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5 Stationary phase method and pseudodifferential
operators

5.1 Stationary phase method

In this section we shall give a brief review of the methods to study the asymptotic
behavior of oscillatory integrals of type

(5.1.1) $I(R)=\int_{R^{n}}e^{iR\phi(x)}f(x)dx$

as $R>0$ tends to infinity.
Here $f(x),$ $\phi(x)$ are smooth functions defined on $\mathbb{R}^{n}$ with $\phi(x)$ being real-valued.
First, we consider the case, when the phase function $\varphi(x)$ has no critical points.

More precisely, we $\infty nsider$ the case, when there exist $\delta>0,$ $\delta\leq 1$ and $C>0$ so
that
(5.1.2) $|\nabla\phi(x)|\geq C^{-1}<x>^{\delta}, <x>^{2}=1+|x|^{2},$

(5.1.3) $|\partial_{x}^{\alpha}\nabla\phi(x)|\leq C<x>^{\delta-|\alpha|}$

for any $x\in suppf.$

Lemma 5.1.1 Suppose the assumptions (5.1.2), (5.1.3) are hlfilled and $f(x)$ is a
smooth function with compact support. Then for any integer $N\geq 0$ and for any
$\epsilon>0$ we have

$|I(R)|\leq\frac{C}{R^{N}}\sum_{|\alpha|\leq N}\Vert<x>^{-N\delta-N+|\alpha|+n/2+\epsilon}\partial^{\alpha}f\Vert_{L^{2}(\mathbb{R}^{n})}.$

Proof. Given any first order differential operator

$L(x, \partial_{x})=(\sum_{J=1}^{n}a_{j}(x)\partial_{x_{j}})+b(x)$ ,

we denote by $L^{*}$ its adjoint operator with respect to the inner product in $L^{2}(\mathbb{R}^{n})$ ,
i.e.

$L^{*}(x,\partial_{x})=-(\sum_{j=1}^{n}\overline{a_{j}(x)}\partial_{x_{j}})+\overline{b(x)}+\sum_{j=1}^{n}\partial_{x_{j}}\overline{a_{j}(x)}.$

Therefore, for any couple $f,g$ of smooth compactly supported functions on $\mathbb{R}^{n}$ we
have
(5.1.4) $(Lf,g)_{L^{2}(\mathbb{R}^{n})}=(f,L^{*}g)_{L^{2}(\mathbb{R}^{n})}.$

Let $L(x,\partial_{x})$ be the differential operator, such that its adjoint is

$L^{*}=i^{-1}\sum_{k=1}^{n}\frac{\partial_{x_{k}}\phi}{|\nabla\phi|^{2}}\partial_{x_{k}},$
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where $\nabla=(\partial_{x_{1}}, \ldots, \partial_{x_{n}})$ .
It is clear that

$L^{*}(e^{iR\phi})=Re^{iR\phi}.$

Then (5.1.4) implies that

$I(R)=\frac{1}{R^{N}}\int_{\mathbb{R}^{n}}e^{iR\phi}L^{N}(f)dx.$

In order to evaluate $L^{N}(f)$ , we shall establish inductively with respect to. $N$ that
$L^{N}$ can be represented as
(5.1.5)

$L^{N}=\sum_{|\alpha|\leq N}a_{\alpha}^{N}(x)\partial_{x}^{\alpha},$

where the coefficients satisfy suitable decay estimates. To formulate precisely this
statement, given any real number $m$ we denote by $S^{m}$ the class of all smooth
functions $a(x)$ such that for any multiindex $\beta$ there exists $C=C(\beta)$ so that

$|(<x>\partial_{x})^{\beta}a(x)|.\leq C<x>^{m}$

Our goal is to show that the coefficients in (5.1.5) satisfy

(5.1.6) $a_{\alpha}^{N}(x)\in S^{-\delta N-N+|\alpha|}.$

For $N=1$ we have

$L=i^{-1}\sum_{k=1}^{n}\frac{\partial_{x_{k}}\phi}{|\nabla\phi|^{2}}\partial_{x_{k}}+b(x)$ ,

where $b(x)$ is constant times

$\sum_{k=1}^{n}\partial_{x_{k}}(\partial_{x_{k}}\phi/|\nabla\phi|^{2})$ .

Therefore, we have to show that

(5.1.7) $\frac{\nabla\phi(x)}{|\nabla\phi(x)|^{2}}\in S^{-\delta}.$

Indeed, consider the function

$v\in \mathbb{R}^{n}\backslash 0\rightarrow\chi(v)=v/|v|^{2}.$

Then the function in (5.1.7) can be represented as $\chi(\nabla\phi)$ . Moreover, for any mul-
tiindex $\alpha$ we can represent $\partial_{x}^{\alpha}\chi(\nabla\phi)$ as a linear combination of terms of type

$(\partial_{v}^{\beta}\chi)(\nabla\phi)(\partial_{x}^{\gamma\iota}\nabla\phi)\ldots(\partial_{x}^{\gamma_{|\beta|}}\nabla\phi)$
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with $|\beta|\leq|\alpha|$ and
$\gamma_{1}+\ldots+\gamma_{|\beta|}=\alpha.$

Since
$|\partial_{v}^{\beta}\chi(v)|\leq C|v|^{-1-|\beta|}$

and $|v|=|\nabla\phi|\geq C^{-1}<x>^{\delta}$ , we have

$|(\partial_{v}^{\beta}\chi)(\nabla\phi)|\leq C_{1}<x>^{-\delta(1+|\beta|)}$

Applying (5.1.3), we find

$|\partial_{x}^{\alpha}\nabla\phi|\leq C<x>^{\delta-|\alpha|}$

so (5.1.7) is established. Using the trivial property

(5.1.8) $a\in S^{m}\Rightarrow\partial_{x}^{\alpha}a\in S^{m-\alpha},$

we obtain (5.1.6) and this implies

$|L^{N}(f)(x)|\leq C<x>^{-\delta N-N+|\alpha|}\sum_{|\alpha|\leq N}|\partial_{x}^{\alpha}f(x)|.$

Applying the Cauchy inequality, we complete the proof of the Lemma.
As an application we shall consider the oscillatory integral

$A(x,\xi)=$

(5.1.9) $l_{\mathbb{R}^{n}}l_{\mathbb{R}^{n}}e^{-i(z,\eta)}a(x+z,\xi+\eta)b(x,z,\xi,\eta)dzd\eta,$

where $a(x, \xi)$ is a smooth function on $R^{n}\times R^{n}$ belonging to the class of symbols
$\Psi^{n,k}$ , defined as follows.

Definition 5.1.1 $A$ smooth function $a(x,\xi)$ belongs to $S^{m,k},$ $(m,$ $k$ are real num-
bers) if for any integer $N\geq 0$ one can find a constant $C=C(N)$ so that

$|\partial_{x}^{\alpha}\partial_{\xi}^{\beta}a(x,\xi)|\leq C<\xi>^{m-|\beta|}<x>^{k-|\alpha|}$

$for|\alpha|+|\beta|\leq N.$

Further, we set
$S^{-\infty,-\infty}=\bigcap_{m},{}_{k}S^{m,k}.$

Moreover,

$b(x,z,\xi,\eta)=(1-\varphi(\eta/(1+|\xi|)))(1-\varphi(z/(1+|x|)))$

where the cut-off function $\varphi(x)$ in (5.1.9) is such that $\varphi(x)=1$ for $|x|\leq 1/4$ and
$\varphi(x)=0$ for $|x|\geq 1/2.$

We shall establish the following.
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Lemma 5.1.2 If $a\in S^{m,k}$ , then the oscillatory integml $A$ in (5.1.9) belongs to
$S^{-\infty,-\infty}.$

Proof. Taking $\phi(y, z)=(y,z),$ $R=1$ , we see that the oscillatory integral $A$

has the form (5.1.1). Taking $\delta=1$ , we see that the assumptions (5.1.2) and (5.1.3)
are fulfilled. Thus, for any integer $N\geq 1$ we have

$|A(x,\xi)|\leq$

$C\sum_{|\alpha|+|\beta|\leq N}llB(x,z, \xi,\eta)dzd\eta,$

where

$B(x, z, \xi,\eta)=$

$(1+|z|)^{-2N-2\delta+n+2\epsilon}\times$

(5.1.10) $\times(1+|\eta|)^{-2N-2\delta+n+2\epsilon}|\partial_{z}^{\alpha}\partial_{\eta}^{\beta}a(x+z,\xi+\eta)|^{2}.$

The integration above is over $|z|\geq(1+|x|)/4$ and $|\eta|\geq(1+|\xi|)/4$ . This observation
implies that for any integer $N_{1}\geq 1$ we have the estimate

$|A(x,\xi)|\leq C(1+|x|)^{-N_{1}}(1+|\xi|)^{-N_{1}}.$

In a similar way we estimate the derivatives of $A$ and get

$|\partial_{x}^{\alpha}\partial_{\xi}^{\beta}A(x,\xi)|\leq C(1+|x|)^{-N_{1}}(1+|\xi|)^{-N_{1}}.$

This completes the proof of the lemma.
In a similar way, we can consider the oscillatory integral

$A(x,\xi)=$

(5.1.11) $l_{\mathbb{R}^{n}}l_{\mathbb{R}^{n}}e^{-i(z,\eta)}a_{1}(x, z, \xi,\eta)dzd\eta,$

where

$a_{1}(x, z,\xi,\eta)=a(x+z, \xi+\eta)(1-\varphi(\eta/(1+|\xi|)))\varphi(z/(1+|x|))$ .

Now we can use the argument of the proof of Lemma 5.1.1 and use the operator

$L=(\frac{\eta}{i|\eta|^{2}}, \nabla_{z})$ .

Then integrating by parts as it was done in Lemma 5.1.1, we get

$|A(x,\xi)|\leq C\sum_{|\alpha|=N}l\int(1+|\eta|)^{-N}|\partial_{z}^{\alpha}(\varphi(z\prime(1+|x|))a(x+z,\xi+\eta))|dzd\eta.$
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Here the integration is over $|z|\leq(1+|x|)/2$ so on the integration domain the
weights $1+|x+z|$ and $1+|x|$ are equivalent. Then the definition 5.1.1 shows that
we have the estimate

$|\partial_{z}^{\alpha}(\varphi(z\prime(1+|x|))a(x+z,\xi+\eta))|\leq C<x>^{k-|\alpha|}$

Choosing $N\geq 1$ sufficiently large, we get

Lemma 5.1.3 If $a\in S^{m,k}$ , then the oscillatory integml $A$ in (5.1.11) belongs to
$S^{-\infty,-\infty}.$

Our next step is to consider the case when

(5.1.12) $I(R)=\int_{R^{n}}e^{iR(Qx,x)}f(x)dx,$

where $Q$ is a constant symmetric invertible matrix. Then the assumption (5.1.2)
is not satisfied. For this case stationary phase method gives the following.

Lemma 5.1.4 For any real number $s>n\prime 2$ we have the eshmate

$|I(R)|\leq CR^{-n/2}\Vert f\Vert_{H^{s}}.$

Proof. We have seen in (3.4.1) that the Fourier transform of the distribution
$e^{iR(Qx,x)}$ is constant times

$R^{-n\prime 2}e^{-i(Q^{-1}\xi,\xi)/4R}.$

Therefore, applying Plancherel identity, we get

$|I(R)|\leq CR^{-n\prime 2}\int_{\mathbb{R}^{n}}|f(\xi)|d\xi.$

Applying the Cauchy inequality, we complete the proof.
We can obtain asymptotic expansion for $I(R)$ . In fact, we have the expansion

$e^{-i(Q^{-1}\xi,\xi)\prime 4R}=\sum_{k=0}^{N-1}(-i/4R)^{k}(Q^{-1}\xi,\xi)^{k}/k!+r_{N},$

where the remainder $r_{N}(\xi)$ satisfies the estimate

$|r_{N}(\xi)|\leq C_{N}|(Q^{-1}\xi, \xi)|^{N}R^{-N}.$

Therefore, we have the asymptotic expansion

(5.1.13) $I(R)=\sum_{k=0}^{N-1}I_{k}(R)+\sigma_{N}(R)$ ,
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where

$I_{k}(R)=\frac{Ci^{-k}}{k!(4R)^{k+n/2}}(Q^{-1}D_{x},D_{x})f(O)$

and the remainder $\sigma_{N}(R)$ satisfies the estimate

$|\sigma_{N}(R)|\leq\frac{C_{N}}{R^{N+n\prime 2}}\Vert$fll $H^{2N+s}$

with $s>n/2.$

5.2 Pseudodifferential operators

Consider pseudodifferential operators of type

$P_{m}(x, D_{x})(f)(x)=\int e^{ix\xi}p(x,\xi)f(\xi)d\xi,$

where $p(x,\xi)\in S^{m}$ . Recall that (see [22]) the class $S^{m}$ of symbols is formed by
smooth f $\iota$mctions $p(x, \xi)$ defined in $\mathbb{R}^{n}\times \mathbb{R}^{n}$ such that for any multiindices $\alpha$ and
$\beta$ there exists a constant $C_{\alpha,\beta}$ so that

(5.2.1) $|\partial_{x}^{\alpha}\partial_{\xi}^{\beta}p(x,\xi)|\leq C(1+|\xi|)^{m-|\beta|}$

for any $x\in R^{n}$ and $\xi\in \mathbb{R}^{n}$ . The real number $m$ is called order of the operator.
The class $S^{-\infty}$ is the intersection of $S^{m}$ for all real values of $m.$

Here below we shall list some simple properties of the class $S^{m}.$

Problem 5.2.1 If $p(x, \xi)\in S^{m}$ , then for any $\alpha,\beta$ we have

$\partial_{x}^{\alpha}\partial_{\xi}^{\beta}p(x,\xi)\in S^{m-|\beta|}.$

Problem 5.2.2 If $p\in S^{m}$ and $q\in S^{k}$ , then

$pq\in S^{m+k}.$

Problem 5.2.3 If $p,q\in S^{m}$ , then $p\pm q\in S^{m}.$

Next we shall define asymptotic expansions in the classes of symbols. Let
$P\in S^{m}$ . Given any decreasing sequence $m_{j},j=0,1,2,$ $.$ . of real numbers with
$m_{0}=m$ and

$ m_{j}\rightarrow-\infty$

and any sequence $P_{m_{j}}\in S^{m_{j}}$ of symbols, the asymptotic expansion

(5.2.2) $P\sim\sum_{j=0}^{\infty}P_{m_{\dot{f}}}$
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means that there exists (eventually mother) decreasing sequence $\mu_{j}$ ofreal numbers
with

$\mu j\rightarrow-\infty$

such that for any integer $k\geq 1$ we have

(5.2.3) $P-\sum_{j=0}^{k-1}P_{m_{j}}\in S^{\mu_{k}}.$

Problem 5.2.4 If
$p\sim\sum_{j=0}^{\infty}p_{m_{j}}$

and

$q\sim\sum_{j=0}^{\infty}p_{m_{j}}$

show that $p-q\in S^{-\infty}.$

One of the basic points in the theory of pseudodifferential operators is the
following.

Lemma 5.2.1 $($see $l22l)$ Suppose $p_{m}j\in S^{m_{j}}$ , where $m_{j},j=0,1,2,$ $\ldots$ is a decreas-
ing sequence or real numbers, tending $ to-\infty$ . Then there exists a symbol $p\in S^{m0},$

so that

$p\sim\sum_{j=0}^{\infty}p_{m_{j}}.$

For simplicity we shall consider here only the case $p_{m_{j}}=p_{m_{j}}(\xi)$ .

Lemma 5.2.2 Suppose $p_{m_{j}}(\xi)\in S^{m_{j}}$ , where $m_{j},j=0,1,2,$ $\ldots$ is a decoeasing
sequence or real numbers, tending $ to-\infty$ . Then there exists a symbol $p(\xi)\in S^{m_{0}},$

so that

$p\sim\sum_{j=0}^{\infty}p_{m_{j}}.$

Proof. Let $\varphi(\xi)$ be a smooth function, such that $\varphi(\xi)=1$ for $|\xi|\leq 1\prime 2$ and
$\varphi(\xi)=0$ for $|\xi|\geq 1$ . The key point in the proof is to find a decreasing sequence

$\epsilon_{j}\rightarrow 0,$

so that for any multiindex $\alpha$ with $|\alpha|\leq j$ we have

(5.2.4) $|\partial_{\xi}^{\alpha}(\varphi(\epsilon_{j}\xi)p_{m}j(\xi))|\leq 2^{-j}(1+|\xi|)^{m_{j-1}-|\alpha|}.$
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In fact, we have the estimate

$|\partial_{\xi}^{\alpha}\varphi(\epsilon\xi)|\leq C(1+|\xi|)^{-|\alpha|}.$

for any $\epsilon\in(0,1)$ . Here the constant $C>0$ is independent of $\epsilon$ . This estimate and
the assumption $p_{m_{j}}\in S^{m_{j}}$ imply that we have

$|\partial_{\xi}^{\alpha}(\varphi(\epsilon_{j}\xi)p_{\pi i_{j}}(\xi))|\leq C(1+|\xi|)^{m_{j}-|\alpha|}.$

Since $m_{j}>m_{j-1}$ and $\epsilon|\xi|\geq 1/2$ , we get

$|\partial_{\xi}^{\alpha}(\varphi(\epsilon_{j}\xi)p_{m_{j}}(\xi))|\leq C\epsilon^{m_{j^{-m}j-1}}(1+|\xi|)^{m_{j-1}-|\alpha|}.$

Thus, choosing $Ce^{m_{j}-m_{j-1}}\leq 2^{-j}$ , we obtain (5.2.4).
Taking

$p(\xi)=\sum_{j=0}^{\infty}(1-\varphi(\epsilon_{j}\xi))p_{m_{j}}(\xi)$ ,

we see that $p(\xi)$ is a well-defined smooth function.
Further, we have

$p-\sum_{j=0}^{r-1}p_{jj}=-\sum_{j=0}^{r-1}(1-\varphi(\epsilon_{j}\xi))p_{m}+R_{r}(\xi)$ ,

where the remainder

$R_{r}(\xi)=\sum_{j=r}^{\infty}\varphi(\epsilon_{j}\xi)p_{m}j(\xi)$

satisfies
$|\partial_{\xi}^{\alpha}R_{r}(\xi)|\leq 2^{-r}(1+|\xi|)^{m_{r-1}-|\alpha|}.$

Hence,

$p-\sum_{j=0}^{r-1}p_{m}j\in S^{m}j-1.$

This completes the proof of the Lemma.
Further, if $P_{m}$ and $Q_{s}$ are two pseudodifferential operators of orders $m$ and $s$

with symbols $p(x,\xi)$ and $q(x, \xi)$ respectively, then their product $P_{m}Q_{s}$ is a pseu-
dodifferential operator of order $m+s$ with symbol (modulo symbols in $S^{-\infty}$ )

(5.2.5) $\sum_{\alpha}(-i)^{|\alpha|}\partial_{\xi}^{\alpha}p(x,\xi)\partial_{x}^{\alpha}q(x,\xi)/\alpha!$

Given any pseudodifferential operator of order $m$ , we can study its kemel $k(x,y)$

defined by

$P(f)(x)=lk(x, y)f(y)dy.$
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Fomally, the kemel is the following oscillatory integral

$k(x,y)=\int_{R^{n}}e^{i(x-y)\xi}p(x,\xi)d\xi.$

Lemma 5.2.3 If $p\in S^{m},m>-n$ , then for any integer $M\geq 1$ we have

$|k(x,y)|\leq\frac{C}{|x-y|^{n+m}}(1+|x-y|)^{-M}$

for $x\neq y.$

Proof. For simplicity we shall consider only the case of symbols $p=p(\xi)$ , since
in the general case $p(x,\xi)$ we can consider $x$ as a parameter. Setting $z=x-y$ , we
shall evaluate the kernel

(5.2.6) $k(z)=\int_{R^{n}}e^{iz\xi}p(\xi)d\xi.$

Using integration by parts by means of the operators

$(1+|z|^{2})^{-1}(1-\Delta_{\xi})$ ,

we see that the decay factor $(1+|z|^{2})^{-M}$ can be obtained, so it is sufficient to show
that

(5.2.7) $|k(z)|\leq\frac{C(1+|z|)^{\iota}}{|z|^{n+m}}$

for some non-negative number $l\geq 0$ and for $z\neq 0.$

Let $\varphi(x)$ be a smooth compactly supported function, such that $\varphi(x)=1$ near
$x=0$ . Then

$k(z)=k_{1}(z)+k_{2}(z)$ ,

where
$ k_{1}(z)=\int_{R^{n}}e^{iz\xi}\varphi(|z|\xi)p(\xi)d\xi$

and

$k_{2}(z)=\int_{R^{n}}e^{iz\xi}(1-\varphi(|z|\xi))p(\xi)d\xi.$

For $k_{1}(z),$ $m\geq 0$ , we have

$|k_{1}(z)|\leq\frac{C}{|z|^{n}}+\frac{C}{|z|^{n+m}}\leq\frac{C(1+|z|^{m})}{|z|^{n+m}}.$

For $k_{1}(z),$ $m<0$ , we have

$|k_{1}(z)|\leq\frac{C}{|z|^{n+m}}.$
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For $k_{2}(z)$ we integrate by parts by means of the operator $(z/|z|^{2}, \nabla_{\xi})$ and get

$|k_{2}(z)|\leq\frac{C}{|Z|^{N}}\int_{|\xi||z|\geq C}|q(z,\xi)|d\xi,$

where

$q(z, \xi)=\sum_{|a|=N}\partial_{\xi}^{\alpha}((1-\varphi(|z||\xi|))p(\xi))$
.

Since

$|q(z,\xi)|\leq\frac{C(1+|\xi|)^{m}}{|\xi|^{N}},$

we get

$|k_{2}(z)|\leq\frac{C(1+|z|^{m})}{|z|^{n+m}}$

for $m\geq 0$ and

$|k_{2}(z)|\leq\frac{C}{|z|^{n+m}}$

for $0>m>-n$ . Thus the estimate (5.2.7) is established and this completes the
proof of the Lemma.

For the case $m<-n$ we can get (following the proof of the previous Lemma)

Lemma 5.2.4 If $p\in S^{m},$ $m<-n$ , then for any integer $M\geq 1$ one can find a
constant $C=C(M)$ so that

$|k(x,y)|\leq C(1+|x-y|)^{-M}$

for $x\neq y.$

Applying the Young inequality (2.4.15), combined with the estimate from the
previous Lemma we get

(5.2.8) $\Vert P(f)\Vert_{L^{p}(\mathbb{R}^{n})}\leq C\Vert f\Vert_{L^{p}(\mathbb{R}^{n})}$

for any pseudodifferential operator $P$ of order $<-n.$

In general, the above estimate is tme for any pseudodifferential operator of
order $0.(see$ Theorem 18.1.11 in [22] for the case $p=2$ and Chapter XI in [60] for
example). More precisely, it is possible to give a more precise expression of the
constant $C$ in the estimate (5.2.8). Namely, we have (see Chapter XI in [60])

(5.2.9) $ C=C_{0}I\alpha|\leq n+1,|\beta|\leq n+1\max$
$\sup_{x\in R^{n},\xi\in R^{n}-\{0\}}$

$<\xi>^{-|\beta|}|\partial_{x}^{\alpha}\partial_{\xi}^{\beta}p(x, \xi)|,$

where $C_{0}$ is universal constant, depending on the space dimension $n$ and on $p.$

This constant is independent of the symbol $p.$
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From this estimate and the definition of the Sobolev space $H_{p}^{s}$ it follows

(5.2.10) $\Vert P_{m}(f)\Vert_{Lp(R)^{r}}\leq C\Vert f\Vert_{H_{p}^{m}(R^{n})}$

for any pseudodifferential operator $P_{m}$ of order $m.$

It is easy to obtain the above estimate for the case of convolution type operator

$P(f)(x)=\int_{R^{n}}e^{-ix\xi}p(\xi)\hat{f}(\xi)d\xi.$

In fact, applying Lemma 5.2.3, we easily see the assumptions of Stein’s theorem

3.3.1 are satisfied, so $P$ is a bounded operator in $L^{p}.$

Here below we shall use a slightly different class of symbols $S^{m,k}$ . This class
is used in the work of Cordes [9] and it consists of smooth functions defined in
$R^{n}\times R^{n}$ , so that

$|\partial_{x}^{\alpha}\partial_{\xi}^{\beta}p(x,\xi)|\leq C(1+|\xi|)^{m-|\beta|}(1+|x|)^{k-|\alpha|}.$

We have the following simple properties of these classes. We have the inclusion

$S^{m,k}\subset S^{m},$

if $k\leq 0$ . Moreover, if $p(x, \xi)\in S^{m,k}$ , then for any $\alpha,\beta$ we have

$\partial_{x}^{\alpha}\partial_{\xi}^{\beta}p(x,\xi)\in S^{m-|\beta|,k-|\alpha|}.$

Further if $p_{j}\in S^{m_{j},k_{j}},j=1,2$ , then

$p_{1}p_{2}\in S^{m_{1}+m_{2},k_{1}+k_{2}}.$

Set
$S^{-\infty,-\infty}=\bigcap_{m},{}_{k}S^{m,k}.$

The asymptotic expansions in the classes of symbols $S^{m,k}$ can be defined as
foUows. Let $P\in S^{m,k}$ . Given my decreasing sequences $m_{j},$ $k_{j},j=0,1,2,$ $.$ . of real
numbers with $m_{0}=m,$ $k_{0}=k$ and

$ m_{j}\rightarrow-\infty, k_{j}\rightarrow-\infty$

and any sequence $P_{j}\in S^{m,k}jj$ of symbols, the asymptotic expansion

(5.2.11) $P\sim\sum_{j=0}^{\infty}P_{j}$

means that there exists (eventually another) decreasing sequences $\mu_{j},$ $\nu_{j}$ of real
numbers with

$\mu j\rightarrow-\infty, \nu_{j}\rightarrow-\infty.$
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such that for any integer $k\geq 1$ we have

(5.2.12) $P-\sum_{j=0}^{k-1}P_{j}\in S^{\mu_{k},\nu_{k}}.$

As above if we have two asymptotic expansions

$p\sim\sum_{j=0}^{\infty}p_{j}$

and

$q\sim\sum_{j=0}^{\infty}p_{j},$

then $p-q\in S^{-\infty,-\infty}.$

Moreover, we have the following.

Lemma 5.2.5 Suppose $p_{j}\in S^{m_{j},k_{j}}$ , where $m_{j},$ $k_{j},j=0,1,2,$ $\ldots$ aoe a decreasing
sequences or real numbers, tending to $-\infty$ . Then there eststs a symbol $p\in S^{m_{0},k_{O}},$

so that

$p\sim\sum_{j=0}^{\infty}p_{j}.$

Proof. It is sufficient to take

$p(x,\xi)=\sum_{j=0}^{\infty}(1-\varphi(\delta_{j}x))(1-\varphi(\epsilon_{j}\xi))p_{j}(x, \xi)$ ,

where $\delta_{j},$
$\epsilon_{j}$ are suitable decreasing sequences tending to $0$ . To choose them, we can

use the argument of the proof of Lemma 5.2.2.
This completes the proof.
Given any pseudodifferential operator $P$, we shall find the symbol of the adjoint

operator $P^{*}$ defined by

$(Pf,g)_{L^{2}(R^{n})}=(f, P^{*}g)_{L^{2}(R^{n})}.$

Taking two smooth compactly supported functions $f,g$ , we get

$(Pf,g)_{L^{2}}=\int f(y)\overline{P^{*}(g)(y)}dy,$

where

$P^{*}(g)(y)=lle^{i(y-x)\xi}\overline{p(x,\xi)}g(x)dxd\xi.$
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Hence, the adjoint operator is defined by

$P^{*}(g)(x)=lle^{i(x-y)\xi}\overline{p(y,\xi)}g(y)dyd\xi.$

To show that $P^{*}$ is also a pseudodifferential operator, it is necessary to show that
modulo operators with symbols in $S^{-\infty,-\infty}$ we have

$P^{*}(g)(x)=lle^{ix\eta}q(x,\xi)g(y)dyd\xi.$

In fact, using the representation

$g(y)=cle^{1y\eta}\hat{g}(\eta)d\eta,$

we see that $q(x,\xi)$ is given (formally!) by the oscillatory integral

$q(x,\eta)=lle^{i(x-y)(\xi-\eta)}\overline{p(y,\xi)}dyd\xi.$

Setting $x-y=-z,$ $\xi-\eta=\zeta$ , we get

$q(x,\eta)=l\int e^{-iz\zeta}\overline{p(x+z,\eta+\zeta)}dzd\zeta.$

Applying Lemma 5.1.2 and Lemma 5.1.3, we see it is sufficient to study the
oscillatory integral

$\tilde{q}(x,\eta)=$

$l\int e^{-iz\zeta}\overline{p(x+z,\eta+\zeta)}\varphi(z/(1+|x|))\varphi(\zeta\prime(1+|\eta))dzd\zeta.$

Here $\varphi(x)$ is a smooth compactly supported function such that $\varphi(x)=1$ near
$x=0.$

Indeed, $\tilde{q}$ is a well–defined smooth function. Setting

$R_{1}=1+\}x| R_{2}=1+|\eta|,$

we have

$R_{1}^{-n}R_{2}^{-n}\tilde{q}(x,\eta)=$

$\int\int e^{-iR_{1}R_{2}z\zeta}\overline{p(x+R_{1}z,\eta+R_{2}\zeta)}\varphi(z)\varphi(\zeta))dzd\zeta.$

Applying stationary phase method (see (5.1.13)), we get

$q(x,\eta)\sim\sum_{k=0}^{\infty}\frac{(\partial_{x},D_{\eta})^{k}}{k!}\overline{p(x,\eta)}.$



PSEUDODIFFERENTIAL OPERATORS 73

Once the asymptotic expansion of the adjoint operator $is$ obtained, one can use
the approach from [22] and obtain the results for the product of two pseudodifferen-
tial operators, $L^{p}$ -boundedness as well as to constmct parametrix for $-formly$

elliptic operators. We shall avoid a repetition of these standard steps and shall
state only the needed results.

If $p_{1},p_{2}$ are the symbols of the operators $P_{1},$ $P_{2}$ such that

$p_{j}\in S^{m_{j},k_{\dot{f}}} j=1,2,$

then the product $P_{1}P_{2}$ of these pseudodiffrerential operators has a symbol in
$S^{m_{1}+m_{2},k_{1}+k_{2}}$ and this symbol has an asymptotic expansion

$\sum_{k=0}^{\infty}\frac{(\partial_{y},D_{\eta})^{k}}{k!}(p_{1}(x, \eta)p_{2}(y, \xi))|_{\ulcorner-x,\eta=\xi}.$

If $P$ is a pseudodifferential operator with symbol in $S^{0,0}$ , then for $ 1<p<\infty$

we have
$\Vert Pf\Vert_{Lp(R^{n})}\leq C\Vert f\Vert_{Lp(R^{n})}.$

This estimate follows from the inclusion $S^{0,0}\subset S^{0}$ and the corresponding standard
$L^{p}$ estimates for pseudodifferential operators with symbols in $S^{0}.$

Given asymptotic expansion of the symbol $p\in S^{m,k}$

$p\sim\sum_{j=0}^{\infty}p_{j},$

with $p_{j}\in S^{m-j,k-j}$ , we shall call $p0$ a principal symbol of $p.$

Assuming the principle symbol is uniformly elliptic, i.e. there exists a constant
$\mu>0$ , so that

$|p_{0}(x,\xi)|\geq\mu(1+|\xi|)^{m}(1+|x|)^{k},$

we can construct a parametrix for the corresponding pseudodifferential operator $P.$

In this way we find a pseudodifferential operator $Q\in S^{-m,-k}$ so that $PQ-I$ and
$QP-I$ are pseudodifferential operators with symbois in $S^{-\infty,-\infty}.$

Our next step is one variant of G\"arding’s inequality for pseudodifferential op-
erators.

Theorem 5.2.1 If $P$ is a pseudodifferential opemtor with symbol $p\in S^{0,0}$ and if
the principle symbol $p_{0}$ satisfies $p_{0}(x,\xi)\geq\mu>0$ for any $x,$ $\xi\in R^{n}$ , then

$(Pu, u)_{L^{2}(R^{n})}\geq-C\Vert<x>^{-N}(1-\Delta)^{-N}u\Vert_{L^{2}}^{2}$

for any integer $N\geq 1.$
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Proof. The symbol $q(x, \xi)=\sqrt{p(x,\xi)}$ belongs to $S^{0,0}$ . This fact shows that one
can find a pseudodifferential operator $Qo$ , so that $Q_{0}^{*}Q_{0}-P$ is a pseudodifferential
operator with symbol in $S^{-1,-1}$ . Using the fact that $Q_{0}$ is uniformly elliptic we can
find a pseudodifferential operator $Q_{1}$ with symbol in $S^{-1,-1}$ , so that

$(Q_{0}^{*}+Qi)(Q_{0}+Q_{1})-P$

has a symbol in $S^{-2,-2}$ . Continuing this prooedure, we can find $Q$ so that

$Q^{*}Q-P=R$

is a pseudodifferential operator with symbol in $S^{-\infty,-\infty}$ . For any such $R$ we have
the estimate

$\Vert Ru\Vert_{L^{2}}\leq C\Vert<x>^{-N}(1-\Delta)^{-N}u\Vert_{L^{2}}.$

This completes the proof.
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