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5 Stationary phase method and pseudodifferential
operators |

5.1 Stationary phase method

In this section we shall give a brief review of the methods to study the asymptotic
behavior of oscillatory integrals of type

(5.1.1) I(R) = /R 'R f(z)dzx

as R > 0 tends to infinity.
Here f(z), ¢(z) are smooth functions defined on R™ with ¢(z) being real-valued.
First, we consider the case, when the phase function ¢(z) has no critical points.
More precisely, we consider the case, when there exist 6 > 0,0 < 1and C > 0 so
that
(5.1.2) IVé(z)| >C ' <z>?, <z>%=1+4|zf,

(5.1.3) |02Ve(z)| < C < z >0~
for any = € suppf.
Lemma 5.1.1 Suppose the assumptions (5.1.2), (5.1.8) are fulfilled and f(z) is a

smooth function with compact support. Then for any integer N > 0 and for any
€ > 0 we have

C - - al+n {e]
IR < g D [l <z >7NOmNHARYE 52 £l 2.
lal<N

Proof. Given any first order differential operator

L(za az) = (Z a'j(m)axj) + b(x)a

=1

we denote by L* its adjoint operator with respect to the inner product in L?(R"),
ie. n n
L*(2,8z) = ~(3_ 85(2)0s,) +b(@) + ) _ 0z,0;(z).
j=1 Jj=1

Therefore, for any couple f, g of smooth compactly supported functions on R" we
have

(5.14) (Lf,9)r2@mm) = (f, L™ g)L2mm).-
Let L(z,0;) be the differential operator, such that its adjoint is

n

- 0z, ¢
* __ -1 § : .3
L - k=1 |V¢|2azk’
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where V = (0., ..., 0z, ).
It is clear that : ‘
L:k (eiR¢) — ReiR¢.

Then (5.1.4) implies that

) I(R) = RIN / e PP LN (f)dz.

In order to evaluate L™ (f), we shall establish inductively with respect to- N that
L¥ can be represented as

(5.1.5) V=Y a)(z)0,

la|<N

where the coefficients satisfy suitable decay estimates. To formulate precisely this
statement, given any real number m we denote by S™ the class of all smooth
functions a(z) such that for any multiindex 8 there exists C = C(8) so that

(< > 8:)Pa(z) <C <z >™
Our goal is to show that the coefficients in (5.1.5) satisfy
(5.1.6) al (z) € §~ON-N+lal,

For N = 1 we have

i’ Z Oe, 0 0z, + b(z),

‘| Vo[?
where b(z) is constant times
> 02, (82,8/1V0%).
k=1
Therefore, we have to show that
Vé(z) -5
5.1.7 s € 57 °.
517 ZOk

Indeed, consider the function
v € R™\ 0= x(v) = v/|v|°

Then the function in (5.1.7) can be represented as x(V¢). Moreover, for any mul-
tiindex o we can represent 02 x(V¢) as a linear combination of terms of type

02%) (V) (62: V4)...(82°' V)



62 STATIONARY PHASE METHOD AND PSEUDODIFFERENTIAL OPERATORS

with |8| < |a| and
M+t =0

Since : :
|88x(v)| < Clv|~2~ 1A

and |v| = [V¢| > C~! < = >¢, we have
1053) (V@) < C1 <z >20+AD.,
Applying (5.1.3), we find
102Vg| < C < z >*lel
so (5.1.7) is established. Using the trivial property
(5.1.8) a€S™=>8Cac S,
we obtain (5.1.6) and this implies

ILY (f)(z)] < C <z >7SN-N*el 3™ g2 £(z)).

la|<N

Applying the Cauchy inequality, we complete the proof of the Lemma.
As an application we shall consider the oscillatory integral

Alz,€) =
(5.19) [ [ (e + 2,6+ n)b(z, 2,€ midadn,

where a(z,£) is a smooth function on R™ x R™ belongmg to the class of symbols
- 8™k defined as follows.

Definition 5.1.1 A smooth function a(z,€) belongs to S™*, (m,k are real num-
bers) if for any integer N > 0 one can find a constant C = C(N) so that

10288a(z,£)| < C < £ >™ Pl< o >*-ll
for |a| +18] < N.

Further, we set
S—oo,—oo = nm,ksm’k-

Moreover,

b(z,z,&n) = (1 — /(L +1€)))1 — (2/(1 + |=[))) |
where the cut-off function ¢(z) in (5.1.9) is such that ¢(z) = 1 for |z| < 1/4 and
e(z) =0 for |z| > 1/2. ’
We shall establish the following.
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Lemma 5.1.2 If a € S™F, then the osczllatory mtegml A in ( 5.1. 9) belongs to
SO0

Proof. Taking ¢(y,z) = (y,2), R = 1, we see that the oscillatory integral A
has the form (5.1.1). Taking § = 1, we see that the assumptions (5.1.2) and (5.1.3)
are fulfilled. Thus, for any integer N > 1 we have .

IA(ac &)l <
c > //B:czﬁn)dzdn,
|a|+|BI<N
where
B(z,z,§,n) =
. (1 + ‘zl)—2N—25+n+25 X
(5.1.10) X(1+ |nl) 72N =242 15280 a(z + 2, € + ) .

The integration above is over |z| > (1+]|z|)/4 and |n| > (1+|€|) /4. This observation
implies that for any integer N; > 1 we have the estimate

|A(z, &)l < (1 + [z) 7™ (1 + €)™
In a similar way we estimate the derivatives of A and get
0262 Az, )] < C(L + [=) ™ (L + €)™

This completes the proof of the lemma.
In a similar way, we can consider the oscillatory integral

A(z,§) =
(5.1.11) //e‘i("”)al(m,z,é,n)dzdn,

where

a1(z,2,€,m) = a(z + 2,€ + 1)1 — o(n/(1 + |€)))p(2/(L + |zI)).

Now we can use the argument of the proof of Lemma 5.1.1 and use the operator
= ( Zl Izv )
Then integrating by parts as it was done in Lemma 5.1.1, we get

Az <C T / / (1+ 1)~ 102 (p(2/(1 + |z]))alz + 2,€ +n))|dzdn.

ja|=N



64 STATIONARY PHASE METHOD AND PSEUDODIFFERENTIAL OPERATORS

Here the integration is over |2| < (1 + |z|)/2 so on the integration domain the
weights 1+ |z + z| and 1 + |z| are equivalent. Then the definition 5.1.1 shows that
we have the estimate

102 (p(2/(1 + I2])a(z + 2, +m))| < C <z >*-1ol,
Choosing N > 1 sufficiently large, we get
Lemma 5.1.3 Ifa € S™F, then the oscillatory integral A in (5.1.11) belongs to

S0~
Our next step is to consider the case when
(5.1.12) I(R) = / e'R(Q=2) f(z)dz,
R»

where @ is a constant symmetric invertible matrix. Then the assumption (5.1.2)
is not satisfied. For this case stationary phase method gives the following.

Lemma 5.1.4 For any real number s > n/2 we have the estimate

[I(R)| < CR™™?| f| as.

__Proof. We have seen in (3.4.1) that the Fourier transform of the distribution
e'f(Q=.2) ig constant times

R-"/26-HQ6£)/4R

Therefore, applying Plancherel identity, we get

@) <or [ |7 e

Applying the Cauchy inequality, we complete the proof. '
We can obtain asymptotic expansion for I(R). In fact, we have the expansion

N-1
e HQTEO/AR = N " (—i/AR)*(Q7,€)* /k! + TN,
k=0
where the remainder ry(£) satisfies the estimate
Irv ()] < CNI(@&OIVEY.
Therefore, we have the asymptotic expansion

N-1
(5.1.13) I(R)= ) Ix(R)+on(R),
k=0
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where ‘
Ci*

k!(4R)k+n/2 (

and the remainder on(R) satisfies the estimate

Cn
lon(R)| < RTA;/;”f”H?N“

Iu(R) = Q' D., D) £(0)

with s > n/2.

5.2 Pseudodifferential operators

Consider pseudodifferential operators of type
P2, D2)(N(@) = [ =p(a, &) (E)ce,

where p(z,€) € S™. Recall that (see [22]) the class S™ of symbols is formed by
smooth functions p(z, £) defined in R™ x IR™ such that for any multiindices a and
B there exists a constant Cn g so that

(5.2.1) 10208 p(z, £)] < C(1+ g8

for any z € R"™ and ¢ € R". The real number m is called order of the operator.
The class S~ is the intersection of S™ for all real values of m.
Here below we shall list some simple properties of the class S™.

Problem 5.2.1 If p(z,§) € S™, then for any o, 3 we have
a:afp(z,g) e s™ 1AL,
Problem 5.2.2 Ifp € S™ and q € S*, then
| | | | pg € STk,
Problem 5.2.3 Ifp,q € S™, thenptqec S™.
Next we shall define asymptotic expansions in the classes of symbols. Let
P € S™. Given any dgcreasing sequence m;,j = 0,1,2,.. of real numbers with

mo = ™ and ,
mj—->-—oo

and any sequence Pp; € S™/ of symbols, the asymptotic expansion

o0
(5.2.2) P~ Pp,
j=0
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means that there exists (eventually another) decreasing sequence yu; of real numbers
with

Hj =+ —00
such that for any integer k > 1 we have

k-1
(5.2.3) P— Pn, € 5"
i=0

Problem 5.2.4 If

[+ <]
P~ Pm,

=0

oo
qn~ me,-

=0

and

show thatp—q € S~°.

One of the basic points in the theory of pseudodifferential operators is the
following. :

Lemma 5.2.1 (see [22]) Suppose pm; € S™ , where mj,j =0,1,2,... is a decreas-
ing sequence or real numbers, tending to —oo. Then there exists a symbolp € S™°,

so that
oo
P~ D Pmy.
=0
For simplicity we shall consider here only the case pm; = pm,(£).

Lemma 5.2.2 Suppose pm,(§) € S™i, where m;,j = 0,1,2,... is a decreasing
sequence or real numbers, tending to —oo. Then there exists a symbol p(§) € S™°,

so that
o0
P~ Pmy.
j=0

Proof. Let ¢(£) be a smooth function, such that ¢(¢) =1 for €| < 1/2 and
¢(€) =0 for [£| > 1. The key point in the proof is to find a decreasing sequence
e; — 0,
so that for any multiindex a with |a| < j we have

(5.2.4) 108 ((€5€)pm; ()] < 279 (1 + [gl)y™s-271el.
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In fact, we have the estimate

|02 p(e€)| < CL+ gl

for any € € (0,1). Here the constant C > 0 is independent of ¢. This estimate and
the assumption p,, € S™/ imply that we have '

10¢ (0 (£4€)pem; (€))] < C(L+ €)™ 714,

Since m; > m;_; and €|§| > 1/2, we get
|02 (¢(£5€)pm, (€))] < Ce™ ™™= (1 + [¢[)™ -+~

Thus, choosing Ce™i~™i-1 < 277, we obtain (5.2.4).
Taking

p(6) = ) (1 — p(&€))pm; (€),

—0

we see that p(§) is a well-defined smooth function.
Further, we have

r—1 r—1
p- ij = - 2(1 - ‘P(EJ'E))pmj + -R/r(g),
7=0 =0

where the remainder

R.(&) =) _ #(€i€)pm; (£)

j=r
satisfies
|OgRr(§)| <2771 + €)1 lel
Hence,
r—1
p_zpmJ (S S1nj—1,
j=0

This completes the proof of the Lemma.

Further, if P,, and Q, are two pseudodifferential operators of orders m and s
with symbols p(z,£) and g(z,€) respectively, then their product P,Q, is a pseu-
dodifferential operator of order m + s with symbol (modulo symbols in $~°°)

(5.2.5) > (—i)*18gp(z, £) Bz g(=, €) /!

Given any pseudodifferential operator of order m, we can study its kernel k(z,y)
defined by : :

P(N)@) = [ k@) f .
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Formally, the kernel is the following oscillatory integral
k(z,y) = / e} ¥)p(z, £)de.
Rn»
Lemma 5.2.3 Ifp € S™,m > —n, then for any integer M > 1 we have
c : M
< C T
|k(z,y)| < iz _yl,.ﬂ;,,.(1 + |z —yl)

forz #y.

Proof. For simplicity we shall consider only the case of symbols p = p(¢), since
in the general case p(z,£) we can consider z as a parameter. Setting z =z —y, we
shall evaluate the kernel :

(5.2.6) k(z) = /R ] e**Ep(¢)de
Using integration by parts by means of the operators
(1+21)71 (1 = Ay),
we see that the decay factor (1+|2z|2)~* can be obtained, so it is sufficient to show

that z
(5.2.7) Ik(z)| < Cflljjj')

for some non-negative number ! > 0 and for z # 0.
Let ¢(z) be a smooth compactly supported function, such that ¢(z) = 1 near
z = 0. Then

k(z) = ki (2) + ka(2),
where

k() = [ e =eaem(ee

k@) = [ e pllale)pl)ce
For k1(z),m > 0, we have

C C _CO+|z™
< <
lkl(z)l = Iz'n + |z|n+m - |z|'n+m

For k;(z),m < 0, we have
C

|k1(z)| < TEe I |ﬂ+m
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For k2(z) we intégrate by parts by means of the operator (z/|z|%, V) and get

.. C .
a(a)| < o /lmc o e

where o |
a(2,6) = .,,fV_:N 88 (1 — (lzlI€N)p(e))-

Since

| la(2€)] < %I;,—,'f')—m
we get - l

jate)) < ST
for m > 0 and
k22 < e

for 0 > m > —n. Thus the estimate (5.2.7) is established and this completes the
proof of the Lemma. ‘
For the case m < —n we can get (following the proof of the previous Lemma)

Lemma 5.2.4 Ifp € S™,m < —n, then for any integer M > 1 one can find a
constant C = C(M) so that

k(z,y)| <CA+ |z —y)™

for z # y.

Applying the Young inequality (2.4.15), combined with the estimate from the
previous Lemma we get

(5.2.8) | ) IP(F)llLemny < Cllfllemrn)

for any pseudodifferential operator P of order < —n.

In general, the above estimate is true for any pseudodifferential operator of
order 0.(see Theorem 18.1.11 in [22] for the case p = 2 and Chapter XI in [60] for
example). More precisely, it is possible to give a more precise expression of the
constant C in the estimate (5.2.8). Namely, we have (see Chapter XI in [60])

5.2.9) C=C <€ >0 |928Pp(z, )],
( ) 0 IQIS"E%lSn‘Fl zER",?glR?,"—{O} g I Ep(z E)l

where Cp is universal constant , depending on the space dimension n and on p.
This constant is independent of the symbol p.
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From this estimate and the definition of the Sobolev space H it follows

(5.2.10) 1P (Pllze(my= < Clifllrgermy

for any pseudodifferential operator Py, of order m.
It is easy to obtain the above estimate for the case of convolution type operator

P(f)(@) = [ e pO)f €.

In fact, applying Lemma 5.2.3, we easily see the assumptions of Stein’s theorem
3.3.1 are satisfied, so P is a bounded operator in LP.

Here below we shall use a slightly different class of symbols S™*. This class
is used in the work of Cordes [9] and it consists of smooth functions defined in
R™ x R™, so that

828, p(=,€)| < C(1 + €)™ 1PI(L + |a))* 1o,
We have the following simple properties of these classes. We have the inclusion
g™k c §™,
if k£ < 0. Moreover, if p(z,£) € S™, then for any a, 3 we have
820¢p(a,€) € STk,
Further if p; € S™°%i, j = 1,2, then
pip € STitmakithe,

Set
S—oo,—oo = nm’ksﬂn,k‘

The asymptotic expansions in the classes of symbols S™F* can be defined as
follows. Let P € S™*. Given any decreasing sequences m;, k;,j = 0,1,2,.. of real
numbers with mg = m, kg = k and

mj = —00 , kj = —00

and any sequence P; € S™i**i of symbols, the asymptotic expansion
[o <]

(5.2.11) P~) P
s

means that there exists (eventually another) decreasing sequences puj,v; of real
numbers with
pj = —00 , v; — —0Q.
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such that for any integer k > 1 we have

k-1
(5.2.12) P P gH,

=0

As above if we have two asymptotic expansions
oo
P~ pi
Jj=0
and
oo
g~ pj
J=0

then p —g € S7 =,
Moreover, we have the following.

Lemma 5.2.5 Suppose p; € S™ % where mj,k;,j = 0,1,2,... are a decreasing
sequences or real numbers, tending to —oo. Then there ezists a symbol p € S™o%o,

so that
) o0
P~ pi.
j=0

Proof. It is sufficient to take
p(z,6) =) (1 - ¢(&2))(1 - p(e8))pi(=, £),
j=0

where d;, €; are suitable decreasing sequences tending to 0. To choose them, we can
use the argument of the proof of Lemma 5.2.2.

This completes the proof.

Given any pseudodifferential operator P, we shall find the symbol of the adjoint
operator P* defined by

(Pf7 g)Lz(R"‘) = (f7P*g)L2(R")°

Taking two smooth compactly supported functions f, g, we get

(P#, )12 = / F @) P @) @)y,

where

P = [ [ &30z Bo(e)dade.
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Hence, the adjoint operator is defined by

P*(g)(z) = / / e @ Vip(y, £) g(y)dyde.

To show that P* is also a pseudodifferential operator, it is necessary to show that
modulo operators with symbols in $~°'~* we have

Pr@)@) = [ [ =gtz o(u)auat.

In fact, using the representation
gy)=c / e'V"§(n)dn,

we see that g(z,§) is given (formally!) by the oscillatory integral

q(z,n) = / / e @&y €)dyde.

Setting z —y = —z, £ — n = (, we get

e = [ [ datmn+ Odad.

Applying Lemma 5.1.2 and Lemma 5.1.3, we see it is sufficient to study the
oscillatory integral

Q(z,n) =
/ / e 2@+ 5+ Owlz/(1+ |2))e(C/ (1 + n))dzdC.

Here ¢(z) is a smooth compactly supported function such that ¢(z) = 1 near
z=0. '
Indeed, § is a well — defined smooth function. Setting

Ri=1+|z| , Ra=1+]n,
we have
Ry Ry"4(@,n) =
/ / e~ PRy U R 2 + RaQ)p(2)0(C))d2dl.

Applying stationary phase method (see (5.1.13)), we get

00 k
a(z,n) ~ @%p(w,n)-
' k=0
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Once the asymptotic expansion of the adjoint operator is obtained, one can use
the approach from [22] and obtain the results for the product of two pseudodifferen-
tial operators, L — boundedness as well as to construct parametrix for uniformly
elliptic operators. We shall avoid a repetition of these standard steps and shall
state only the needed results.

If p1, p2 are the symbols of the operators P, P, such that

pjes‘mj,qu ) j=1727 -

then the product P, P, of these pseudodiffrerential operators has a symbol in
Smitmakitkz and this symbol has an asymptotic expansion

oo

Z @_’;1_'_)_17_)__ (Pl (1:, 77)?2 (y, 6)) |y—_-‘z,‘r,=€'.

k=0

If P is a pseudodifferential operator with symbol in §%°, then for 1 < p <
we have

IPflleemrry < CllfllLe@ny-

This estimate follows from the inclusion S%° ¢ S° and the corresponding standard
LP estimates for pseudodifferential operators with symbols in S°.
Given asymptotic expansion of the symbol p € S™F

[o o)
P~ pi,
3=0

with p; € S™~5%~J we shall call pp a principal symbol of p.
Assuming the principle symbol is uniformly elliptic, i.e. there exists a constant
p > 0, so that

[po(z, €)1 > u(1 + €)™ (1 + |z])",
we can construct a parametrix for the corresponding pseudodifferential operator P.
In this way we find a pseudodifferential operator Q € S~™~* so that PQ — I and
QP — I are pseudodifferential operators with symbols in §7%~%°,

Our next step is one variant of Gérding’s inequality for pseudodifferential op-
erators.

Theorem 5.2.1 If P is a pseudodifferential operator with symbol p € S%° and if
the principle symbol po satisfies po(z,€) > u > 0 for any z,§ € R", then

(Pu,u)r2ra) > —C|| <z >N (1 - A)Nu|2,

for any integer N > 1.
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Proof. The symbol g(z,¢) = \/p(z,£) belongs to §%0. This fact shows that one
can find a pseudodifferential operator Qo, so that Q3Qo — P is a pseudodifferential
operator with symbol in §~1~1. Using the fact that Qo is uniformly elliptic we can
find a pseudodifferential operator Q; with symbol in S~~1, so that

(@ +Q1)(Qo+@1)—P
has a symbol in §~%~2, Continuing this procedure, we can find Q so that
Q"Q-P=R

is a pseudodifferential operator with symbol in S~°~°°, For any such R we have
the estimate
IRulz2 <C|l <z >N (1 - A)NuLa.

This completes the proof.
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