(·) is infinitely many times differentiable,
and supp φ is compact in Ω

}

.

We refer to [14] for the details of De Giorgi’s proof and, a different proof
by Moser (1960).

Concerning the corresponding PDE in nondivergence form, by a stochas-
tic approach, Krylov-Safonov (1979) first showed the Hölder continuity esti-
mates on “strong” solutions of

−trace(A(x)D2u(x)) = f(x) in Ω. (6.8)

Afterward, Trudinger (1980) (see [13]) gave a purely analytic proof for it.
Since these results appeared before the viscosity solution was born, they

could only deal with strong solutions, which satisfy PDEs in the a.e. sense.
In 1989, Caffarelli proved the same Hölder estimate for viscosity solutions

of fully nonlinear second-order uniformly elliptic PDEs.
To show Hölder continuity of solutions, it is essential to prove the follow-

ing “Harnack inequality” for nonnegative solutions. In fact, to prove the
Harnack inequality, we split the proof into two parts:
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weak Harnack inequality
for “super”solutions

local maximum principle
for “sub”solutions























=⇒ Harnack inequality
for “solutions”

In section 6.4, we will show that Lp-viscosity solutions satisfy the (inte-
rior) Hölder continuous estimates.

6.2 Definition and basic facts

We first recall the definition of Lp-strong solutions of general PDEs:

F (x, u,Du,D2u) = f(x) in Ω. (6.9)

We will use the following function space:

W 2,p
loc (Ω) := {u : Ω → R | ζu ∈ W 2,p(Ω) for all ζ ∈ C∞

0 (Ω)}.

Throughout this section, we suppose at least

p >
n

2

so that u ∈ W 2,p
loc (Ω) has the second-order Taylor expansion at almost all

points in Ω, and that u ∈ C(Ω).

Definition. We call u ∈ C(Ω) an Lp-strong subsolution (resp., super-

solution, solution) of (6.9) if u ∈ W 2,p
loc (Ω), and

F (x, u(x), Du(x), D2u(x)) ≤ f(x) (resp., ≥ f(x), = f(x)) a.e. in Ω.

Now, we present the definition of Lp-viscosity solutions of (6.9).

Definition. We call u ∈ C(Ω) an Lp-viscosity subsolution (resp., su-

persolution) of (6.9) if for φ ∈ W 2,p
loc (Ω), we have

lim
ε→0

ess. inf
Bε(x)

(

F (y, u(y), Dφ(y), D2φ(y))− f(y)
)

≤ 0
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(

resp. lim
ε→0

ess. sup
Bε(x)

(

F (y, u(y), Dφ(y), D2φ(y))− f(y)
)

≥ 0

)

provided that u− φ takes its local maximum (resp., minimum) at x ∈ Ω.
We call u ∈ C(Ω) an Lp-viscosity solution of (6.9) if it is both an Lp-

viscosity sub- and supersolution of (6.9).

Remark. Although we will not explicitly utilize the above definition, we
recall the definition of ess. supA and ess. infA of h : A → R, where A ⊂ Rn

is a measurable set:

ess. sup
A
h(y) := inf{M ∈ R | h ≤M a.e. in A},

and
ess. inf

A
h(y) := sup{M ∈ R | h ≥M a.e. in A}.

Coming back to (6.1), we give a list of assumptions on F : Ω×Rn×Sn →
R:







(1) F (x, 0, O) = 0 for x ∈ Ω,
(2) x→ F (x, q,X) is measurable for (q,X) ∈ Rn × Sn,
(3) F is uniformly elliptic.

(6.10)

We recall the uniform ellipticity condition of X → F (x, q,X) with the con-
stants 0 < λ ≤ Λ from section 3.1.2.

For the right hand side f : Ω → R, we suppose that

f ∈ Lp(Ω) for p ≥ n. (6.11)

We will often suppose the Lipschitz continuity of F with respect to q ∈
Rn;

{

there is µ ≥ 0 such that |F (x, q,X)− F (x, q′, X)| ≤ µ|q − q′|
for (x, q, q′, X) ∈ Ω×Rn ×Rn × Sn.

(6.12)

Remark. We note that (1) in (6.10) and (6.12) imply that F has the linear
growth in Du;

|F (x, q, O)| ≤ µ|q| for x ∈ Ω and q ∈ Rn.
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Remark. We note that when x → F (x, q,X) and x → f(x) are continu-
ous, the definition of Lp-viscosity subsolution (resp., supersolution) of (6.1)
coincides with the standard one under assumption (6.10) and (6.12). For a
proof, we refer to a paper by Caffarelli-Crandall-Kocan-Świȩch [5].

In this book, we only study the case of (6.11) but most of results can be
extended to the case when p > p⋆ = p⋆(Λ, λ, n) ∈ (n/2, n), where p⋆ is the
so-called Escauriaza’s constant (see the references in [4]).

The following proposition is obvious but it will be very convenient to
study Lp-viscosity solutions of (6.1) under assumptions (6.10), (6.11) and
(6.12).

Proposition 6.1. Assume that (6.10), (6.11) and (6.12) hold. If u ∈
C(Ω) is an Lp-viscosity subsolution (resp., supersolution) of (6.1), then it is
an Lp-viscosity subsolution (resp., supersolution) of

P−(D2u)− µ|Du| ≤ f in Ω

(

resp., P+(D2u) + µ|Du| ≥ f in Ω
)

.

We recall the Aleksandrov-Bakelman-Pucci (ABP for short) maximum
principle, which will play an essential role in this section (and also Appendix).

To this end, we introduce the notion of “upper contact sets”: For u :
O → R, we set

Γ[u,O] :=

{

x ∈ O

∣

∣

∣

∣

there is p ∈ Rn such that
u(y) ≤ u(x) + 〈p, y − x〉 for all y ∈ O

}

.

Proposition 6.2. (ABP maximum principle) For µ ≥ 0, there is C0 :=
C0(Λ, λ, n, µ, diam(Ω)) > 0 such that if for f ∈ Ln(Ω), u ∈ C(Ω) is an
Ln-viscosity subsolution (resp., supersolution) of

P−(D2u)− µ|Du| ≤ f in Ω+[u]

(resp., P+(D2u) + µ|Du| ≥ f in Ω+[−u]),
then

max
Ω

u ≤ max
∂Ω

u+ + diam(Ω)C0‖f+‖Ln(Γ[u,Ω]∩Ω+[u])
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Fig 6.1

Γ[u,Ω]

y = u(x)

Ω
x

(

resp., max
Ω

(−u) ≤ max
∂Ω

(−u)+ + diam(Ω)C0‖f−‖Ln(Γ[−u,Ω]∩Ω+[−u])

)

,

where
Ω+[u] := {x ∈ Ω | u(x) > 0}.

The next proposition is a key tool to study Lp-viscosity solutions, partic-
ularly, when f is not supposed to be continuous. The proof will be given in
Appendix.

Proposition 6.3. Assume that (6.11) holds for p ≥ n. For any µ ≥ 0,
there are an Lp-strong subsolution u and an Lp-strong supersolution v ∈
C(B1) ∩W 2,p

loc (B1), respectively, of
{

P+(D2u) + µ|Du| ≤ f in B1,
u = 0 on ∂B1,

and

{

P−(D2v)− µ|Dv| ≥ f in B1,
v = 0 on ∂B1.

Moreover, we have the following estimates: for w = u or w = v, and small
δ ∈ (0, 1), there is Ĉ = Ĉ(Λ, λ, n, µ, δ) > 0 such that

‖w‖W 2,p(Bδ) ≤ Ĉδ‖f‖Lp(B1).

Remark. In view of the proof (Step 2) of Proposition 6.2, we see that
−C‖f−‖Ln(B1) ≤ w ≤ C‖f+‖Ln(B1) in B1, where w = u, v.

6.3 Harnack inequality

In this subsection, we often use the cubeQr(x) for r > 0 and x =t(x1, . . . , xn) ∈
Rn;

Qr(x) := {y =t(y1, . . . , yn) | |xi − yi| < r/2 for i = 1, . . . , n},
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and Qr := Qr(0). Notice that

Br/2(x) ⊂ Qr(x) ⊂ Br
√
n/2(x) for r > 0.

We will prove the next two propositions in Appendix.

Proposition 6.4. (Weak Harnack inequality) For µ ≥ 0, there are p0 =
p0(Λ, λ, n, µ) > 0 and C1 := C1(Λ, λ, n, µ) > 0 such that if u ∈ C(B2

√
n) is a

nonnegative Lp-viscosity supersolution of

P+(D2u) + µ|Du| ≥ 0 in B2
√
n,

then we have
‖u‖Lp0(Q1) ≤ C1 inf

Q1/2

u.

Remark. Notice that p0 might be smaller than 1.

Proposition 6.5. (Local maximum principle) For µ ≥ 0 and q > 0,
there is C2 = C2(Λ, λ, n, µ, q) > 0 such that if u ∈ C(B2

√
n) is an L

p-viscosity
subsolution of

P−(D2u)− µ|Du| ≤ 0 in B2
√
n,

then we have
sup
Q1

u ≤ C2‖u+‖Lq(Q2).

Remark. Notice that we do not suppose that u ≥ 0 in Proposition 6.5.

6.3.1 Linear growth

The next corollary is a direct consequence of Propositions 6.4 and 6.5.

Corollary 6.6. For µ ≥ 0, there is C3 = C3(Λ, λ, n, µ) > 0 such that if
u ∈ C(B2

√
n) is a nonnegative Lp-viscosity sub- and supersolution of

P−(D2u)− µ|Du| ≤ 0 and P+(D2u) + µ|Du| ≥ 0 in B2
√
n,

respectively, then we have

sup
Q1

u ≤ C3 inf
Q1

u.
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In order to treat inhomogeneous PDEs, we will need the following corol-
lary:

Corollary 6.7. For µ ≥ 0 and f ∈ Lp(B3
√
n) with p ≥ n, there is

C4 = C4(Λ, λ, n, µ) > 0 such that if u ∈ C(B3
√
n) is a nonnegative Lp-

viscosity sub- and supersolution of

P−(D2u)− µ|Du| ≤ f and P+(D2u) + µ|Du| ≥ f in B2
√
n,

respectively, then we have

sup
Q1

u ≤ C4

(

inf
Q1

u+ ‖f‖Lp(B3
√

n)

)

.

Proof.According to Proposition 6.3, we find v, w ∈ C(B3
√
n)∩W 2,p

loc (B3
√
n)

such that
{

P+(D2v) + µ|Dv| ≤ −f+ a.e. in B3
√
n,

v = 0 on ∂B3
√
n,

and
{

P−(D2w)− µ|Dw| ≥ f− a.e. in B3
√
n,

w = 0 on ∂B3
√
n.

In view of Proposition 6.3 and its Remark, we can choose Ĉ = Ĉ(Λ, λ, n, µ) >
0 such that

0 ≤ −v ≤ Ĉ‖f+‖Lp(B3
√

n)
in B3

√
n, ‖v‖W 2,p(B2

√
n)

≤ Ĉ‖f+‖Lp(B3
√

n)
,

and

0 ≤ w ≤ Ĉ‖f−‖Lp(B3
√

n)
in B3

√
n, ‖w‖W 2,p(B2

√
n)

≤ Ĉ‖f−‖Lp(B3
√

n)
.

Since v, w ∈ W 2,p(B2
√
n), it is easy to verify that u1 := u + v and

u2 := u+ w are, respectively, an Lp-viscosity sub- and supersolution of

P−(D2u1)− µ|Du1| ≤ 0 and P+(D2u2) + µ|Du2| ≥ 0 in B2
√
n.

Since v ≤ 0 in B3
√
n, applying Proposition 6.5 to u1, for any q > 0, we find

C2(q) > 0 such that

sup
Q1

u ≤ sup
Q1

u1 + Ĉ‖f+‖Lp(B3
√

n)

≤ C2(q)‖(u1)+‖Lq(Q2) + Ĉ‖f+‖Lp(B3
√

n)

≤ C2(q)‖u‖Lq(Q2) + Ĉ‖f+‖Lp(B3
√

n)
.

(6.13)
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On the other hand, applying Proposition 6.4 to u2, there is p0 > 0 such
that

‖u‖Lp0(Q2) ≤ ‖u2‖Lp0 (Q2) ≤ C1 inf
Q1

u2 ≤ C1

(

inf
Q1

u+ Ĉ‖f−‖Lp(B3
√

n)

)

. (6.14)

Therefore, combining (6.14) with (6.13) for q = p0, we can find C4 > 0 such
that the assertion holds. ✷

Corollary 6.8. (Harnack inequality, final version) Assume that (6.10),
(6.11) and (6.12) hold. If u ∈ C(Ω) is an Lp-viscosity solution of (6.1), and
if B3

√
nr(x) ⊂ Ω for r ∈ (0, 1], then

sup
Qr(x)

u ≤ C4

(

inf
Qr(x)

u+ r2−
n
p ‖f‖Lp(Ω)

)

,

where C4 > 0 is the constant in Corollary 6.7.

Proof. By translation, we may suppose that x = 0.
Setting v(x) := u(rx) for x ∈ B3

√
n, we easily see that v is an Lp-viscosity

subsolution and supersolution of

P−(D2v)− µ|Dv| ≤ r2f̂ and P+(D2v) + µ|Dv| ≥ −r2f̂ , in B3
√
n,

respectively, where f̂(x) := f(rx). Note that ‖f̂‖Lp(B3
√

n)
= r−

n
p ‖f‖Lp(B3

√
nr)

.
Applying Corollary 6.7 to v and then, rescaling v to u, we conclude the

assertion. ✷

6.3.2 Quadratic growth

Here, we consider the case when q → F (x, q,X) has quadratic growth. We
refer to [10] for applications where such quadratic nonlinearity appears.

We present a version of the Harnack inequality when F has a quadratic
growth in Du in place of (6.12);

{

there is µ ≥ 0 such that |F (x, q,X)− F (x, q′, X)|
≤ µ(|q|+ |q′|)|q − q′| for (x, q, q′, X) ∈ Ω×Rn ×Rn × Sn,

(6.15)

which together with (1) of (6.10) implies that

|F (x, q, O)| ≤ µ|q|2 for (x, q) ∈ Ω×Rn.
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The associated Harnack inequality is as follows:

Theorem 6.9. For µ ≥ 0 and f ∈ Lp(B3
√
n) with p ≥ n, there is

C5 = C5(Λ, λ, n, µ) > 0 such that if u ∈ C(B3
√
n) is a nonnegative Lp-

viscosity sub- and supersolution of

P−(D2u)− µ|Du|2 ≤ f and P+(D2u) + µ|Du|2 ≥ f in B3
√
n,

respectively, then we have

sup
Q1

u ≤ C5e
2µ
λ
M

(

inf
Q1

u+ ‖f‖Lp(B3
√

n)

)

,

where M := supB3
√

n
u.

Proof. Set α := µ/λ. Fix any δ ∈ (0, 1).
We claim that v := eαu − 1 and w := 1 − e−αu are, respectively, a non-

negative Lp-viscosity sub- and supersolution of

P−(D2v) ≤ α(eαM + δ)f+ and P+(D2w) ≥ −α(1 + δ)f− in B3
√
n.

We shall only prove this claim for v since the other for w can be obtained
similarly.

Choose φ ∈ W 2,p
loc (B3

√
n) and suppose that u−φ attains its local maximum

at x ∈ B3
√
n. Thus, we may suppose that v(x) = φ(x) and v ≤ φ in Br(x),

where B2r(x) ⊂ B3
√
n. Note that 0 ≤ v ≤ eαM − 1 in B3

√
n.

For any δ ∈ (0, 1), in view of W 2,p(Br(x)) ⊂ Cσ0(Br(x)) with some
σ0 ∈ (0, 1), we can choose ε0 ∈ (0, r) such that

−δ ≤ φ ≤ v + δ in Bε0(x).

Setting ψ(y) := α−1 log(φ(y) + 1) for y ∈ Bε0(x) (extending ψ ∈ W 2,p in
B3

√
n \Bε0(x) if necessary), we have

lim
ε→0

ess inf
Bε(x)

(

P−(D2ψ)− µ|Dψ|2 − f+
)

≤ 0.

Since

Dψ =
Dφ

α(φ+ 1)
and D2ψ =

D2φ

α(φ+ 1)
− Dφ⊗Dφ

α(φ+ 1)2
,
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the above inequality yields

lim
ε→0

ess inf
Bε(x)

(P−(D2φ)

α(φ+ 1)
− f+

)

≤ 0.

Since 0 < 1− δ ≤ φ+ 1 ≤ eαM + δ in Bε0(x), we have

lim
ε→0

ess inf
Bε(x)

(

P−(D2φ)− α(eαM + δ)f+
)

≤ 0.

Since αu ≤ v ≤ αueαM and αue−αM ≤ w ≤ αu, using the same argument
to get (6.13) and (6.14), we have

sup
Q1

u ≤ 1

α
sup
Q1

v ≤ C6

{

‖v‖Lp0(Q2) + (eαM + δ)‖f+‖Lp(B3
√

n)

}

≤ C7

{

e2αM‖w‖Lp0(Q2) + (eαM + δ)‖f+‖Lp(B3
√

n)

}

≤ C8

{

e2αM inf
Q1

w + (e2αM + δ)‖f‖Lp(B3
√

n)

}

≤ C9e
2αM

{

inf
Q1

u+ (1 + δ)‖f‖Lp(B3
√

n)

}

.

Since Ck (k = 6, . . . , 9) are independent of δ > 0, sending δ → 0, we conclude
the proof. ✷

Remark. We note that the same argument by using two different trans-
formations for sub- and supersolutions as above can be found in [14] for
uniformly elliptic PDEs in divergence form with the quadratic nonlinearity.

6.4 Hölder continuity estimates

In this subsection, we show how the Harnack inequality implies the Hölder
continuity.

Theorem 6.10. Assume that (6.10), (6.11) and (6.12) hold. For each
compact set K ⊂ Ω, there is σ = σ(Λ, λ, n, µ, p, dist(K, ∂Ω), ‖f‖Lp(Ω)) ∈
(0, 1) such that if u ∈ C(Ω) is an Lp-viscosity solution of (6.1), then there is
Ĉ = Ĉ(Λ, λ, n, µ, p, dist(K, ∂Ω),maxΩ |u|, ‖f‖Lp(Ω)) > 0

|u(x)− u(y)| ≤ Ĉ|x− y|σ for x, y ∈ K.
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Remark. We notice that σ is independent of supΩ |u|.
In our proof below, we may relax the dependence maxΩ |u| in Ĉ by

sup{|u(x)| | dist(x,K) < ε} for small ε > 0.

Proof. Setting r0 := min{1,dist(K, ∂Ω)/(3√n)} > 0, we may suppose
that there is C4 > 1 such that if w ∈ C(Ω) is a nonnegative Lp-viscosity
sub- and supersolution of

P−(D2w)− µ|Dw| ≤ f and P+(D2w) + µ|Dw| ≥ f in Ω,

respectively, then we see that for any r ∈ (0, r0] and x ∈ K (i.e. B3
√
nr(x) ⊂

Ω),

sup
Qr(x)

w ≤ C4

(

inf
Qr(x)

w + r2−
n
p ‖f‖Lp(Ω)

)

.

For simplicity, we may suppose x = 0 ∈ K.
Now, we set

M(r) := sup
Qr

u, m(r) := inf
Qr

u and osc(r) :=M(r)−m(r).

It is sufficient to find C > 0 and σ ∈ (0, 1) such that

M(r)−m(r) ≤ Crσ for small r > 0.

We denote by S(r) the set of all nonnegative w ∈ C(B3
√
nr), which is,

respectively, an Lp-viscosity sub- and supersolution of

P−(D2w)− µ|Dw| ≤ |f | and P+(D2w) + µ|Dw| ≥ −|f | in B3
√
nr.

Setting v1 := u−m(r) and w1 :=M(r)−u, we see that v1 and w1 belong
to S(r). Hence, setting C10 := max{C4‖f‖Lp(Ω), C4, 4} > 3, we have

sup
Qr/2

v1 ≤ C10

(

inf
Qr/2

v1 + r2−
n
p

)

and sup
Qr/2

w1 ≤ C10

(

inf
Qr/2

w1 + r2−
n
p

)

.

Thus, setting β := 2− n
p
> 0, we have

M(r/2)−m(r) ≤ C10

(

m(r/2)−m(r) + (r/2)β
)

,

M(r)−m(r/2) ≤ C10

(

M(r)−M(r/2) + (r/2)β
)

.
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Hence, adding these inequalities, we have

(C10 + 1)(M(r/2)−m(r/2)) ≤ (C10 − 1)(M(r)−m(r)) + 2C10(r/2)
β.

Therefore, setting θ := (C10−1)/(C10+1) ∈ (1/2, 1) and C11 := 2C10/(C10+
1), we see that

osc(r/2) ≤ θosc(r) + C11(r/2)
β.

Moreover, changing r/2k−1 for integers k ≥ 2, we have

osc(r/2k) ≤ θkosc(r) + C11r
β

k
∑

j=1

2−βj

≤ θkosc(r0) +
C11

2β − 1
rβ ≤ C12(θ

k + rβ),

where C12 := max{osc(r0), C11/(2
β − 1)}.

For r ∈ (0, r0), by setting s = rα, where α = log θ/(log θ−β log 2) ∈ (0, 1),
there is a unique integer k ≥ 1 such that

s

2k
≤ r <

s

2k−1
,

which yields
log(s/r)

log 2
≤ k <

log(s/r)

log 2
+ 1.

Hence, recalling θ ∈ (1/2, 1), we have

osc(r) ≤ osc(s/2k−1) ≤ C12(θ
k + (2s)β) ≤ 2βC12

(

θ(α−1) log r/ log 2 + rβα
)

.

Setting σ := (α− 1) log θ/ log 2 ∈ (0, 1) (because θ ∈ (1/2, 1)), we have

θ(α−1) log r/ log 2 = rσ and rβα = rσ.

Thus, setting C13 := 2βC12, we have

osc(r) ≤ C13r
σ. ✷ (6.16)

Remark. We note that we may derive (6.16) when p > n/2 by taking
β = 2− n

p
> 0.

We shall give the corresponding Hölder continuity for PDEs with quadratic
nonlinearity (6.15). Since we can use the same argument as in the proof of
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Theorem 6.1 using Theorem 6.9 instead of Corollaries 6.7 and 6.8, we omit
the proof of the following:

Corollary 6.11. Assume that (6.10), (6.11) and (6.15) hold. For each
compact set K ⊂ Ω, there are Ĉ = Ĉ(Λ, λ, n, µ, p, dist(K, ∂Ω), supΩ |u|) > 0
and σ = σ(Λ, λ, n, µ, p, dist(K, ∂Ω), supΩ |u|) ∈ (0, 1) such that if an Lp-
viscosity solution u ∈ C(Ω) of (6.1), then we have

|u(x)− u(y)| ≤ Ĉ|x− y|σ for x, y ∈ K.

Remark. Note that both of σ and Ĉ depend on supΩ |u| in this quadratic
case.

6.5 Existence result

For the existence of Lp-viscosity solutions of (6.1) under the Dirichlet condition,
we only give an outline of proof, which was first shown in a paper by Crandall-
Kocan-Lions-Świȩch in [7] (1999).

Theorem 6.12. Assume that (6.10), (6.11) and (6.12) hold. Assume also that

(1) of (5.17) holds.
For given g ∈ C(∂Ω), there is an Lp-viscosity solution u ∈ C(Ω) of (6.1) such

that

u(x) = g(x) for x ∈ ∂Ω. (6.17)

Remark. We may relax assumption (1) of (5.17) so that the assertion holds for
Ω which may have some “concave” corners. Such a condition is called “uniform
exterior cone condition”.

Sketch of proof.

Step1: We first solve approximate PDEs, which have to satisfy a sufficient
condition in Step 3; instead of (6.1), under (6.17), we consider

Fk(x,Du,D
2u) = fk in Ω, (6.18)

where “smooth” Fk and fk approximate F and f , respectively. In fact, Fk and fk
are given by F ∗ρ1/k and f ∗ρ1/k, where ρ1/k is the standard mollifier with respect
to x-variables. We remark that F ∗ ρ1/k means the convolution of F (·, p,X) and
ρ1/k.
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We find a viscosity solution uk ∈ C(Ω) of (6.18) under (6.17) via Perron’s
method for instance. At this stage, we need to suppose the smoothness of ∂Ω to
construct viscosity sub- and supersolutions of (6.18) with (6.17). Remember that
if F and f are continuous, then the notion of Lp-viscosity solutions equals to that
of the standard ones (see Proposition 2.9 in [5]).

In view of (1) of (5.17) (i.e. the uniform exterior sphere condition), we can
construct viscosity sub- and supersolutions of (6.18) denoted by ξ ∈ USC(Ω) and
η ∈ LSC(Ω) such that ξ = η = g on ∂Ω. To show this fact, we only note that we
can modify the argument in Step 1 in section 7.3.

Step 2: We next obtain the a priori estimates for uk so that they converge to

a continuous function u ∈ C(Ω), which is the candidate of the original PDE.
For this purpose, after having established the L∞ estimates via Proposition

6.2, we apply Theorem 6.10 (interior Hölder continuity) to uk in Step 1 because
(6.10)-(6.12) hold for approximate PDEs with the same constants λ,Λ, µ.

We need a careful analysis to get the equi-continuity up to the boundary ∂Ω.
See Step 1 in section 7.3 again.

Step 3: Finally, we verify that the limit function u is the Lp-viscosity solution
via the following stability result, which is an Lp-viscosity version of Proposition
4.8.

To state the result, we introduce some notations: For B2r(x) ⊂ Ω with r > 0
and x ∈ Ω, and φ ∈W 2,p(Br(x)), we set

Gk[φ](y) := Fk(y,Dφ(y),D
2φ(y))− fk(y),

and
G[φ](y) := F (y,Dφ(y),D2φ(y))− f(y)

for y ∈ Br(x).

Proposition 6.13. Assume that Fk and F satisfy (6.10) and (6.12) with

λ,Λ > 0 and µ ≥ 0. For f, fk ∈ Lp(Ω) with p ≥ n, let uk ∈ C(Ω) be an Lp-viscosity

subsolution (resp., supersolution) of (6.18). Assume also that uk converges to u
uniformly on any compact subsets of Ω as k → ∞, and that for any B2r(x) ⊂ Ω
with r > 0 and x ∈ Ω, and φ ∈W 2,p(Br(x)),

lim
k→∞

‖(G[φ] −Gk[φ])
+‖Lp(Br(x)) = 0

(

resp., lim
k→∞

‖(G[φ] −Gk[φ])
−‖Lp(Br(x)) = 0

)

.

Then, u ∈ C(Ω) is an Lp-viscosity subsolution (resp., supersolution) of (6.1).
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Proof of Proposition 6.13. We only give a proof of the assertion for subsolu-
tions.

Suppose the contrary: There are r > 0, ε > 0, x ∈ Ω and φ ∈ W 2,p(B2r(x))
such that B3r(x) ⊂ Ω, 0 = (u− φ)(x) ≥ (u− φ)(y) for y ∈ B2r(x), and

u− φ ≤ −ε in B2r(x) \Br(x), (6.19)

and
G[φ](y) ≥ ε a.e. in B2r(x). (6.20)

For simplicity, we shall suppose that r = 1 and x = 0.
It is sufficient to find φk ∈W 2,p(B2) such that limk→∞ supB2

|φk| = 0, and

Gk[φ+ φk](y) ≥ ε a.e. in B2.

Indeed, since uk − (φ + φk) attains its maximum over B2 at an interior point
z ∈ B2 by (6.19), the above inequality contradicts the fact that uk is an Lp-
viscosity subsolution of (6.18).

Setting h(x) := G[φ](x) and hk(x) := Gk[φ](x), in view of Proposition 6.3, we
can find φk ∈ C(B2) ∩W 2,p

loc (B2) such that















P−(D2φk)− µ|Dφk| ≥ (h− hk)
+ a.e. in B2,

φk = 0 on ∂B2,
0 ≤ φk ≤ C‖(h− hk)

+‖Lp(B2) in B2,

‖φk‖W 2,p(B1) ≤ C‖(h− hk)
+‖Lp(B2).

We note that our assumption together with the third inequality in the above yields
limk→∞ supB2

|φk| = 0.
Using (6.10), (6.12) and (6.20), we have

Gk[φ+ φk] ≥ P−(D2φk)− µ|Dφk|+ hk
≥ (h− hk)

+ + ε− (h− hk)
≥ ε a.e. in B2. ✷
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