Singular Loci of Grassmann–Hibi Toric Varieties

J. BROWN & V. LAKSHMIBAI

Introduction

Let *K* denote the base field, which we assume to be algebraically closed and of arbitrary characteristic. Given a distributive lattice \mathcal{L} , let $X(\mathcal{L})$ denote the affine variety in $\mathbb{A}^{\#\mathcal{L}}$ whose vanishing ideal is generated by the binomials $X_{\tau}X_{\varphi} - X_{\tau \lor \varphi}X_{\tau \land \varphi}$ in the polynomial algebra $K[X_{\alpha}, \alpha \in \mathcal{L}]$ (here, $\tau \lor \varphi$ (resp. $\tau \land \varphi$) denotes the *join*—the smallest element of \mathcal{L} greater than both τ and φ (resp. the *meet*—the largest element of \mathcal{L} smaller than both τ and φ)). These varieties were extensively studied by Hibi in [10], where it is proved that $X(\mathcal{L})$ is a normal variety. On the other hand, Eisenbud and Sturmfels [6] showed that a binomial prime ideal is toric (here, "toric ideal" is in the sense of [17]). Thus one obtains that $X(\mathcal{L})$ is a normal toric variety. We shall refer to such an $X(\mathcal{L})$ as a *Hibi toric variety*.

For \mathcal{L} the Bruhat poset of Schubert varieties in a minuscule G/P, it is shown in [8] that $X(\mathcal{L})$ flatly deforms to $\widehat{G/P}$ (the cone over G/P); in other words, there exists a flat family over \mathbb{A}^1 with $\widehat{G/P}$ as the generic fiber and $X(\mathcal{L})$ as the special fiber. More generally, for a Schubert variety X(w) in a minuscule G/P, it is shown in [8] that $X(\mathcal{L}_w)$ flatly deforms to $\widehat{X(w)}$, the cone over X(w) (here, \mathcal{L}_w is the Bruhat poset of Schubert subvarieties of X(w)). In a subsequent paper [9], the authors studied the singularities of $X(\mathcal{L})$ for \mathcal{L} the Bruhat poset of Schubert varieties in the Grassmannian; they also gave a conjecture (see [9, Sec. 11]; see also Remark 9.1 of this paper) giving a necessary and sufficient condition for a point on $X(\mathcal{L})$ to be smooth and proved the sufficiency part of the conjecture. Subsequently, the necessary part of the conjecture was proved in [2] by Batyrev and colleagues. The toric varieties $X(\mathcal{L})$ for \mathcal{L} the Bruhat poset of Schubert varieties in the Grassmannian play an important role in the area of mirror symmetry; for more details, see [1; 2]. We refer to such an $X(\mathcal{L})$ as a *Grassmann–Hibi toric variety* (or G-H toric variety).

The proof (in [9]) of the sufficiency part of the conjecture in [9] uses the Jacobian criterion for smoothness, whereas the proof (in [2]) of the necessary part of the conjecture in [9] uses certain desingularization of $X(\mathcal{L})$.

It should be remarked that neither [9] nor [2] discusses the relationship between the singularities of $X(\mathcal{L})$ and the combinatorics of the polyhedral cone associated

Received November 10, 2008. Revision received March 25, 2009.

The second author was partially supported by NSF Grant DMS-0652386 and Northeastern University RSDF 07-08.

to $X(\mathcal{L})$; the main goal of this paper is to bring out this relationship. Our first main result is a description of the singular locus of a G-H toric variety $X(\mathcal{L})$ in terms of the faces of the associated polyhedral cone; in particular, we give a proof of the conjecture of [9] using only the combinatorics of the polyhedral cone associated to the toric variety $X(\mathcal{L})$. Furthermore, we prove (Theorem 6.19) that the singular locus of $X(\mathcal{L})$ is pure and of codimension 3 in $X(\mathcal{L})$ and that the generic singularities are of cone type (more precisely, the singularity type is the same as that at the vertex of the cone over the quadric surface $x_1x_4 - x_2x_3 = 0$ in \mathbb{P}^3); we also determine the tangent cone to $X(\mathcal{L})$ at a generic singularity, which turns out to be a toric variety (by a "generic singularity" we mean a point $P \in X(\mathcal{L})$ such that the closure of the torus orbit through P is an irreducible component of Sing $X(\mathcal{L})$, the singular locus of $X(\mathcal{L})$). We further obtain (see Corollary 7.3 and Theorem 7.11) an interpretation of the multiplicities at some of the singularities as certain Catalan numbers when \mathcal{L} is the Bruhat poset of Schubert varieties in the Grassmannian of 2-planes in K^n . We also present a product formula (Theorem 7.17).

It turns out that the conjecture of [9] does not extend to a general $X(\mathcal{L})$ (see Section 9.2 for a counterexample). However, in [4] we proved the conjecture of [9] for other minuscule posets.

This paper contains more results for the Grassmann–Hibi toric varieties that cannot be deduced from the results of [4]; for example, the multiplicity formulas provided in Sections 7 and 8 of this paper are not discussed in [4]. The singularities of the Hibi toric variety were also studied by Wagner in [18], where it was shown that all Hibi toric varieties have a singular locus of codimension \geq 3. In this paper, we go into much more detail about the singularities of a G-H toric variety.

The balance of the paper is organized as follows. In Sections 1 and 2 we recall generalities on toric varieties and distributive lattices, respectively. In Section 3, we introduce the Hibi toric variety $X(\mathcal{L})$ and recall some results from [9; 14] on $X(\mathcal{L})$. In Section 4, we recall results from [14] on the polyhedral cone associated to $X(\mathcal{L})$; in Section 5, we introduce the Grassmann–Hibi toric variety. In Section 6 we prove our first main result, giving the description of Sing $X(\mathcal{L})$ in terms of faces of the cone associated to $X(\mathcal{L})$; we also present our results on the tangent cones and deduce the multiplicities at the associated points. In Section 7 we present certain product formulas for $X(\mathcal{L})$, where \mathcal{L} is the Bruhat poset of Schubert varieties in the Grassmannian of 2-planes in K^n . In Section 8, we present a formula for the multiplicity at the unique *T*-fixed point of $X(\mathcal{L})$ for \mathcal{L} the Bruhat poset of Schubert varieties in the Grassmannian of *d*-planes in K^n . In Section 9 we present a counterexample to show that the conjecture of [9] does not extend to a general $X(\mathcal{L})$; in this section, we also present two conjectures that concern extending the multiplicity formulas of Sections 7 and 8.

1. Generalities on Toric Varieties

Our main object of study is a certain affine toric variety, so in this section we recall some basic definitions on affine toric varieties. Let $T = (K^*)^m$ be an

m-dimensional torus. Let \mathbb{A}^l be the affine *l*-space (i.e., *l*-tuples of elements of the field *K*).

DEFINITION 1.1 [7; 12]. An *equivariant affine embedding* of a torus T is an affine variety $X \subseteq \mathbb{A}^l$ containing T as an open subset and equipped with a T-action $T \times X \to X$ extending the action $T \times T \to T$ given by multiplication. If in addition X is normal, then X is called an *affine toric variety*.

1.2. THE CONE ASSOCIATED TO A TORIC VARIETY. Let M be the character group of T, and let N be the \mathbb{Z} -dual of M. Let $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}$, and recall [7; 12] that there exists a strongly convex rational polyhedral cone $\sigma \subset N_{\mathbb{R}}$ such that

$$K[X] = K[S_{\sigma}],$$

where S_{σ} is the subsemigroup $\sigma^{\vee} \cap M$ for σ^{\vee} the cone in $M_{\mathbb{R}}$ dual to σ . Note that S_{σ} is a finitely generated subsemigroup in M.

1.3. ORBIT DECOMPOSITION IN AFFINE TORIC VARIETIES. We shall denote X also by X_{σ} . We may suppose, without loss of generality, that σ spans $N_{\mathbb{R}}$ so that the dimension of σ equals dim $N_{\mathbb{R}} = \dim T$. (By "dimension of σ " we mean the vector space dimension of the span of σ .)

DEFINITION 1.4. A *face* τ of σ is a convex polyhedral subcone of σ of the form $\tau = \sigma \cap u^{\perp}$ for some $u \in \sigma^{\vee}$, and it is denoted $\tau < \sigma$. Note that σ itself is considered a face.

We have that X_{τ} is a principal open subset of X_{σ} ; namely,

$$X_{\tau} = (X_{\sigma})_u.$$

Each face τ determines a (closed) point P_{τ} in X_{σ} : the point corresponding to the maximal ideal in $K[X] = K[S_{\sigma}]$ given by the kernel of $e_{\tau} : K[S_{\sigma}] \to K$, where for $u \in S_{\sigma}$ we have

$$e_{\tau}(u) = \begin{cases} 1 & \text{if } u \in \tau^{\perp}, \\ 0 & \text{otherwise.} \end{cases}$$

REMARK 1.5. As a point in \mathbb{A}^l , P_{τ} may be identified with the *l*-tuple with 1 at the *i*th place if χ_i is in τ^{\perp} and with 0 otherwise. (Here, χ_i denotes the weight of the *T*-weight vector y_i —the class of x_i in $K[X_{\sigma}]$.)

1.6. ORBIT DECOMPOSITION. Let O_{τ} denote the *T*-orbit in X_{σ} through P_{τ} . We have the following orbit decomposition in X_{σ} :

$$X_{\sigma} = \bigcup_{\theta \le \sigma} O_{\theta}, \quad \overline{O_{\tau}} = \bigcup_{\theta \ge \tau} O_{\theta}, \quad \dim \tau + \dim O_{\tau} = \dim X_{\sigma}.$$

See [7; 12] for details.

Thus $\tau \mapsto \overline{O_{\tau}}$ defines an order-reversing bijection between {faces of σ } and {*T*-orbit closures in X_{σ} }.

LEMMA 1.7 [7, Sec. 3.1]. For a face $\tau < \sigma$, $K[\overline{O_{\tau}}] = K[S_{\sigma} \cap \tau^{\perp}]$.

2. Finite Distributive Lattices

We shall study a special class of toric varieties—namely, the toric varieties associated to distributive lattices. We shall first collect some definitions on finite partially ordered sets. A partially ordered set is also called a *poset*.

DEFINITION 2.1. A finite poset *P* is called *bounded* if it has both a unique maximal and a unique minimal element, denoted $\hat{1}$ and $\hat{0}$ respectively. A totally ordered subset *C* of *P* is called a *chain*, and the number #C - 1 is called the *length* of the chain. A bounded poset *P* is said to be *graded* (or *ranked*) if all maximal chains have the same length. If *P* is graded, then the length of a maximal chain in *P* is called the *rank* of *P*.

DEFINITION 2.2. Let *P* be a graded poset. For $\lambda, \mu \in P$ with $\lambda \ge \mu$, the graded poset $\{\tau \in P \mid \mu \le \tau \le \lambda\}$ is called the *interval from* μ *to* λ and is denoted by $[\mu, \lambda]$.

DEFINITION 2.3. Let *P* be a graded poset, and let $\lambda, \mu \in P$ with $\lambda \geq \mu$. The ordered pair (λ, μ) is called a *cover* (and we also say that λ *covers* μ) if $[\mu, \lambda] = {\mu, \lambda}$.

DEFINITION 2.4. A *lattice* is a partially ordered set (\mathcal{L}, \leq) such that, for every pair of elements $x, y \in \mathcal{L}$, there exist elements $x \lor y$ and $x \land y$, called (respectively) the *join* and the *meet* of x and y, defined by:

 $x \lor y \ge x$, $x \lor y \ge y$, and if $z \ge x$ and $z \ge y$ then $z \ge x \lor y$; $x \land y \le x$, $x \land y \le y$, and if $z \le x$ and $z \le y$ then $z \le x \land y$.

It is easy to check that the operations \lor and \land are commutative and associative.

DEFINITION 2.5. Given a lattice \mathcal{L} , a subset $\mathcal{L}' \subset \mathcal{L}$ is called a *sublattice* of \mathcal{L} if $x, y \in \mathcal{L}'$ implies that $x \land y \in \mathcal{L}'$ and $x \lor y \in \mathcal{L}'$.

DEFINITION 2.6. A lattice is called *distributive* if the following identities hold:

(i) $x \land (y \lor z) = (x \land y) \lor (x \land z);$ (ii) $x \lor (y \land z) = (x \lor y) \land (x \lor z).$

DEFINITION 2.7. An element z of a lattice \mathcal{L} is called *join-irreducible* (resp. *meet-irreducible*) if $z = x \lor y$ (resp. $z = x \land y$) implies either z = x or z = y. The set of join-irreducible elements of \mathcal{L} is denoted by $J(\mathcal{L})$.

The following lemma is easily checked.

LEMMA 2.8. Let \mathcal{L} be a finite distributive lattice. Then

 $J(\mathcal{L}) = \{\tau \in \mathcal{L} \mid \text{there exists at most one cover of the form } (\tau, \lambda)\}.$

DEFINITION 2.9. A subset *I* of a poset *P* is called an *ideal* of *P* if, for all $x, y \in P$,

 $x \in I \text{ and } y \leq x \implies y \in I.$

THEOREM 2.10 [3, Chap. III, Sec. 3]. Let \mathcal{L} be a finite distributive lattice with minimal element $\hat{0}$, and let $P = J(\mathcal{L}) \setminus {\hat{0}}$ with the induced partial order of \mathcal{L} . Then \mathcal{L} is isomorphic to the lattice of ideals of P by means of the lattice isomorphism

$$\alpha \mapsto I_{\alpha} = \{ \tau \in P \mid \tau \leq \alpha \}, \quad \alpha \in \mathcal{L}.$$

For $\alpha \in \mathcal{L}$, let I_{α} denote the ideal corresponding to α under the isomorphism in Theorem 2.10.

REMARK 2.11. As a consequence of Theorem 2.10, we have that every finite distributive lattice is graded.

3. The Variety $X(\mathcal{L})$

Throughout the following sections, let \mathcal{L} be a finite distributive lattice.

Consider the polynomial algebra $K[X_{\alpha}, \alpha \in \mathcal{L}]$, and let $I(\mathcal{L})$ be the ideal generated by $\{X_{\alpha}X_{\beta} - X_{\alpha\vee\beta}X_{\alpha\wedge\beta}, \alpha, \beta \in \mathcal{L}\}$. Then one knows [10] that $K[X_{\alpha}, \alpha \in \mathcal{L}]/I(\mathcal{L})$ is a normal domain; in particular, we have that $I(\mathcal{L})$ is a prime ideal. Let $X(\mathcal{L})$ be the affine variety of the zeroes in K^{l} of $I(\mathcal{L})$ (here $l = #\mathcal{L}$). Then $X(\mathcal{L})$ is an affine normal variety defined by binomials; on the other hand, by [6], a binomial prime ideal is a toric ideal (here, "toric ideal" is in the sense of [17]). Hence $X(\mathcal{L})$ is a toric variety for the action by a suitable torus T.

In the sequel, we shall denote $R(\mathcal{L}) = K[X_{\alpha}, \alpha \in \mathcal{L}]/I(\mathcal{L})$. Also, for $\alpha \in \mathcal{L}$, we shall denote the image of X_{α} in $R(\mathcal{L})$ by x_{α} .

DEFINITION 3.1. The variety $X(\mathcal{L})$ will be called a *Hibi toric variety*.

REMARK 3.2. An extensive study of $X(\mathcal{L})$ appeared first in [10].

We have that dim $X(\mathcal{L}) = \dim T$.

THEOREM 3.3 [14]. The dimension of $X(\mathcal{L})$ is equal to $\#J(\mathcal{L})$, which is also equal to the cardinality of the set of elements in a maximal chain of \mathcal{L} .

DEFINITION 3.4. For a finite distributive lattice \mathcal{L} , we call the cardinality of $J(\mathcal{L})$ the *dimension* of \mathcal{L} , denoted dim \mathcal{L} . If \mathcal{L}' is a sublattice of \mathcal{L} , then the *codimension* of \mathcal{L}' in \mathcal{L} is defined as dim $\mathcal{L} - \dim \mathcal{L}'$.

DEFINITION 3.5 [18]. A sublattice \mathcal{L}' of \mathcal{L} is called an *embedded sublattice of* \mathcal{L} if

$$au, \phi \in \mathcal{L}, \ au \lor \phi \in \mathcal{L}', \ au \land \phi \in \mathcal{L}' \implies au, \phi \in \mathcal{L}'.$$

Given a sublattice \mathcal{L}' of \mathcal{L} , consider the variety $X(\mathcal{L}')$ and the canonical embedding $X(\mathcal{L}') \hookrightarrow \mathbb{A}^{\#\mathcal{L}'} \hookrightarrow \mathbb{A}^{\#\mathcal{L}}$.

PROPOSITION 3.6 [9, Prop. 5.16]. $X(\mathcal{L}')$ is a subvariety of $X(\mathcal{L})$ if and only if \mathcal{L}' is an embedded sublattice of \mathcal{L} .

3.7. MULTIPLICITY OF $X(\mathcal{L})$ AT THE ORIGIN. Let *B* be a \mathbb{Z}_+ -graded and finitely generated *K*-algebra, $B = \bigoplus B_m$. Let $\phi_m(B)$ denote the Hilbert function,

$$\phi_m(B) = \dim_K B_m,$$

and let $P_B(x)$ denote the Hilbert polynomial of B. Recall that:

- $P_B(x) \in \mathbb{Q}[x];$
- deg $P_B(x) = \dim \operatorname{Proj} B = s$, say; and
- the leading coefficient of $P_B(x)$ is of the form $e_B/s!$.

DEFINITION 3.8. The number e_B is called the *degree* of the graded ring *B*, or the degree of Proj *B*.

THEOREM 3.9. The degree of $K[X(\mathcal{L})]$ is equal to the number of maximal chains in \mathcal{L} .

Proof. Let $I(\mathcal{L})$ be as before. We begin by putting a monomial order on $K[X_{\alpha}, \alpha \in \mathcal{L}]$. Consider the reverse partial order on \mathcal{L} and extend it to a total order, denoted \leq_{tot} , on the variables $\{X_{\alpha}, \alpha \in \mathcal{L}\}$. We now take the monomial order defined as follows. For $\alpha_1 \leq_{tot} \cdots \leq_{tot} \alpha_r$ and $\beta_1 \leq_{tot} \cdots \leq_{tot} \beta_s$, we say that $X_{\alpha_1} \cdots X_{\alpha_r} \prec X_{\beta_1} \cdots X_{\beta_s}$ if and only if either r < s or r = s and there exists a t < r such that $\alpha_1 = \beta_1, \ldots, \alpha_t = \beta_t$ with $\alpha_{t+1} <_{tot} \beta_{t+1}$. From [9] we have that $\{X_{\alpha}X_{\beta} - X_{\alpha \wedge \beta}X_{\alpha \vee \beta} \mid \alpha, \beta \in \mathcal{L}$ non-comparable} is a Gröbner basis for $I(\mathcal{L})$ for this monomial order. Hence, letting I be the ideal generated by initial terms of elements of $I(\mathcal{L})$, we have that $\{X_{\alpha}X_{\beta} \mid \alpha, \beta$ noncomparable} is a generating set for I. Let us denote $K[X(\mathcal{L})]$ by S and $K[X_{\alpha}, \alpha \in \mathcal{L}]/I$ by R. By [5, Sec. 15.8] we have a flat degeneration of Spec(S) to Spec(R). Hence, the degree of S equals the degree of R.

Let $J = \{j_1, \ldots, j_s\}$ be a subset of \mathcal{L} such that $X_{j_1} \cdots X_{j_s} \notin I$. Note that J is thus a chain of length s - 1 in \mathcal{L} . We have

$$R = K \oplus \bigoplus_{J = \{j_1, \dots, j_s\}} (X_{j_1} \cdots X_{j_s}) K[X_{j_1}, \dots, X_{j_s}],$$

where J runs over all chains of any length in \mathcal{L} . Therefore,

$$\phi_m(R) = \dim R_m = \sum_{J=\{j_1,\dots,j_s\}} \binom{s+(m-s)-1}{m-s} = \sum_{J=\{j_1,\dots,j_s\}} \binom{m-1}{s-1}.$$

Note that for *m* sufficiently large, the leading term appears in the summation only for *J* of maximal cardinality *s*. The result follows from this. \Box

Next we recall mult_{*P*} *X*, the multiplicity of an algebraic variety at a point $P \in X$. Let $\mathcal{O}_{X,P} = (A, \mathfrak{m})$. Let C_P be the tangent cone at *P*; that is, $C_P = \text{Spec } A(P)$, where $A(P) = \text{gr}(A, \mathfrak{m})$. Then the multiplicity of *X* at *P* is defined to be

$$\operatorname{mult}_P X = \operatorname{deg}\operatorname{Proj} A(P) \ (= \operatorname{deg} A(P)).$$

Thus, using the notation from Section 3.7, we obtain $e_B = \text{mult}_0 \text{Spec}(B)$, the multiplicity of Spec(B) at the origin.

The following result is a direct consequence of Theorem 3.9.

THEOREM 3.10. The multiplicity of $X(\mathcal{L})$ at the origin is equal to the number of maximal chains in \mathcal{L} .

4. Cone and Dual Cone of $X(\mathcal{L})$

Let $M = \mathbb{Z}^d$ for $d = #J(\mathcal{L})$, with basis $\{f_z, z \in J(\mathcal{L})\}$. Let N be the \mathbb{Z} -dual of M, with basis $\{e_z, z \in J(\mathcal{L})\}$ dual to $\{f_z, z \in J(\mathcal{L})\}$. We denote the torus acting on the toric variety $X(\mathcal{L})$ by T, and we identify M with the character group X(T). Thus, for $t = (t_y)_{y \in J(\mathcal{L})} \in T$ (under the identification of T with $(K^*)^d$), we let $f_z(t) = t_z$ for $z \in J(\mathcal{L})$.

Denote by \mathcal{I} the lattice of ideals of $J(\mathcal{L})$. For $A \in \mathcal{I}$, set

$$f_A := \sum_{z \in A} f_z.$$

Let $V = N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}$. Let $\sigma \subset V$ be the cone such that $X(\mathcal{L}) = X_{\sigma}$, and let $\sigma^{\vee} \subset V^*$ be the cone that is dual to σ . Let $S_{\sigma} = \sigma^{\vee} \cap M$, so that $K[X(\mathcal{L})]$ equals the semigroup algebra $K[S_{\sigma}]$.

From [10; 14, Prop. 4.6] we have the following statement.

PROPOSITION 4.1. The semigroup S_{σ} is generated by f_A for $A \in \mathcal{I}$.

Let $M(J(\mathcal{L}))$ be the set of maximal elements in the poset $J(\mathcal{L})$. Let $Z(J(\mathcal{L}))$ denote the set of all covers in the poset $J(\mathcal{L})$ (i.e., (z, z') with z > z' in the poset $J(\mathcal{L})$, and there is no other element $y \in J(\mathcal{L})$ such that z > y > z'). For a cover $(y, y') \in Z(J(\mathcal{L}))$, denote

$$v_{y,y'} := e_{y'} - e_y.$$

PROPOSITION 4.2 [14, Prop. 4.7]. The cone σ is generated by

$$\{e_z, z \in M(J(\mathcal{L})); v_{y,y'}, (y,y') \in Z(J(\mathcal{L}))\}.$$

4.3. ANALYSIS OF FACES OF σ . We shall concern ourselves just with the closed points in $X(\mathcal{L})$. So in the sequel, by a point in $X(\mathcal{L})$ we shall mean a closed point. Let τ be a face of σ . Let P_{τ} be the distinguished point of O_{τ} with the associated maximal ideal being the kernel of the map

$$K[S_{\sigma}] \to K, \quad u \in S_{\sigma}, \quad u \mapsto \begin{cases} 1 & \text{if } u \in \tau^{\perp}, \\ 0 & \text{otherwise.} \end{cases}$$

Then, for a point $P \in X(\mathcal{L})$ (identified with a point in \mathbb{A}^l , $l = \#\mathcal{L}$) and denoting by $P(\alpha)$ the α th coordinate of P, we have

$$P_{\tau}(\alpha) = \begin{cases} 1 & \text{if } f_{I_{\alpha}} \in \tau^{\perp}, \\ 0 & \text{otherwise.} \end{cases}$$

Now let

$$D_{\tau} = \{ \alpha \in \mathcal{L} \mid P_{\tau}(\alpha) \neq 0 \}.$$

4.4. The BIJECTION \mathcal{D} (cf. [14]). We have a bijection

 $\mathcal{D} \colon \{\text{faces of } \sigma\} \stackrel{\text{bij}}{\longleftrightarrow} \{\text{embedded sublattices of } \mathcal{L}\}, \quad \mathcal{D}(\tau) = D_{\tau}$

PROPOSITION 4.5 [14, Prop. 4.11]. Let τ be a face of σ . Then $\overline{O_{\tau}} = X(D_{\tau})$.

5. The Distributive Lattice $I_{d,n}$ and the Grassmann–Hibi Toric Variety

We now turn our focus to a particular distributive lattice-namely,

 $\mathcal{L} = I_{d,n} = \{ x = (i_1, \dots, i_d) \mid 1 \le i_1 < \dots < i_d \le n \}.$

The partial order \geq on $I_{d,n}$ is given by

 $(i_1,\ldots,i_d) \ge (j_1,\ldots,j_d) \iff i_1 \ge j_1,\ldots,i_d \ge j_d.$

For $x \in I_{d,n}$, we denote the *j*th entry in *x* by $x(j), 1 \le j \le d$.

REMARK 5.1. It is a well-known fact (see e.g. [13]) that the partially ordered set $I_{d,n}$ is isomorphic to the poset determined by the set of Schubert varieties in $G_{d,n}$, the Grassmannian of *d*-dimensional subspaces in an *n*-dimensional space, where the Schubert varieties are partially ordered by inclusion. From [15, Sec. 3] we get that $I_{d,n}$ is a distributive lattice.

REMARK 5.2. Some readers may prefer to work with the lattice of Young diagrams that fit into a rectangle with *d* rows and n - d columns, which we will denote by $\Lambda_{d,n-d}$. In this case one may go from $I_{d,n}$ to $\Lambda_{d,n-d}$ using the following bijection:

$$(i_1, \dots, i_d)$$

$$\mapsto \lambda = (\lambda_1, \dots, \lambda_d), \ \lambda_1 = i_d - d, \ \lambda_2 = i_{d-1} - (d-1), \ \dots, \ \lambda_d = i_1 - 1.$$

In the next lemma, by a *segment* we shall mean a set consisting of consecutive integers.

LEMMA 5.3 [9]. For $\mathcal{L} = I_{d,n}$, the following statements hold.

- (i) The element $\tau = (i_1, ..., i_d)$ is join-irreducible if and only if either τ is a segment (we shall call these elements Type I) or τ consists of two disjoint segments (μ, ν) , with μ starting with 1 (Type II).
- (ii) The element $\tau = (i_1, ..., i_d)$ is meet-irreducible if and only if either τ is a segment or τ consists of two disjoint segments (μ, ν) , with ν ending with n.
- (iii) The element $\tau = (i_1, ..., i_d)$ is join-irreducible and meet-irreducible if and only if either τ is a segment or τ consists of two disjoint segments (μ, ν) , with μ starting with 1 and ν ending with n.

REMARK 5.4. The join irreducible elements of $\Lambda_{d,n-d}$ are those Young diagrams that are rectangles (i.e., the nonzero rows all have the same length).

DEFINITION 5.5. We shall denote $X(I_{d,n})$ by just $X_{d,n}$ and will refer to it as a *Grassmann–Hibi toric variety*, or a G-H toric variety for short.

6. Singular Faces of the G-H Toric Variety $X_{d,n}$

Let \mathcal{L} represent the distributive lattice $I_{d,n}$. From Lemma 5.3 we have that the elements of $J(\mathcal{L})$ are of two types, Type I and Type II.

Since the generators of the cone σ are determined by $J(\mathcal{L})$ (Proposition 4.2), we will often consider $J(\mathcal{L})$ as a partially ordered set with the partial order induced from \mathcal{L} . Notice that $J(\mathcal{L})$ has one maximal element, which is also the maximal element of \mathcal{L} : $\hat{1} = (n - d + 1, ..., n)$; and $J(\mathcal{L})$ has one minimal element, which is also the minimal element of \mathcal{L} : $\hat{0} = (1, ..., d)$. For each element x of $J(\mathcal{L})$, there are at most two covers of the form (y, x) in $J(\mathcal{L})$.

For example, if $x = (1, ..., k, l + 1, ..., l + d - k) \in J(\mathcal{L})$ then we have y = (1, ..., k, l + 2, ..., l + d - k + 1) and y' = (1, ..., k - 1, l, ..., l + d - k), forming the two covers of x in $J(\mathcal{L})$ (if k = 1, then y' = (l, ..., l + d - 1)). If l = n - d + k or if x is of Type I, then x has only one cover.

The following lemma is a corollary of [15, Prop. 3.2].

LEMMA 6.1. The partially ordered set $J(I_{d,n})$ is a distributive lattice.

REMARK 6.2. As a lattice, $J(\mathcal{L})$ looks like a tessellation of diamonds in the shape of a rectangle with sides of length d - 1 and n - d - 1. For example, let d = 3 and n = 7. Then $J(\mathcal{L})$ is the following lattice.

As in Section 4, let σ be the cone associated to $X(\mathcal{L})$.

DEFINITION 6.3. For $1 \le i \le n - d - 1$ and $1 \le j \le d - 1$, let

$$\mu_{ij} = (1, \dots, j, i + j + 1, \dots, i + d),$$

$$\lambda_{ii} = (i + 1, \dots, i + j, n + 1 + j - d, \dots, n)$$

Define

$$\mathcal{L}_{ij} = \mathcal{L} \setminus [\mu_{ij}, \lambda_{ij}].$$

REMARK 6.4. (i) By [9, Lemma 11.5] we have that \mathcal{L}_{ij} is an embedded sublattice.

(ii) For $\alpha, \beta \in J(\mathcal{L})$ noncomparable, $\alpha \wedge \beta = \mu_{ij}$ for some $1 \le i \le n - d - 1$ and $1 \le j \le d - 1$; thus every diamond in $J(\mathcal{L})$ has a μ_{ij} as its minimal element.

DEFINITION 6.5. Let σ_{ij} be the face of σ for which $D_{\sigma_{ii}} = \mathcal{L}_{ij}$.

DEFINITION 6.6. A face τ of σ is a *singular* (resp. *nonsingular*) face if P_{τ} is a singular (resp. nonsingular) point of X_{σ} .

Our first result is that σ_{ij} is a singular face. To prove this, we start by determining a set of generators for σ_{ij} .

DEFINITION 6.7. Let us denote by $W(\sigma)$ (or simply W) the set of generators for σ , as described in Proposition 4.2. For a face τ of σ , define

$$W(\tau) = \{ v \in W \mid f_{I_{\alpha}}(v) = 0 \ \forall \alpha \in D_{\tau} \}.$$

(Here, D_{τ} is as in Section 4.4.) Then $W(\tau)$ gives a set of generators for τ .

6.8. DETERMINATION OF $W(\sigma_{ij})$. It will aid our proof below to observe a few facts about the generators of σ_{ij} . First of all, $e_{\hat{1}}$ is not a generator for any σ_{ij} , since $\hat{1} \in \mathcal{L}_{ij}$ for all $1 \le i \le n - d - 1$ and $1 \le j \le d - 1$ and since $e_{\hat{1}}$ is nonzero on $f_{I_{\hat{1}}}$. Similarly, for the cover $(y', \hat{0})$ where $y' = (1, \dots, d - 1, d + 1)$, $e_{\hat{0}} - e_{y'}$ is not a generator for any σ_{ij} .

Second, for any cover (y', y) in $J(\mathcal{L})$, if $y \in \mathcal{L}_{ij}$ then $e_y - e_{y'}$ is not a generator of σ_{ij} because $f_{I_y}(e_y - e_{y'}) \neq 0$. Thus, in determining elements of $W(\sigma_{ij})$, we need only be concerned with elements $e_y - e_{y'}$ such that $y \in J(\mathcal{L}) \cap [\mu_{ij}, \lambda_{ij}]$. The elements of $J(\mathcal{L}) \cap [\mu_{ij}, \lambda_{ij}]$ are

$$y_t = (1, \dots, j, i+j+1+t, \dots, i+d+t) \quad \text{for } 0 \le t \le n-d-i,$$

$$z_t = (1, \dots, j-t, i+j+1-t, \dots, i+d) \quad \text{for } 0 \le t \le j.$$

Note that $y_0 = z_0 = \mu_{ij}$ and $z_j = (i + 1, ..., i + d)$. In the next theorem we prove that $W(\sigma_{ij})$ consists of precisely four elements, forming a diamond in the distributive lattice $J(\mathcal{L})$ with μ_{ij} as the smallest element.

THEOREM 6.9. $W(\sigma_{ij}) = \{e_{\mu_{ij}} - e_A, e_{\mu_{ij}} - e_B, e_A - e_C, e_B - e_C\}$, where A, B, and C are defined in the proof.

Proof. We divide the proof into two cases, j = 1 and j > 1.

Case 1. Let j = 1 and $1 \le i \le n - d - 1$. Here we have

 $\mu_{ij} = (1, i+2, \dots, i+d)$ and $\lambda_{ij} = (i+1, n-d+2, \dots, n).$

252

As discussed previously, we find that μ_{ij} is covered in $J(\mathcal{L})$ by $A = (i+1, \dots, i+d)$ and $B = (1, i+3, \dots, i+d+1)$. We have that both A and B are in the interval $[\mu_{ij}, \lambda_{ij}]$. Let C be the join of A and B in the lattice $J(\mathcal{L})$:

$$C = (i + 2, \dots, i + d + 1).$$

Note that (C, A) and (C, B) are covers in $J(\mathcal{L})$.

We first observe that,

for
$$x = (x_1, \dots, x_d) \in \mathcal{L}_{ij}$$
, if $x \ge \mu_{ij}$ then $x \ge C$. (6.1)

(This follows because $x \ge \mu_{ij}$ and $x \in \mathcal{L}_{ij}$ imply that $x \not\le \lambda_{ij}$ and hence $x_1 \ge i+2$.)

Claim (i): $e_{\mu_{ij}} - e_A$ and $e_{\mu_{ij}} - e_B$ are both in $W(\sigma_{ij})$. We shall prove the claim for $e_{\mu_{ij}} - e_A$ (the proof for $e_{\mu_{ij}-e_B}$ is similar). To prove that $e_{\mu_{ij}} - e_A$ is in $W(\sigma_{ij})$, we need to show that there does not exist an $x = (x_1, \dots, x_d) \in \mathcal{L}_{ij}$ such that $x \ge \mu_{ij}$ and $x \not\ge A$. But this follows from (6.1) (which implies that, for $x = (x_1, \dots, x_d) \in \mathcal{L}_{ij}$, if $x \ge \mu_{ij}$ then $x \ge A$).

Claim (ii): $e_A - e_C$ and $e_B - e_C$ are in $W(\sigma_{ij})$. The proof is similar to that of Claim (i). Again we show the result for $e_A - e_C$ (the proof for $e_B - e_C$ is similar). We must demonstrate that there does not exist an $x = (x_1, ..., x_d) \in \mathcal{L}_{ij}$ such that $x \ge A$ but $x \ne C$. Again this follows from (6.1) (note that $x \ge A$ implies in particular that $x \ge \mu_{ij}$).

Claim (*iii*): $W(\sigma_{ij}) = \{e_{\mu_{ij}} - e_A, e_{\mu_{ij}} - e_B, e_A - e_C, e_B - e_C\}$. In the case under consideration, since j = 1 it follows that the only elements of $J(\mathcal{L}) \cap [\mu_{ij}, \lambda_{ij}]$ are of the following forms:

$$y_t = (1, i + t + 2, \dots, i + d + t)$$
 for $0 \le t \le n - d - i$;
 $z_1 = (i + 1, \dots, i + d)$.

Let $y'_t = (i + t + 1, ..., i + d + t)$ for $1 \le t \le n - d - i$; thus we have covers of type (y'_t, y_t) for $0 \le t \le n - d - i$ and of type (y_{t+1}, y_t) for $0 \le t \le n - d - 1 - i$. Observe that $y_0 = \mu_{ij}$, $y_1 = B$, $z_1 = y'_0 = A$, and $y'_1 = C$. In Claims (i) and (ii) we have shown that the covers (y_1, y_0) , (y'_0, y_0) , (y'_1, y_1) , and (y'_1, z_1) yield elements of $W(\sigma_{ij})$. Also note that *C* is the only cover of *A*. Hence, it only remains to show that $e_{y_t} - e_{y'_t} \notin W(\sigma_{ij})$ for $2 \le t \le n - d - i$ and that $e_{y_t} - e_{y_{t+1}} \notin W(\sigma_{ij})$ for $1 \le t \le n - d - 1 - i$. For each of these covers, we shall exhibit an $x \in \mathcal{L}_{ij}$ such that f_{I_x} is nonzero on the cover under consideration.

Define $x_t = (i + t, i + t + 2, ..., i + d + t)$; then $x_t \in \mathcal{L}_{ij}$ for $2 \le t \le n - d - i$. Furthermore, $f_{I_{x_t}}$ is nonzero on $e_{y_t} - e_{y_{t+1}}$ for $2 \le t \le n - d - i - 1$ and on $e_{y_t} - e_{y'_t}$ for $2 \le t \le n - d - i$. For (y_2, y_1) , note that $C \in \mathcal{L}_{ij}$ and f_{I_c} is nonzero on $e_{y_1} - e_{y_2}$. This completes the proof of Case 1.

Case 2. Now let $2 \le j \le d - 1$ and $1 \le i \le n - d - 1$. We have

$$\mu_{ij} = (1, \dots, j, i + j + 1, \dots, i + d),$$

$$\lambda_{ij} = (i + 1, \dots, i + j, n + 1 + j - d, \dots, n)$$

As in Case 1, we look for covers of μ_{ij} in $J(\mathcal{L})$. They are A = (1, ..., j - 1, i + j, ..., i + d) and B = (1, ..., j, i + j + 2, ..., i + d + 1). Define *C* to be the join of *A* and *B* in the lattice $J(\mathcal{L})$; thus,

$$C = (1, \dots, j - 1, i + j + 1, \dots, i + d + 1).$$

Claim (iv): $\{e_{\mu_{ij}} - e_A, e_{\mu_{ij}} - e_B, e_A - e_C, e_B - e_C\}$ are in $W(\sigma_{ij})$. We first observe that,

for
$$x = (x_1, \dots, x_d) \in \mathcal{L}_{ij}$$
, if $x \ge \mu_{ij}$ then $x \ge C$. (6.2)

For suppose that $x \not\geq C$; now $x \geq \mu_{ij}$ and $x \in \mathcal{L}_{ij}$ together imply that $x \not\leq \lambda_{ij}$ and thus $x_l > i + l$ for some $1 \leq l \leq j$. Also, $x \not\geq C$; hence $x_k < i + k + 1$ for some $j \leq k \leq d$. Therefore,

$$x = (x_1, \dots, x_{l-1}, x_l > i+l, x_{l+1} > i+l+1, \dots, x_{k-1} > i+k-1,$$

$$i+k+1 > x_k > i+k, \dots).$$

Clearly, no such x_k exists and thus (6.2) follows.

By (6.2) we have that, if $x \in \mathcal{L}_{ij}$ is such that $x \ge \mu_{ij}$, then $x \ge A, B, C$. Hence Claim (iv) follows.

Claim (v): $W(\sigma_{ij}) = \{e_{\mu_{ij}} - e_A, e_{\mu_{ij}} - e_B, e_A - e_C, e_B - e_C\}$. As in Claim (iii), we will show that all other covers in $J(\mathcal{L})$ of the form $(y', y), y \in J(\mathcal{L}) \cap [\mu_{ij}, \lambda_{ij}]$, are not in $W(\sigma_{ij})$. As in Section 6.8, all of the elements of $J(\mathcal{L}) \cap [\mu_{ij}, \lambda_{ij}]$ are

$$y_t = (1, \dots, j, i+j+1+t, \dots, i+d+t) \quad \text{for } 0 \le t \le n-d-i,$$

$$z_t = (1, \dots, j-t, i+j+1-t, \dots, i+d) \quad \text{for } 0 \le t \le j$$

(note that $z_j = (i + 1, ..., i + d)$). We will examine covers of these elements; notice that $y_0 = z_0 = \mu_{ij}, z_1 = A$, and $y_1 = B$.

Let $z'_{t} = (1, ..., j - t, i + j + 2 - t, ..., i + d + 1)$ for $1 \le t \le n - d - i$, and let $z'_{j} = (i + 2, ..., i + d + 1)$. First we want to show that the covers $(z_{t+1}, z_t)_{1 \le t \le j-1}$ and $(z'_{t}, z_t)_{2 \le t \le j}$ do not yield elements in $W(\sigma_{ij})$. Observe that $(z'_{1}, z_{1}) = (C, A)$ and $e_A - e_C \in W(\sigma_{ij})$. Also, $C \in \mathcal{L}_{ij}$ and $f_{I_C}(e_{z_1} - e_{z_2})$ is nonzero; thus $e_{z_1} - e_{z_2} \notin W(\sigma_{ij})$, and we may restrict our attention to $t \ge 2$. Let

$$x_t = (1, \dots, j - t, i + j + 1 - t, n - d + j - t + 2, \dots, n) \text{ for } 2 \le t \le j - 1,$$

$$x_j = (i + 1, n - d + 2, \dots, n).$$

Now, on the interval $2 \le t \le j - 1$, we have the following facts:

- (1) $x_t \geq z_t$,
- (2) $x_t \not\geq z_{t+1}$,
- (3) $x_t \not\geq z'_t$,
- (4) $x_t \not\leq \lambda_{ii}$.

Facts (1), (3), and (4) hold for the case t = j; it is just a separate check. Hence, for $2 \le t \le j$ (resp. $2 \le t \le j - 1$) we have that $x_t \in \mathcal{L}_{ij}$ and $f_{I_{x_t}}$ is nonzero on $e_{z_t} - e_{z'_t}$ (resp. $e_{z_t} - e_{z_{t+1}}$).

Next, we must concern ourselves with covers involving y_t . Define

$$y'_t = (1, \dots, j - 1, i + j + t, \dots, i + d + t)$$
 for $1 \le t \le n - d - i$.

To complete Claim (v), we must show that the covers

$$(y_{t+1}, y_t)_{1 \le t \le n-d-i-1}$$
 and $(y'_t, y_t)_{2 \le t \le n-d-i}$

do not yield elements of $W(\sigma_{ij})$. Note that $(y'_1, y_1) = (C, B)$ and thus does yield an element of $W(\sigma_{ij})$. Also, $f_{I_C}(e_{y_1} - e_{y_2})$ is nonzero; we can therefore restrict our attention to $t \ge 2$. Let $x'_t = (1, ..., j-1, i+j+1, i+j+t+1, ..., i+d+t)$. On the interval $2 \le t \le n - d - i$, we have the following facts:

 $\begin{array}{ll} (1') & x'_t \geq y_t, \\ (2') & x'_t \not\geq y'_t, \\ (3') & x'_t \not\geq y_{t+1} \text{ for } t \leq n-d-i-1, \\ (4') & x'_t \not\leq \lambda_{ij}. \end{array}$

Therefore, on the interval $2 \le t \le n - d - i$ (resp. $2 \le t \le n - d - i - 1$), we have that $x'_t \in \mathcal{L}_{ij}$ and $f_{Ix'_t}$ is nonzero on $e_{y_t} - e_{y'_t}$ (resp. $e_{y_t} - e_{y_{t+1}}$).

This completes Claim (v), Case 2, and the proof of Theorem 6.9.

REMARK 6.10. The face σ_{ij} corresponds to the following diamond in $J(\mathcal{L})$.

This diamond is a poset of rank 2.

LEMMA 6.11. The face σ_{ij} has dimension 3.

Proof. We have $\{e_{\mu_{ij}} - e_A, e_{\mu_{ij}} - e_B, e_A - e_C, e_B - e_C\}$, a set of generators for σ_{ij} . We can see that a subset of three of these generators is linearly independent. Thus, if the fourth generator can be put in terms of the first three, the result follows. Notice that

$$(e_{\mu_{ij}} - e_A) - (e_{\mu_{ij}} - e_B) + (e_A - e_C) = e_B - e_C.$$

Our next theorem is an immediate consequence of Theorem 6.9 and Lemma 6.11.

THEOREM 6.12. We have an identification of the (open) affine piece in $X(\mathcal{L})$ corresponding to the face $\sigma_{i,j}$ with the product $Z \times (K^*)^{\#J(\mathcal{L})-3}$, where Z is the cone over the quadric surface $x_1x_4 - x_2x_3 = 0$ in \mathbb{P}^3 .

We now prove two lemmas that hold for a general toric variety.

LEMMA 6.13. Let X_{τ} be an affine toric variety with τ as the associated cone. Then X_{τ} is a nonsingular variety if and only if it is nonsingular at the distinguished point P_{τ} .

Proof. Only the \Leftarrow implication requires a proof. Let then P_{τ} be a smooth point. Let us assume (if possible) that Sing $X_{\tau} \neq \emptyset$. We have the following facts.

- Sing X_{τ} is a closed *T*-stable subset of X_{τ} .
- $P_{\tau} \in \overline{O_{\theta}}$ for every face θ of τ (see Section 1.6); in particular, $P_{\tau} \in \overline{O_{\theta}}$ for some face θ such that P_{θ} is a singular point (such a θ exists because, by our assumption, Sing X_{τ} is nonempty).

We thus obtain that $P_{\tau} \in \text{Sing } X_{\tau}$, a contradiction. Hence our assumption is wrong and the result follows.

LEMMA 6.14. Let τ be a face of σ (for σ a convex polyhedral cone). Then P_{τ} is a smooth point of X_{σ} if and only if P_{τ} is a smooth point of X_{τ} —that is, if and only if τ is generated by a part of a basis of N (where N is the \mathbb{Z} -dual of the character group of the torus).

Proof. We have that X_{τ} is a principal open subset of X_{σ} . Hence X_{σ} is nonsingular at P_{τ} if and only if X_{τ} is nonsingular at P_{τ} . By Lemma 6.13, X_{τ} is nonsingular at P_{τ} if and only if X_{τ} is a nonsingular variety; but by [7, Sec. 2.1], this is true if and only if τ is generated by a part of a basis of N.

We now return to the case where σ is the convex polyhedral cone associated to $X(I_{d,n})$.

THEOREM 6.15. Let $\tau = \sigma_{i,j}$. Then the following statements hold.

- (i) $P_{\tau} \in \operatorname{Sing} X_{\sigma}$.
- (ii) We have an identification of $TC_{P_{\tau}}X_{\sigma}$ with $Z \times (K^*)^{\#J(\mathcal{L})-3}$, with Z as in Theorem 6.12; furthermore, $TC_{P_{\tau}}X_{\sigma}$ is a toric variety.
- (iii) The singularity at P_{τ} is of the same type as that at the vertex of the cone over the quadric surface $x_1x_4 - x_2x_3 = 0$ in \mathbb{P}^3 . In particular, $\operatorname{mult}_{P_{\tau}} X_{\sigma} = 2$.

Proof. Assertion (i) follows from Lemma 6.13, Lemma 6.14, and Theorem 6.12. Because X_{τ} is open in X_{σ} , we may identify $TC_{P_{\tau}}X_{\sigma}$ with $TC_{P_{\tau}}X_{\tau}$, which in turn coincides with X_{τ} (since X_{τ} is of cone type, where P_{τ} is identified with the origin). Assertion (ii) follows from this in view of Theorem 6.12 and given that X_{τ} is a toric variety. Assertion (iii) is immediate from (ii).

Next, we will show that the faces containing some σ_{ij} are the only singular faces. We first prove some preparatory lemmas.

LEMMA 6.16. Let $A \neq \hat{0}$. If $e_A - e_C$ is in W (the set of generators of σ as described in Proposition 4.2), then $e_A - e_C$ is in $W(\sigma_{ij})$ (cf. Definition 6.7) for some (i, j), where $1 \le i \le n - d - 1$ and $1 \le j \le d - 1$.

Proof. If *A* is equal to some μ_{ij} , then *C* must be one of the two covers of $\mu_{ij} = (1, \ldots, j, i + j + 1, \ldots, i + d)$ in $J(\mathcal{L})$ and we are done by Theorem 6.9. So we will assume that $A \neq \mu_{ij}$. Hence *A* is a join irreducible of one of the following two forms.

Case 1: A = (1, ..., k, n - d + k + 1, ..., n) for some k. Then $\mu_{n-d-1,k} = (1, ..., k, n - d + k, ..., n - 1)$, and $(A, \mu_{n-d-1,k})$ is a cover in $J(\mathcal{L})$. Also, A has only one cover in $J(\mathcal{L})$, which must be C; thus $e_A - e_C$ is an element of $W(\sigma_{n-d-1,k})$, as shown in Theorem 6.9.

Case 2: $A = (k + 1, ..., k + d), 1 \le k \le n - d - 1$ (note that k < n - d, since C > A because $e_A - e_C \in W$). Then we have $\mu_{k,1} = (1, k + 2, ..., k + d)$, and $(A, \mu_{k,1})$ is a cover in $J(\mathcal{L})$. Also, we must have C = (k + 2, ..., k + d + 1), and $e_A - e_C$ is an element of $W(\sigma_{k,1})$ by Case 1 of Theorem 6.9.

We now return to the case of a Grassmann–Hibi toric variety.

THEOREM 6.17. Let τ be a face such that D_{τ} is not contained in any \mathcal{L}_{ij} for $1 \le i \le n - d - 1$ and $1 \le j \le d - 1$. Then the associated face τ is nonsingular (i.e., if a face τ does not contain any one σ_{ij} , then τ is nonsingular).

Proof. By Lemma 6.14, for τ to be nonsingular it must be generated by part of a basis for *N*. Since τ is generated by a subset $W(\tau)$ of *W*, for τ to be singular its generators would have to be linearly dependent. (Generally this is not enough to prove that a face is singular or nonsingular, but since all generators in *W* have coefficients equal to ± 1 , any linearly independent set will serve as part of a basis for *N*.) Suppose τ is singular; then there is some subset of the elements of $W(\tau)$ equal to $\{e_1 - e_2, \ldots\}$ such that $\sum a_{ij}(e_i - e_j) = 0$, with coefficients a_{ij} nonzero for at least one (i, j).

Recall that the elements of W can be represented as all the line segments in the lattice $J(\mathcal{L})$ with the exception of e_1 (see diagram in Remark 6.2). Therefore, the linearly dependent generators of τ must represent a "loop" of line segments in $J(\mathcal{L})$. This loop will have at least one bottom corner, left corner, top corner, and right corner.

Choose some particular \mathcal{L}_{ij} . By Theorem 6.9, $W(\sigma_{ij}) = \{e_{\mu_{ij}} - e_A, e_{\mu_{ij}} - e_B, e_A - e_C, e_B - e_C\}$. These four generators are represented by the four sides of a diamond in $J(\mathcal{L})$. Thus, by hypothesis, the generators of τ represent a loop in $J(\mathcal{L})$ that does not traverse all four sides of the diamond representing all four generators of σ_{ij} .

By hypothesis, D_{τ} is not contained in any \mathcal{L}_{ij} for $1 \le i \le n - d - 1$ and $1 \le j \le d - 1$; hence there must be at least one element of D_{τ} in the interval $[\mu_{ij}, \lambda_{ij}]$, say $\alpha \in [\mu_{ij}, \lambda_{ij}]$. We have $\alpha \ge \mu_{ij}$ and $\alpha \ne C$ for *C* as defined in the proof of Theorem 6.9. Based on how α compares with both *A* and *B*, we can eliminate certain elements of *W* from $W(\tau)$. There are four possibilities; we list all four, as well as the corresponding generators in $W(\sigma_{ij})$ that are not in $W(\tau)$ (i.e., those generators *v* in $W(\sigma_{ij})$ such that $f_{I_{\alpha}}(v) \ne 0$):

$$\begin{array}{l} \alpha \not\geq A, \ \alpha \not\geq B \implies e_{\mu_{ij}} - e_A, e_{\mu_{ij}} - e_B \notin W(\tau);\\ \alpha \geq A, \ \alpha \not\geq B \implies e_A - e_C, e_{\mu_{ij}} - e_B \notin W(\tau);\\ \alpha \not\geq A, \ \alpha \geq B \implies e_{\mu_{ij}} - e_A, e_B - e_C \notin W(\tau);\\ \alpha \geq A, \ \alpha \geq B \implies e_A - e_C, e_B - e_C \notin W(\tau). \end{array}$$

Therefore, it is impossible to have $\{e_{\mu_{ij}} - e_A, e_A - e_C\}$ or $\{e_{\mu_{ij}} - e_B, e_B - e_C\}$ contained in $W(\tau)$. This is true for any (i, j) and so, in view of Lemma 6.16, our "loop" in $J(\mathcal{L})$ that represented the generators of τ cannot have a left corner or a right corner. Thus it is really not possible to have a loop at all; hence the generators of τ are linearly independent, and the result follows.

COROLLARY 6.18. The G-H toric variety $X_{d,n}$ is smooth along the orbit O_{τ} if and only if the face τ does not contain any σ_{ij} .

Combining this corollary with Theorem 6.15 and Lemma 6.11 yields our first main theorem as follows.

THEOREM 6.19. Let $\mathcal{L} = I_{d,n}$. Then the following statements hold.

- (i) Sing $X(\mathcal{L}) = \bigcup_{\sigma_{i,j}} \overline{O}_{\sigma_{i,j}}$, where the union is taken over all the $\sigma_{i,j}$ (as in *Theorem 6.9*).
- (ii) Sing $X(\mathcal{L})$ is pure and of codimension 3 in $X(\mathcal{L})$, and the generic singularities are of cone type (more precisely, the singularity type is the same as that at the vertex of the cone over the quadric surface $x_1x_4 - x_2x_3 = 0$ in \mathbb{P}^3).
- (iii) For $\tau = \sigma_{i,j}$, $TC_{P_{\tau}}X(\mathcal{L})$ is a toric variety and $\operatorname{mult}_{P_{\tau}}X(\mathcal{L}) = 2$.

REMARK 6.20. Theorem 6.19 thus proves the conjecture of [9] using just the combinatorics of the cone associated to the toric variety $X_{d,n}$ (for a statement of the conjecture of [9], see Remark 9.1). Further, it gives a description of Sing $X_{d,n}$ purely in terms of the faces of the cone associated to $X_{d,n}$.

7. Multiplicities of Singular Faces of X_{2,n}

In this section we take $\mathcal{L} = I_{2,n}$, determine the multiplicity of $X_{2,n}$ (= $X(I_{2,n})$) at P_{τ} for certain of the singular faces of $X_{2,n}$, and deduce a product formula. For $I_{d,n}$ we have defined \mathcal{L}_{ij} and the corresponding face $\sigma_{i,j}$ for $1 \le j \le d-1$ and $1 \le i \le n-d-1$; hence, for $I_{2,n}$ we need only consider $\mathcal{L}_{i,1}$ for $1 \le i \le n-3$.

For example, the following diagram is the poset of join irreducibles for $I_{2,6}$. We write $\sigma_{i,1}$ inside each diamond because the four segments surrounding it represent the four generators of the face.

In order to go from the join irreducibles of $I_{2,6}$ to $I_{2,7}$, we simply add (1, 7) and (6, 7) to the poset above, forming $\sigma_{4,1}$. We will see that this makes the calculation of the multiplicities of singular faces of $I_{2,n}$ much easier.

In the sequel, we shall denote the set of join irreducibles of $I_{2,n}$ by $J_{2,n}$; also, as in the previous sections, σ will denote the polyhedral cone corresponding to $X_{2,n}$. 7.1. $\operatorname{mult}_{P_{\sigma}} X_{2,n}$. Because $X_{d,n}$ is now of cone type (i.e., the vanishing ideal is homogeneous), we have a canonical identification of $T_{P_{\sigma}}X_{d,n}$ (the tangent cone to $X_{d,n}$ at P_{σ}) with $X_{d,n}$. Hence, by Theorem 3.10, $\operatorname{mult}_{P_{\sigma}} X_{d,n}$ equals the number of maximal chains in $I_{d,n}$. So we begin by counting the number of maximal chains in $I_{2,n}$.

As we move through a chain from (1, 2), at any point (i, j) we have at most two possibilities for the next point, (i + 1, j) or (i, j + 1). For each cover in our chain, we assign a value: for a cover of type ((i, j + 1), (i, j)), we assign +1; for a cover of type ((i + 1, j), (i, j)), we assign -1.

A maximal chain *C* in $I_{2,n}$ contains 2n - 3 lattice points, so every chain can be uniquely represented by a (2n - 4)-tuple of 1s and -1s; let us denote this (2n - 4)-tuple by $n_C = \langle a_1, \dots, a_{2n-4} \rangle$.

For any such n_c , it is clear that 1 and -1 occur precisely n - 2 times. Also, we can see that $a_1 = +1$ and that, for any $1 \le k \le 2n - 4$, if $\{a_1, \ldots, a_k\}$ contains more -1s than +1s then we have arrived at a point (i, j) with i > j, which is not a lattice point. Thus, we must have $a_1 + \cdots + a_k \ge 0$ for every $1 \le k \le 2n - 4$.

THEOREM 7.2 [16, Cor. 6.2.3]. The Catalan number

$$\operatorname{Cat}_n = \frac{1}{n+1} \binom{2n}{n}, \quad n \ge 0,$$

counts the number of sequences a_1, \ldots, a_{2n} of 1s and -1s with

 $a_1 + \dots + a_k \ge 0$ $(k = 1, 2, \dots, 2n),$

and $a_1 + \cdots + a_{2n} = 0$.

COROLLARY 7.3. The multiplicity of $X_{2,n}$ at P_{σ} is equal to the Catalan number

$$\operatorname{Cat}_{n-2} = \frac{1}{n-1} \binom{2n-4}{n-2}.$$

7.4. mult_{P_{τ}} $X_{2,n}$. Next we shall determine mult_{P_{τ}} $X_{2,n}$ for τ of block type (see Definition 7.7 to follow). Let τ be a face of σ such that the associated (embedded sublattice) D_{τ} is of the form

$$D_{\tau} = [(1,2), (i,i+1)] \cup [(i+k+2,i+k+3), (n-1,n)]$$

= $I_1 \cup I_2$ (say),

where $I_1 = [(1,2), (i, i+1)]$ and $I_2 = [(i+k+2, i+k+3), (n-1,n)]$ for $1 \le i \le n-3$ and $0 \le k \le n-i-3$.

We shall now determine $W(\tau)$ (cf. Section 6.7). Let A_{τ} denote the interval [(1, i + 2), (i + k + 2, i + k + 3)] in $J_{2,n}$:

$$(1, i + k + 3)$$

 $(1, i + k + 3)$
 $(1, i + k + 3)$
 $(1, i + 2)$
 $(1, i + 2)$

LEMMA 7.5. With τ as just described, we have that $W(\tau) = \{e_{y'} - e_y \mid (y, y') \text{ is a cover in } A_{\tau}\}.$

Proof. Clearly, $e_{(n-1,n)}$ (the element in $W(\sigma)$ corresponding to the unique maximal element (n-1,n) in $J_{2,n}$) is not in $W(\tau)$, since $(n-1,n) \in D_{\tau}$. Let us denote

$$\theta = (i + k + 2, i + k + 3)$$
 and $\delta = (i, i + 1)$.

Claim 1: For a cover (y, y') in A_{τ} , $f_{I_{\alpha}}(e_{y'} - e_y) = 0$ for all $\alpha \in D_{\tau}$. The claim follows in view of the following facts for a cover (y, y') in A_{τ} :

• $y, y' \in I_{\theta}$ and hence $y, y' \in I_{\alpha}$ for all $\alpha \in I_2$;

• $y, y' \notin I_{\delta}$ and hence $y, y' \notin I_{\alpha}$ for all $\alpha \in I_1$.

Claim 2: For a cover (y, y') in $J_{2,n}$ not contained in A_{τ} , there exists an $\alpha \in D_{\tau}$ such that $f_{I_{\alpha}}(e_{y'} - e_y) \neq 0$. Note that a cover in $J_{2,n}$ is one of the following three types.

Type I: $((1, j), (1, j - 1)), 3 \le j \le n$. Type II: $((j - 1, j), (j - 2, j - 1)), 4 \le j \le n$. Type III: $((j - 1, j), (1, j)), 3 \le j \le n$.

Let now (y, y') be a cover not contained in A_{τ} .

If (y, y') is of Type I, then (y, y') = ((1, j), (1, j - 1)), where either $j \le i + 2$ or $j \ge i + k + 4$. Letting

$$\alpha = \begin{cases} (1, j-1) & \text{if } j \le i+2, \\ (j-2, j-1) & \text{if } j \ge i+k+4, \end{cases}$$

we have $\alpha \in D_{\tau}$ and $f_{I_{\alpha}}(e_{y'} - e_y) \neq 0$.

If (y, y') is of Type II, then (y, y') = ((j - 1, j), (j - 2, j - 1)), where either $j \le i + 2$ or $j \ge i + k + 4$. Letting $\alpha = (j - 2, j - 1)$, we have $\alpha \in D_{\tau}$ and $f_{I_{\alpha}}(e_{y'} - e_y) \ne 0$.

If (y, y') is of Type III, then (y, y') = ((j - 1, j), (1, j)), where either $j \le i + 1$ or $j \ge i + k + 4$. Letting

$$\alpha = \begin{cases} (1, j) & \text{if } j \le i + 1, \\ (j - 2, j) & \text{if } j \ge i + k + 4, \end{cases}$$

we have $\alpha \in D_{\tau}$ and $f_{I_{\alpha}}(e_{y'} - e_y) \neq 0$.

The required result now follows from Claims 1 and 2.

COROLLARY 7.6. With τ as in Lemma 7.5, we have

$$\tau = \sigma_{i,1} \cup \sigma_{i+1,1} \cup \cdots \cup \sigma_{i+k,1}.$$

DEFINITION 7.7. We define a face τ as in Lemma 7.5 as a *J*-block (i.e., τ is a union of consecutive $\sigma_{i,1}$).

REMARK 7.8. Note that a union of faces need not be a face.

7.9. THE HIBI VARIETY $Z_{2,r}$. For an integer $r \ge 3$, let $\widetilde{I_{2,r}}$ denote the distributive lattice $I_{2,r} \setminus \{(1,2), (r-1,r)\}$. We define $Z_{2,r}$ to be the Hibi variety associated to $\widetilde{I_{2,r}}$. Note (cf. Proposition 4.2) that the cone associated to $Z_{2,r}$ has a

set of generators consisting of $\{e_{y'} - e_y\}$, where (y, y') is a cover in the sublattice [(1,3), (r-1,r)] of $J_{2,r}$ (the set of join irreducibles of $I_{2,r}$). In view of Theorem 3.10 we have

$$\operatorname{mult}_{\mathbf{0}} Z_{2,r} = \operatorname{mult}_{P_{\sigma}} X_{2,r} = \operatorname{Cat}_{r-2},$$

where **0** denotes the origin.

THEOREM 7.10. Let τ be a face of σ that is a "J-block" of k + 1 consecutive $\sigma_{i,1}$ (as in Definition 7.7). We have an identification of X_{τ} (the open affine piece of X_{σ} corresponding to τ) with $Z_{2,k+4} \times (K^*)^m$, where $m = \operatorname{codim}_{\sigma} \tau = 2(n-k) - 6$.

Proof. In view of Section 1.6 and Proposition 4.5, we have

 $\operatorname{codim}_{\sigma} \tau = \dim X(D_{\tau}) = \#\{\text{elements in a maximal chain in } D_{\tau}\}.$

From this it is clear that $\operatorname{codim}_{\sigma} \tau = 2(n-k) - 6$. Next, in view of Lemma 7.5 and Section 7.9, we obtain an identification of X_{τ} with $Z_{2,k+4} \times (K^*)^m$ (for *m* as in the theorem).

THEOREM 7.11. Let τ be as in Theorem 7.10.

- (i) We have an identification of $TC_{P_{\tau}}X_{\sigma}$ with $Z_{2,k+4} \times (K^*)^m$, where $m = \operatorname{codim}_{\sigma} \tau = 2(n-k) 6$; also, $TC_{P_{\tau}}X_{\sigma}$ is a toric variety.
- (ii) $\operatorname{mult}_{P_{\tau}} X_{2,n} = \operatorname{Cat}_{k+2} = \frac{1}{k+3} \binom{2k+4}{k+2}.$

Proof. Since X_{τ} is open in X_{σ} , we may identify $TC_{P_{\tau}}X_{\sigma}$ with $TC_{P_{\tau}}X_{\tau}$, which in turn coincides with X_{τ} (because X_{τ} is of cone type, where P_{τ} is identified with the origin). Assertion (i) follows from this in view of Theorem 7.10 (and the fact that X_{τ} is a toric variety).

Assertion (ii) follows from (i) and Corollary 7.3.

7.12. A PRODUCT FORMULA. Here we give a product formula for $\operatorname{mult}_{P_{\tau}} X_{2,n}$, where τ is a union of pairwise nonintersecting and nonconsecutive *J*-blocks (see Remark 7.15).

Let τ be a face of σ such that the associated (embedded sublattice) D_{τ} is of the form

$$D_{\tau} = [(1,2), (i_1, i_1 + 1)] \cup [(i_1 + k_1 + 2, i_1 + k_1 + 3), (i_2, i_2 + 1)]$$
$$\cup [(i_2 + k_2 + 2, i_2 + k_2 + 3), (n - 1, n)]$$
$$= J_1 \cup J_2 \cup J_3 \quad (say),$$

where $i_1 + k_1 + 1 < i_2$ and where

$$J_1 = [(1, 2), (i_1, i_1 + 1)],$$

$$J_2 = [(i_1 + k_1 + 2, i_1 + k_1 + 3), (i_2, i_2 + 1)],$$

$$J_3 = [(i_2 + k_2 + 2, i_2 + k_2 + 3), (n - 1, n)].$$

Consider the following sublattices in $J_{2,n}$ (the set of join irreducibles in $I_{2,n}$):

$$A = [(1, i_1 + 2), (i_1 + k_1 + 2, i_1 + k_1 + 3)],$$

$$B = [(1, i_2 + 2), (i_2 + k_2 + 2, i_2 + k_2 + 3)].$$

 \square

LEMMA 7.13. With τ as before, we have $W(\tau) = \{e_{y'} - e_y \mid (y, y') \text{ is a cover in } A \cup B\}.$

Proof. We proceed as in the proof of Lemma 7.5, where $e_{(n-1,n)}$ is not in $W(\tau)$ (since $(n-1,n) \in D_{\tau}$). Let us denote:

$$\theta_1 = (i_1 + k_1 + 2, i_1 + k_1 + 3), \qquad \theta_2 = (i_2 + k_2 + 2, i_2 + k_2 + 3);$$

$$\delta_1 = (i_1, i_1 + 1), \qquad \delta_2 = (i_2, i_2 + 1).$$

For any cover (y, y') in $A \cup B$, we clearly have $y, y' \in I_{\theta_2}$ and hence $y, y' \in I_{\alpha}$ for all $\alpha \in J_3$; also, $y, y' \notin I_{\delta_1}$ and hence $y, y' \notin I_{\alpha}$ for all $\alpha \in J_1$. Thus we obtain that

$$f_{I_{\alpha}}(e_{y'}-e_{y})=0 \quad \text{for all } \alpha \in J_{1} \cup J_{3}.$$

$$(7.1)$$

Next, if (y, y') is a cover in A, then $y, y' \in I_{\theta_1}$ and hence $y, y' \in I_{\alpha}$ for all $\alpha \in J_2$. If (y, y') is a cover in B, then $y, y' \notin I_{\delta_2}$ and hence $y, y' \notin I_{\alpha}$ for all $\alpha \in J_2$. Note that θ_1 (resp. δ_2) is the smallest (resp. largest) element in J_2 . Therefore,

$$f_{I_{\alpha}}(e_{y'} - e_{y}) = 0 \quad \text{for all } \alpha \in J_2 \tag{7.2}$$

Together, (7.1) and (7.2) imply the inclusion " \supseteq ". We shall prove the inclusion " \subseteq " by showing that, if a cover (y, y') is not contained in $A \cup B$, then there exists an $\alpha \in D_{\tau}$ such that $f_{I_{\alpha}}(e_{y'} - e_y) \neq 0$. This proof runs along lines similar to the proof of Lemma 7.5. Let then (y, y') be a cover in $J_{2,n}$ not contained in $A \cup B$. It is convenient to introduce the following sublattices in $J_{2,n}$:

$$P = [(1, 2), (i_1 + 1, i_1 + 2)],$$

$$Q = [(1, i_1 + k_1 + 3), (i_2 + 1, i_2 + 2)],$$

$$R = [(1, i_2 + k_2 + 3), (n - 1, n)].$$

We distinguish three cases as follows.

Case 1: (y, y') is of type I (cf. proof of Lemma 7.5)—say, ((1, j), (1, j - 1)). (i) If (y, y') is contained in P, then $j \le i_1 + 2$. We let $\alpha = (1, j - 1)$. Note that $\alpha \in J_1$ and $f_{I_{\alpha}}(e_{y'} - e_y) \ne 0$.

(ii) If (y, y') is contained in Q (resp. R), then $i_1 + k_1 + 4 \le j \le i_2 + 2$ (resp. $i_2 + k_2 + 4 \le j \le n$). We let $\alpha = (j - 2, j - 1)$. Note that $\alpha \in J_2$ (resp. J_3) and $f_{I_\alpha}(e_{y'} - e_y) \ne 0$.

Case 2: (y, y') *is of type II—say,* ((j - 1, j), (j - 2, j - 1)). Then $3 \le j \le i_1 + 2, i_1 + k_1 + 4 \le j \le i_2 + 2$, or $i_2 + k_2 + 4 \le j \le n$ accordingly as (y, y') is contained in *P*, *Q*, or *R*. We let $\alpha = (j - 2, j - 1)$. Note that $\alpha \in J_1, J_2, J_3$ accordingly as (y, y') is contained in *P*, *Q*, *R*, and $f_{I_q}(e_{y'} - e_y) \ne 0$.

Case 3: (y, y') *is of type III—say*, ((j - 1, j), (1, j)).

(i) If (y, y') is contained in *P*, then $j \le i_1 + 1$. We let $\alpha = (1, j)$. Note that $\alpha \in J_1$ and $f_{I_{\alpha}}(e_{y'} - e_y) \ne 0$.

(ii) If (y, y') is contained in Q (resp. R), then $i_1 + k_1 + 4 \le j \le i_2 + 1$ (resp. $i_2 + k_2 + 4 \le j \le n$). We let $\alpha = (j - 2, j)$. Note that $\alpha \in J_2, J_3$ accordingly as (y, y') is contained in Q, R, and $f_{I_\alpha}(e_{y'} - e_y) \ne 0$.

As an immediate consequence of Lemma 7.13 and Corollary 7.6, we have the following result.

COROLLARY 7.14. Let τ be as in Lemma 7.13. Then $\tau = \tau_1 \cup \tau_2$, where

$$\tau_1 = \sigma_{i_1,1} \cup \cdots \cup \sigma_{i_1+k_1,1},$$

$$\tau_2 = \sigma_{i_2,1} \cup \cdots \cup \sigma_{i_2+k_2,1}.$$

REMARK 7.15. We refer to a pair (τ_1, τ_2) of faces as in Corollary 7.14 as *non-intersecting J-blocks*.

THEOREM 7.16. Let $\tau = \tau_1 \cup \tau_2$, where τ_1 and τ_2 are two nonintersecting (and nonconsecutive) *J*-blocks (see Corollary 7.14). We have an identification of X_{τ} (the open affine piece of X_{σ} corresponding to τ) with $Z_{2,k_1+4} \times Z_{2,k_2+4} \times (K^*)^m$, where $m = \operatorname{codim}_{\sigma} \tau = 2(n - k_1 - k_2) - 9$.

The proof is similar to that of Theorem 7.11 (using Lemma 7.13).

Our next theorem follows as an immediate consequence.

THEOREM 7.17. Let $\tau = \tau_1 \cup \tau_2$, where τ_1 and τ_2 are two nonintersecting (and nonconsecutive) *J*-blocks.

- (i) We have an identification of $TC_{P_{\tau}}X_{\sigma}$ with $Z_{2,k_1+4} \times Z_{2,k_2+4} \times (K^*)^m$, where $m = \operatorname{codim}_{\sigma} \tau = 2(n-k_1-k_2)-9$; in particular, $TC_{P_{\tau}}X_{\sigma}$ is a toric variety.
- (ii) $\operatorname{mult}_{P_{\tau}} X_{2,n} = (\operatorname{mult}_{P_{\tau_1}} X_{2,n}) \cdot (\operatorname{mult}_{P_{\tau_2}} X_{2,n}).$

The proof is similar to that of Theorem 7.11 (using Theorem 7.16).

REMARK 7.18. It is clear that we can extend this multiplicative property to $\tau = \tau_1 \cup \cdots \cup \tau_s$, a union of *s* pairwise nonintersecting, nonconsecutive *J*-blocks.

8. A Multiplicity Formula for $X_{d,n}$

In this section we give a formula for $\operatorname{mult}_{P_{\sigma}} X_{d,n}$. By Theorem 3.10, $\operatorname{mult}_{P_{\sigma}} X_{d,n}$ equals the number of maximal chains in $I_{d,n}$. We shall provide an explicit formula for the number of maximal chains in $I_{d,n}$. Observe that the number of chains in $I_{d,n}$ from $(1, 2, \ldots, d)$ to $(n - d + 1, \ldots, n)$ is the same as the number of chains from $(0, 0, \ldots, 0)$ to $(n - d, n - d, \ldots, n - d)$; hence, for any (i_1, \ldots, i_d) in the chain, $i_1 \ge i_2 \ge \cdots \ge i_d \ge 0$. Now set

$$\mu = (\mu_1, \mu_2, \dots, \mu_d) = (n - d, n - d, \dots, n - d).$$
(8.1)

For any $\lambda \vdash m$, let $f^{\lambda} = K_{\lambda,1^m}$ —that is, the number of standard Young tableaux of shape λ (cf. [16]).

PROPOSITION 8.1 [16, Prop. 7.10.3]. Let λ be a partition of m. Then the number f^{λ} counts the lattice paths $0 = v_0, v_1, \ldots, v_m$ in \mathbb{R}^l (where $l = l(\lambda)$) from the origin v_0 to $v_m = (\lambda_1, \lambda_2, \ldots, \lambda_l)$, with each step a coordinate vector, and staying within the region (or cone) $x_1 \ge x_2 \ge \cdots \ge x_l \ge 0$.

Thus, for μ as described in (8.1), the number of maximal chains in $I_{d,n}$ is equal to f^{μ} .

An explicit description of f^{λ} is given in [16, Cor. 7.21.5].

PROPOSITION 8.2. Let $\lambda \vdash m$. Then

$$f^{\lambda} = \frac{m!}{\prod_{u \in \lambda} h(u)}$$

The statement of the proposition refers to $u \in \lambda$ as a box in the Young diagram of λ and to h(u) as the "hook length" of u. The hook length is easily defined as the number of boxes to the right and below of u, including u once.

Let us take, for example, $I_{3,6}$. Then $\mu = (3, 3, 3)$, and the Young diagram of shape μ with hook lengths given in their corresponding boxes is as follows.

Therefore,

$$f^{\mu} = \frac{9!}{5 \cdot 4^2 \cdot 3^3 \cdot 2^2 \cdot 1} = 42.$$

In fact, in the $I_{d,n}$ scenario our derived partition μ (given by (8.1)) will always be a rectangle, and we can deduce a formula for f^{μ} that does not require the Young tableau. The top left box of μ will always have hook length (n - d) + d - 1 =n - 1; the box directly below it (and the box directly to the right of it) will have length n - 2. For any box of μ , the box below and the box to the right will have hook length 1 less than that of the box with which we started.

Since the posets $I_{d,n}$, and $I_{n-d,n}$ are isomorphic, we may assume that $d \le n - d$. Then

$$\prod_{u \in \mu} h(u) = (n-1)(n-2)^2 \cdots (n-d)^d (n-d-1)^d \cdots (d)^d (d-1)^{d-1} \cdots (2)^2 (1).$$

Thus we arrive at the following statement.

THEOREM 8.3. The multiplicity of $X_{d,n}$ at P_{σ} is equal to

$$\frac{(d(n-d))!}{(n-1)(n-2)^2\cdots(n-d)^d(n-d-1)^d\cdots(d)^d(d-1)^{d-1}\cdots(2)^2(1)}$$

9. Conjectures

In this section, we give two conjectures on the multiplicity at a singular point. We also mention a result relevant to this paper on Sing $X(\mathcal{L})$ for \mathcal{L} the Bruhat poset of Schubert varieties in any minuscule G/P.

The generating set $W(\tau)$ of a face τ consists of $\{e_{y'} - e_y\}$ for certain covers (y, y') in $J(\mathcal{L})$ (assuming that $\hat{1} \in D_{\tau}$, so that $e_{\hat{1}}$ is not in $W(\tau)$). Thus $W(\tau)$ determines a subset $H(\tau) := \bigcup H(\tau)_i$ of $J(\mathcal{L})$ such that $W(\tau)$ consists of all the

covers in the $H(\tau)_i$. Thus, $H(\tau)$ for $\tau = \sigma_{ij}$ would be the diamond given in Remark 6.10. In Section 7.12, if $\tau = \tau_1 \cup \tau_2$ for τ_1, τ_2 a pair of nonconsecutive and nonintersecting *J*-blocks, then $H(\tau) = H(\tau_1) \cup H(\tau_2)$.

CONJECTURE 1. The multiplicity formula for $X_{2,n}$ in Theorem 7.17 extends to $X_{d,n}$. Namely, let σ be the convex polyhedral cone associated to $X_{d,n}$ and let τ , τ_1 , τ_2 be faces of σ such that $\tau = \tau_1 \cup \tau_2$. Then, if $H(\tau_1) \cap H(\tau_2)$ is empty, we have mult $P_{\tau} X_{d,n} = (\text{mult}_{P_{\tau_1}} X_{d,n}) \cdot (\text{mult}_{P_{\tau_2}} X_{d,n})$.

Theorem 7.11 implies that $\operatorname{mult}_{P_{\tau_1}} X_{2,n} = \operatorname{mult}_{P_{\tau_2}} X_{2,n}$ if both τ_1 and τ_2 are *J*-blocks of the same length; in particular, $H(\tau_1)$ and $H(\tau_2)$ are isomorphic. Guided by this phenomenon, we make the following conjecture.

CONJECTURE 2. For a face τ of any Hibi toric variety $X(\mathcal{L})$, mult_{P_{τ}} $X(\mathcal{L})$ is determined by the poset $H(\tau)$. By this we mean that if τ , τ' are such that $H(\tau)$, $H(\tau')$ are isomorphic posets, then the multiplicities of $X(\mathcal{L})$ at the points P_{τ} , $P_{\tau'}$ are the same.

REMARK 9.1. Toward generalizing Theorem 6.19 to other Hibi varieties, we will first explain how the lattice points μ_{ij} and λ_{ij} were chosen. Let δ and θ be two incomparable meet and join irreducibles in $I_{d,n}$; say, $\delta = (i + 1, ..., i + d)$ and $\theta = (1, ..., j, n + j + 1 - d, ..., n)$. Then $\theta \wedge \delta = \mu_{ij}$ and $\theta \vee \delta = \lambda_{ij}$. In view of Theorems 6.15 and 6.17, we have the following statement.

In $X_{d,n}$, P_{τ} is a smooth point if and only if, for every pair (θ, δ) of join and meet irreducibles, there is an $\alpha \in [\theta \land \delta, \theta \lor \delta]$ such that $P_{\tau}(\alpha)$, the α th coordinate of P_{τ} , is nonzero.

In fact, this is the content of the conjecture of [9, Sec. 11].

These results suggest that we look at such pairs of join-meet irreducibles in other distributive lattices and expect the components of the singular locus of the associated Hibi toric variety to be given by Theorem 6.19(i) for the case of $I_{d,n}$. However, this is not true in general, as the following counterexample shows.

9.2. COUNTEREXAMPLE. Let \mathcal{L} be the interval [(1,3,4), (2,5,6)], a sublattice of $I_{3,6}$.

Notice that \mathcal{L} has only one pair of join-meet irreducibles, (2, 3, 4) and (1, 5, 6), and thus the corresponding interval $[\theta \land \delta, \theta \lor \delta]$ is the entire lattice. Therefore, if our result (Theorem 6.19(i)) on the singular locus of G-H toric varieties were to generalize to other Hibi toric varieties, then any proper face would be nonsingular. This follows because any face τ must correspond to an embedded sublattice D_{τ} , and naturally this sublattice will intersect the interval, which is just \mathcal{L} .

But this is not true! For example, let τ be the face of σ such that $D_{\tau} = \{(1, 5, 6)\}$. Then

$$\tau = C \langle e_{145} - e_{156}, e_{136} - e_{156}, e_{135} - e_{145}, e_{135} - e_{136}, e_{134} - e_{135} \rangle$$

is a set of generators for τ . Clearly, τ is not generated by the subset of a basis, so τ is a singular face (see Lemma 6.14).

Nevertheless, Theorem 6.19 holds for minuscule lattices as described next. Let *G* be semisimple, and let *P* be a maximal parabolic subgroup with ω as the associated fundamental weight. Let *W* (resp. W_P) be the Weyl group of *G* (resp. *P*). Then the Schubert varieties in *G*/*P* are indexed by *W*/*W*_{*P*}. Let *P* be *minuscule*, by which we mean that the weights in the fundamental representation associated to ω form one orbit under the Weyl group. It is known that the Bruhat poset *W*/*W*_{*P*} of the Schubert varieties in *G*/*P* is a distributive lattice; see [11] for details.

DEFINITION 9.3. We call $\mathcal{L} := W/W_P$ a minuscule lattice and $X(\mathcal{L})$ a Bruhat-Hibi toric variety.

REMARK 9.4. Any Grassmann–Hibi toric variety $X_{d,n}$ is also a Bruhat–Hibi toric variety.

Now, for \mathcal{L} a minuscule lattice as in Definition 9.3, consider a pair (α, β) of incomparable join-meet irreducible elements. It has recently been shown [4] that a Bruhat-Hibi toric variety $X(\mathcal{L})$ is smooth at P_{τ} (for τ a face of σ) if and only if, for each incomparable pair (α, β) of join-meet irreducibles in \mathcal{L} , there exists at least one $\gamma \in [(\alpha \land \beta), (\alpha \lor \beta)]$ such that $P_{\tau}(\gamma)$ is nonzero.

References

- V. V. Batyrev, I. Ciocan-Fontanine, B. Kim, and D. van Straten, *Conifold transitions* and mirror symmetry for Calabi–Yau complete intersections in Grassmannians, Nuclear Phys. B 514 (1998), 640–666.
- [2] ——, Mirror symmetry and toric degenerations of partial flag manifolds, Acta Math. 184 (2000), 1–39.
- [3] G. Birkhoff, *Lattice theory*, 3rd ed., Amer. Math. Soc. Colloq. Publ., Amer. Math. Soc., Providence, RI, 1967.
- [4] J. Brown and V. Lakshmibai, Singular loci of Bruhat–Hibi toric varieties, J. Algebra 319 (2008), 4759–4779.
- [5] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, Berlin, 1995.
- [6] D. Eisenbud and B. Sturmfels, *Binomial ideals*, Duke Math. J. 84 (1996), 1–45.

- [7] W. Fulton, *Introduction to toric varieties*, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993.
- [8] N. Gonciulea and V. Lakshmibai, Degenerations of flag and Schubert varieties to toric varieties, Transform. Groups 1 (1996), 215–248.
- [9] —, Schubert varieties, toric varieties and ladder determinantal varieties, Ann. Inst. Fourier (Grenoble) 47 (1997), 1013–1064.
- [10] T. Hibi, Distributive lattices, affine semigroup rings, and algebras with straightening laws, Commutative algebra and combinatorics (Kyoto, 1985), Adv. Stud. Pure Math., 11, pp. 93–109, Elsevier, Amsterdam, 1987.
- [11] H. Hiller, Geometry of Coxeter groups, Res. Notes Math., 54, Pitman, Boston, 1982.
- [12] G. Kempf et al., *Toroidal embeddings*, Lecture Notes in Math., 339, Springer-Verlag, Berlin, 1973.
- [13] V. Lakshmibai and N. Gonciulea, Flag varieties, Hermann, Paris, 2001.
- [14] V. Lakshmibai and H. Mukherjee, *Singular loci of Hibi toric varieties*, J. Ramanujan Math. Soc. (submitted).
- [15] R. A. Proctor, Bruhat lattices, plane partition generating functions, and minuscule representations, European J. Combin. 5 (1984), 331–350.
- [16] R. P. Stanley, *Enumerative combinatorics*, vol. 2, Cambridge Stud. Adv. Math., 62, Cambridge Univ. Press, Cambridge, 1999.
- [17] B. Sturmfels, *Gröbner bases and convex polytopes*, Univ. Lecture Ser., 8, Amer. Math. Soc., Providence, RI, 1996.
- [18] D. G. Wagner, Singularities of toric varieties associated with finite distributive lattices, J. Algebraic Combin. 5 (1996), 149–165.

J. Brown Department of Mathematics Northeastern University Boston, MA 02115 V. Lakshmibai Department of Mathematics Northeastern University Boston, MA 02115

brown.justin1@neu.edu

lakshmibai@neu.edu