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Singular Loci of
Grassmann—Hibi Toric Varieties

J. BROWN & V. LAKSHMIBAI

Introduction

Let K denote the base field, which we assume to be algebraically closed and of ar-
bitrary characteristic. Given a distributive lattice £, let X(£) denote the affine vari-
ety in A** whose vanishing ideal is generated by the binomials X; X, — Xrvy X1 e
in the polynomial algebra K[X,,a € L] (here, T V ¢ (resp. T A ¢) denotes the
Jjoin—the smallest element of £ greater than both T and ¢ (resp. the meer—the
largest element of £ smaller than both t and ¢)). These varieties were extensively
studied by Hibi in [10], where it is proved that X(£) is a normal variety. On the
other hand, Eisenbud and Sturmfels [6] showed that a binomial prime ideal is toric
(here, “toric ideal” is in the sense of [17]). Thus one obtains that X(£) is a normal
toric variety. We shall refer to such an X(£) as a Hibi toric variety.

For L the Bruhat poset of Schubert varieties in a minuscule G/P, it is shown in
[8] that X(L£) flatly deforms to (7/7" (the cone over G/P); in other words, there
exists a flat family over A' with é/\P as the generic fiber and X(£) as the spe-
cial fiber. More generally, for a Schubert \gri\ety X(w) in a minuscule G/P, it is
shown in [8] that X(L,,) flatly deforms to X(w), the cone over X(w) (here, L, is
the Bruhat poset of Schubert subvarieties of X(w)). In a subsequent paper [9], the
authors studied the singularities of X(£) for £ the Bruhat poset of Schubert vari-
eties in the Grassmannian; they also gave a conjecture (see [9, Sec. 11]; see also
Remark 9.1 of this paper) giving a necessary and sufficient condition for a point
on X(L£) to be smooth and proved the sufficiency part of the conjecture. Subse-
quently, the necessary part of the conjecture was proved in [2] by Batyrev and
colleagues. The toric varieties X(£) for £ the Bruhat poset of Schubert varieties
in the Grassmannian play an important role in the area of mirror symmetry; for
more details, see [1; 2]. We refer to such an X(£) as a Grassmann—Hibi toric va-
riety (or G-H toric variety).

The proof (in [9]) of the sufficiency part of the conjecture in [9] uses the Jaco-
bian criterion for smoothness, whereas the proof (in [2]) of the necessary part of
the conjecture in [9] uses certain desingularization of X(L).

It should be remarked that neither [9] nor [2] discusses the relationship between
the singularities of X(£) and the combinatorics of the polyhedral cone associated

Received November 10, 2008. Revision received March 25, 2009.
The second author was partially supported by NSF Grant DMS-0652386 and Northeastern University
RSDF 07-08.

243



244 J. BROWN & V. LAKSHMIBAI

to X(£); the main goal of this paper is to bring out this relationship. Our first main
result is a description of the singular locus of a G-H toric variety X(L£) in terms
of the faces of the associated polyhedral cone; in particular, we give a proof of the
conjecture of [9] using only the combinatorics of the polyhedral cone associated
to the toric variety X(£). Furthermore, we prove (Theorem 6.19) that the singular
locus of X(£) is pure and of codimension 3 in X(£) and that the generic singu-
larities are of cone type (more precisely, the singularity type is the same as that at
the vertex of the cone over the quadric surface x;x4 — xox3 = 0 in P3); we also
determine the tangent cone to X (£) at a generic singularity, which turns out to be
a toric variety (by a “generic singularity” we mean a point P € X(£) such that the
closure of the torus orbit through P is an irreducible component of Sing X (L), the
singular locus of X(£)). We further obtain (see Corollary 7.3 and Theorem 7.11)
an interpretation of the multiplicities at some of the singularities as certain Cata-
lan numbers when L is the Bruhat poset of Schubert varieties in the Grassmannian
of 2-planes in K". We also present a product formula (Theorem 7.17).

It turns out that the conjecture of [9] does not extend to a general X (L) (see
Section 9.2 for a counterexample). However, in [4] we proved the conjecture of
[9] for other minuscule posets.

This paper contains more results for the Grassmann—Hibi toric varieties that
cannot be deduced from the results of [4]; for example, the multiplicity formulas
provided in Sections 7 and 8 of this paper are not discussed in [4]. The singular-
ities of the Hibi toric variety were also studied by Wagner in [18], where it was
shown that all Hibi toric varieties have a singular locus of codimension > 3. In
this paper, we go into much more detail about the singularities of a G-H toric
variety.

The balance of the paper is organized as follows. In Sections 1 and 2 we recall
generalities on toric varieties and distributive lattices, respectively. In Section 3,
we introduce the Hibi toric variety X(£) and recall some results from [9; 14] on
X(L). In Section 4, we recall results from [14] on the polyhedral cone associated
to X(£); in Section 5, we introduce the Grassmann—Hibi toric variety. In Sec-
tion 6 we prove our first main result, giving the description of Sing X(£) in terms
of faces of the cone associated to X(£); we also present our results on the tan-
gent cones and deduce the multiplicities at the associated points. In Section 7 we
present certain product formulas for X (L), where L is the Bruhat poset of Schu-
bert varieties in the Grassmannian of 2-planes in K”". In Section 8, we present a
formula for the multiplicity at the unique 7-fixed point of X(£) for £ the Bruhat
poset of Schubert varieties in the Grassmannian of d-planes in K". In Section 9
we present a counterexample to show that the conjecture of [9] does not extend
to a general X(L£); in this section, we also present two conjectures that concern
extending the multiplicity formulas of Sections 7 and 8.

1. Generalities on Toric Varieties

Our main object of study is a certain affine toric variety, so in this section we
recall some basic definitions on affine toric varieties. Let T = (K*)™ be an
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m-dimensional torus. Let A/ be the affine I-space (i.e., I-tuples of elements of the
field K).

DEFINITION 1.1 [7;12]. An equivariant affine embedding of a torus T is an affine
variety X C A/ containing 7 as an open subset and equipped with a T-action
T x X — X extending the action T x T — T given by multiplication. If in
addition X is normal, then X is called an affine toric variety.

1.2. THE CONE ASSOCIATED TO A TORIC VARIETY. Let M be the character group
of T, and let N be the Z-dual of M. Let Nk = N ®z R, and recall [7; 12] that
there exists a strongly convex rational polyhedral cone o C Ny such that

K[X]= K[S,],

where S, is the subsemigroup o N M for o the cone in My dual to 0. Note that
S, is a finitely generated subsemigroup in M.

1.3. OrBIT DECOMPOSITION IN AFFINE TORIC VARIETIES. We shall denote X also
by X,. We may suppose, without loss of generality, that o spans Ny so that the
dimension of ¢ equals dim Ngx = dim 7. (By “dimension of 6 we mean the vec-
tor space dimension of the span of ¢.)

DEFINITION 1.4. A face T of o is a convex polyhedral subcone of ¢ of the form
7 = o Nu' for some u € 0¥, and it is denoted T < o. Note that o itself is consid-
ered a face.

We have that X is a principal open subset of X, ; namely,
X: = (Xo)u-

Each face t determines a (closed) point P; in X, : the point corresponding to the
maximal ideal in K[X] = K[S,] given by the kernel of e, : K[S,] — K, where

for u € S, we have
1 ifuett,
er(u) = { .
0 otherwise.
REMARK 1.5.  Asa point in A/, P, may be identified with the /-tuple with 1 at the
ith place if x; is in T+ and with 0 otherwise. (Here, x; denotes the weight of the
T-weight vector y;—the class of x; in K[X,].)

1.6. OrBIT DECOMPOSITION. Let O, denote the T-orbit in X, through P,. We
have the following orbit decomposition in X, :

X, = U 0y, O, = U 0y, dimt +dim O, = dim X,.
0<o 0>t

See [7; 12] for d_etails.
Thus T — O, defines an order-reversing bijection between {faces of o} and
{T-orbit closures in X,}.

LEMMA 1.7 [7, Sec. 3.1]. Forafacet <o, K[O;] = K[S, NT+].
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2. Finite Distributive Lattices

We shall study a special class of toric varieties—namely, the toric varieties associ-
ated to distributive lattices. We shall first collect some definitions on finite partially
ordered sets. A partially ordered set is also called a poset.

DEFINITION 2.1. A finite poset P is called bounded if it has both a unique maxi-
mal and a unique minimal element, denoted Tand0 respectively. A totally ordered
subset C of P is called a chain, and the number #C — 1 is called the length of the
chain. A bounded poset P is said to be graded (or ranked) if all maximal chains
have the same length. If P is graded, then the length of a maximal chain in P is
called the rank of P.

DEFINITION 2.2.  Let P be a graded poset. For A, u € P with A > u, the graded
poset {t € P | u < t < A} is called the interval from ju to A and is denoted by

Lee, A].

DEFINITION 2.3. Let P be a graded poset, and let A, € P with A > p. The
ordered pair (A, i) is called a cover (and we also say that A covers u) if [u, 1] =

{m, A}

DEFINITION 2.4. A lattice is a partially ordered set (£, <) such that, for every
pair of elements x, y € £, there exist elements x V y and x A y, called (respec-
tively) the join and the meet of x and y, defined by:

xVy>x, xVy>y, and ifz>xandz>ythenz>xVy;
XAy<x, xANy<y, and ifz<xandz<ythenz<xAYy.

It is easy to check that the operations V and A are commutative and associative.

DEFINITION 2.5. Given a lattice £, a subset £’ C L is called a sublattice of L if
x,y€ L impliesthatx Aye L andx vV ye L.

DEFINITION 2.6. A lattice is called distributive if the following identities hold:

1) xA(yVD=@xAy)V(xA;
(i) x V(YA =& VYY) A(KXVI.

DEFINITION 2.7.  An element z of a lattice L is called join-irreducible (resp. meet-
irreducible) if z = x v y (resp. z = x A y) implies either z = x or z = y. The set
of join-irreducible elements of £ is denoted by J(L).

The following lemma is easily checked.

LEmMMA 2.8. Let L be a finite distributive lattice. Then

J(L) = {t € L | there exists at most one cover of the form (z, 1)}

DEFINITION 2.9. A subset I of a poset P is called an ideal of P if, forall x,y € P,

xelandy <x — yel
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THEOREM 2.10 [3, Chap. 111, Sec. 3]. Let L be a finite distributive lattice with
minimal element 0, and let P = J(L) \ {6} with the induced partial order of
L. Then L is isomorphic to the lattice of ideals of P by means of the lattice
isomorphism

ar—>Iy,={teP|t<a}, ael.

For o € L, let I, denote the ideal corresponding to « under the isomorphism in
Theorem 2.10.

REMARK 2.11.  As a consequence of Theorem 2.10, we have that every finite dis-
tributive lattice is graded.

3. The Variety X(£)

Throughout the following sections, let £ be a finite distributive lattice.

Consider the polynomial algebra K[X,, « € L], and let /(L) be the ideal
generated by {XoXg — XovpXang, @, € L}. Then one knows [10] that
K[Xq, @ € L]/I(L) is a normal domain; in particular, we have that I(£) is a
prime ideal. Let X(£) be the affine variety of the zeroes in K Lof I(L) (here | =
#L£). Then X(£) is an affine normal variety defined by binomials; on the other
hand, by [6], a binomial prime ideal is a toric ideal (here, “toric ideal” is in the
sense of [17]). Hence X (L) is a toric variety for the action by a suitable torus 7.

In the sequel, we shall denote R(L) = K[X,, o € L]/I(L). Also, forx € L,
we shall denote the image of X, in R(L) by x.

DEeFINITION 3.1.  The variety X(£) will be called a Hibi toric variety.
REMARK 3.2. An extensive study of X (L) appeared first in [10].
We have that dim X(£) = dimT.

THEOREM 3.3 [14]. The dimension of X(L) is equal to #J(L), which is also
equal to the cardinality of the set of elements in a maximal chain of L.

DEFINITION 3.4.  For a finite distributive lattice £, we call the cardinality of J(£)
the dimension of L, denoted dim L. If £’ is a sublattice of £, then the codimension
of L' in L is defined as dim £ — dim £’

DEeFINITION 3.5 [18]. A sublattice £ of L is called an embedded sublattice of
Lif
pel,tvoel trpel = t,9peLl.

Given a sublattice £ of L, consider the variety X(L£’) and the canonical embed-
ding X(L) < A" < AL

PrROPOSITION 3.6 [9, Prop. 5.16]. X(L') is a subvariety of X (L) if and only if
L' is an embedded sublattice of L.
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3.7. MULTIPLICITY OF X (L) AT THE ORIGIN. Let B be a Z ,-graded and finitely
generated K -algebra, B = @ B,,. Let ¢,,(B) denote the Hilbert function,

¢m(B) = dimg By,
and let P (x) denote the Hilbert polynomial of B. Recall that:

* Pp(x) € Q[x];
e deg Pp(x) = dimProj B = s, say; and
¢ the leading coefficient of Pg(x) is of the form eg/s!.

DEFINITION 3.8.  The number ey is called the degree of the graded ring B, or the
degree of Proj B.

THEOREM 3.9. The degree of K[X(L)]is equal to the number of maximal chains
in L.

Proof. Let I(L) be as before. We begin by putting a monomial order on
K[X4, o € L]. Consider the reverse partial order on £ and extend it to a total
order, denoted <, on the variables {X,, « € £}. We now take the monomial

order defined as follows. For oy <ot « -+ <ot @ and By <ot - -+ <tot Bs, W€ 52y
that X, - - X4, < Xpg, -+ - Xg, if and only if either r < s or r = s and there exists
at <rsuchthato; = By, ..., o, = B; with 0,41 <tot Br+1. From [9] we have

that {Xo Xg — XonpXavp | @, B € L non-comparable} is a Grobner basis for /(L)
for this monomial order. Hence, letting / be the ideal generated by initial terms of
elements of /(£), we have that {X, Xz | o, B noncomparable} is a generating set
for I. Let us denote K[X(£)] by S and K[X,, @ € L]/I by R. By [5, Sec. 15.8]
we have a flat degeneration of Spec(S) to Spec(R). Hence, the degree of S equals
the degree of R.

Let J = {ji,..., js} be a subset of £ such that X;, --- X; ¢ I. Note that J is
thus a chain of length s — 1 in £. We have

R=K® P X X)KIX.....X;],
J={jt, s}
where J runs over all chains of any length in £. Therefore,
(R)=dimR, — s+(m—s)—l>: <m—l).
Hu(R) J{INZMK s P> Lom
Note that for m sufficiently large, the leading term appears in the summation only

for J of maximal cardinality s. The result follows from this. UJ

Next we recall multp X, the multiplicity of an algebraic variety at a point P € X.
Let Ox p = (A, m). Let Cp be the tangent cone at P; thatis, Cp = Spec A(P),
where A(P) = gr(A, m). Then the multiplicity of X at P is defined to be

multp X = degProj A(P) (= deg A(P)).

Thus, using the notation from Section 3.7, we obtain ez = multy Spec(B), the
multiplicity of Spec(B) at the origin.
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The following result is a direct consequence of Theorem 3.9.

THEOREM 3.10.  The multiplicity of X(L) at the origin is equal to the number of
maximal chains in L.

4. Cone and Dual Cone of X (L)

Let M = Z for d = #J(L), with basis { f., z € J(£)}. Let N be the Z-dual of
M, with basis {e;, z € J(L)} dual to {f;, z € J(L)}. We denote the torus acting
on the toric variety X(£) by 7, and we identify M with the character group X (7).
Thus, for t = (#y)yesc) € T (under the identification of T with (K )4y, we let
f.(t) =t, forz € J(L).

Denote by Z the lattice of ideals of J(L). For A € Z, set

fai=) fe
z€eA
Let V= Ngr = N ®z R. Let 0 C V be the cone such that X(£) = X, and let
0" C V*be the cone that is dual to 0. Let S, = 0¥ N M, so that K[X(L£)] equals
the semigroup algebra K[S,].
From [10; 14, Prop. 4.6] we have the following statement.

PROPOSITION 4.1.  The semigroup S, is generated by fa for A €.

Let M(J(L)) be the set of maximal elements in the poset J(L). Let Z(J(L)) de-
note the set of all covers in the poset J(£) (i.e., (z,z") with z > 7z’ in the poset
J(L£), and there is no other element y € J(£) such that z > y > z’). For a cover
(v,y") € Z(J(L)), denote

Uy y 1= €y — ey

PrOPOSITION 4.2 [14, Prop. 4.7].  The cone o is generated by
{ec, ze M(J(L)); vy, (3,Y") € Z(J(L))}

4.3. ANALYSIS OF FACES OF 0.  We shall concern ourselves just with the closed
points in X(£). So in the sequel, by a point in X(£) we shall mean a closed point.
Let 7 be a face of 0. Let P; be the distinguished point of O, with the associated
maximal ideal being the kernel of the map

1 ifuett,

K[S,] = K, uesS,, ul—>{ )

0 otherwise.
Then, for a point P € X(L£) (identified with a point in A/, I = #£) and denoting
by P(«) the ath coordinate of P, we have

1 if f, et

0 otherwise.

Pr(a):{

Now let
D, ={aeLl]| P (x) #0}.
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4.4. THE BuecTiON D (cf. [14]). We have a bijection
D: {faces of o} <i> {embedded sublattices of L}, D(t) = D,

ProposiTION 4.5 [14, Prop. 4.11].  Let t be a face of o. Then 0, = X(D,).

S. The Distributive Lattice 1; , and the
Grassmann-Hibi Toric Variety

We now turn our focus to a particular distributive lattice—namely,
£=Id,n Z{X = (il,...,id) | 1 fil < v <id Si’l}
The partial order > on I, , is given by

(seenia) = (Jlseeon Ja) &= 0= j1s eoos ia 2 Jja-

For x € 1; ,, we denote the jthentryin x by x(j),1 < j <d.

REMARK 5.1. It is a well-known fact (see e.g. [13]) that the partially ordered set
1,4 , 1s isomorphic to the poset determined by the set of Schubert varieties in Gy,
the Grassmannian of d-dimensional subspaces in an n-dimensional space, where
the Schubert varieties are partially ordered by inclusion. From [15, Sec. 3] we get
that 1, , is a distributive lattice.

REMARK 5.2. Some readers may prefer to work with the lattice of Young dia-
grams that fit into a rectangle with d rows and n — d columns, which we will
denote by Ay ,—4. In this case one may go from /4, to Ay ,—4 using the follow-
ing bijection:

(i1 vsia)
> A= (A.],...,)\.d),)\l Zid—d, )xz:id_l—(d—l), ...,)\d=i1—1.

In the next lemma, by a segment we shall mean a set consisting of consecutive
integers.

LEMMA 5.3 [9]. For L = 14, the following statements hold.

(i) The element T = (iy,...,iq) is join-irreducible if and only if either T is a
segment (we shall call these elements Type 1) or T consists of two disjoint
segments (W, v), with u starting with 1 (Type II).

(ii) The element T = (iy,...,i4) is meet-irreducible if and only if either t is a
segment or T consists of two disjoint segments (|1, V), with v ending with n.
(iii) The element t = (iy,...,iq) is join-irreducible and meet-irreducible if and

only if either T is a segment or T consists of two disjoint segments ((,v),
with ( starting with I and v ending with n.

REMARK 5.4. The join irreducible elements of A, ,_4 are those Young diagrams
that are rectangles (i.e., the nonzero rows all have the same length).
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DEFINITION 5.5. We shall denote X (I, ,) by just X4, and will refer to it as a
Grassmann—Hibi toric variety, or a G-H toric variety for short.

6. Singular Faces of the G-H Toric Variety X ,

Let £ represent the distributive lattice /; ,. From Lemma 5.3 we have that the ele-
ments of J(L) are of two types, Type I and Type II.

Since the generators of the cone o are determined by J (L) (Proposition 4.2), we
will often consider J(L) as a partially ordered set with the partial order induced
from L. Notice that J(£) has one maximal element, which is also the maximal
element of £: 1 = (n—d+1,...,n); and J(£) has one minimal element, which
is also the minimal element of £: 0 = (1,...,d). For each element x of J(L),
there are at most two covers of the form (y,x) in J(L).

For example, if x = (1,...,k,l +1,...,] +d — k) € J(L) then we have y =
a,...,k,l+2,....1+d—k+1)andy =(,...,k—1,1,...,] +d — k), form-
ing the two covers of x in J(£) (if k = 1,then y' = (I,...,l +d — 1)). If | =
n —d + k or if x is of Type I, then x has only one cover.

The following lemma is a corollary of [15, Prop. 3.2].

LEMMA 6.1.  The partially ordered set J(14 ) is a distributive lattice.

REMARK 6.2.  As alattice, J(L£) looks like a tessellation of diamonds in the shape
of a rectangle with sides of length d — 1 and n — d — 1. For example, letd = 3
and n = 7. Then J(L) is the following lattice.

(567)
PN
(456) (167)
SN T
(345) (156) (127)
PO
(234) (145) (126)
N 7 . S
(134) (125)
N
(124)
|
(123)

As in Section 4, let o be the cone associated to X(L£).

DEFINITION 6.3. Forl <i<n—d—1landl1<j <d—1,let

wij =, i+ j+1,...,i+d),
rj=G+1,..i+jn+1+j—d, ... n).
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Define
Lij = L\ [pij, Aijl-

REMARK 6.4. (i) By [9, Lemma 11.5] we have that £;; is an embedded sublattice.
(i1) For o, B € J(£) noncomparable, o A B = u;j forsome 1 <i <n-—-d—1
and1 < j < d —1; thus every diamond in J(£) has a ;; as its minimal element.

DEFINITION 6.5.  Let o;; be the face of o for which Dy, = Lij.

DEFINITION 6.6. A face t of ¢ is a singular (resp. nonsingular) face if P, is a
singular (resp. nonsingular) point of X, .

Our first result is that oy; is a singular face. To prove this, we start by determining
a set of generators for o;.

DEFINITION 6.7. Let us denote by W(o) (or simply W) the set of generators for
o, as described in Proposition 4.2. For a face t of o, define

WE)={veW]| fi,(v) =0 Yo € D.}.

(Here, D; is as in Section 4.4.) Then W () gives a set of generators for 7.

6.8. DETERMINATION OF W(oj;). It will aid our proof below to observe a few
facts about the generators of o;;. First of all, e; is not a generator for any o, since
i eLjjforalll <i < n—dA—landl < j <d—1and s ince e; is nonzero on fli'
Similarly, for the cover (y’,0) where y' = (1,...,d — 1,d + 1), ey — ey is not a
generator for any o;;.

Second, for any cover (y’,y) in J(L£), if y € £;; then e, — e,/ is not a gener-
ator of o;; because fj (e, — e,/) # 0. Thus, in determining elements of W(o;;),
we need only be concerned with elements ey — ey suchthat y € J(L£) N [wij, Aijl.
The elements of J(L£) N [wij, A;;] are

vi=U,...,ji+j+1+t,...,i+d+1t) for0<t<n-—-d-—i,
zi=U,..,j—ti+j+1—1t,...,i+d) for 0<t <.

Note that yo = z9 = pjj and z; = (i +1,...,i + d). In the next theorem we
prove that W(o;;) consists of precisely four elements, forming a diamond in the
distributive lattice J(£) with p;; as the smallest element.

THEOREM 6.9. W(o;;) = {emj —ea, ey, —€p,es — ec,ep — ec}, where A, B,
and C are defined in the proof.

Proof. We divide the proof into two cases, j =l and j > 1.
Casel. Letj=1and1 <i <n —d — 1. Here we have

Mij =(1,l+2,,l+d) and )"ij = (l+],l’l—d+2,,l’l)
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As discussed previously, we find that u;; is coveredin J(L) by A = (i+1,...,i+d)
and B = (1,i +3,...,i +d + 1). We have that both A and B are in the interval
[1ij, Aij]. Let C be the join of A and B in the lattice J(£):

C=(0G(+2,....,i+d+1).

Note that (C, A) and (C, B) are covers in J(L).
We first observe that,

for x = (xq,...,x4) E;C,‘j, if x > Hij then x > C. 6.1)

(This follows because x > p;; and x € £;; imply that x £ A;; and hence x; >
i+2)

Claim (i): e,,; —ea and ey,;; — ep are both in W(o;;). We shall prove the claim
for e, — ea (the proof for e, ., is similar). To prove that e;,;; — e4 is in W(oy;),

we need to show that there does not exist an x = (xy,...,x4) € L;; such that
x > wi; and x # A. But this follows from (6.1) (which implies that, for x =
(X1,...,xq) € ‘C’ij’ if x > Hij then x > A).

Claim (ii): ex — ec and eg — ec are in W(o;;). The proof is similar to that of
Claim (i). Again we show the result for e4 — ec (the proof for eg — ec is simi-
lar). We must demonstrate that there does not exist an x = (xi,...,x4) € L;; such
that x > A but x # C. Again this follows from (6.1) (note that x > A implies in
particular that x > p;;).

Claim (iii): W(oij) = {eu,; —ea,ey; —ep,ea—ec,ep —ec}. Inthe case under
consideration, since j = 1 it follows that the only elements of J(L£) N[5, Aij]
are of the following forms:

vi=,i4+t+2,...,i+d+1t) for0<t<n-—d-—i,
u=>G(+1...,i+d).

Lety, = (i4+t+1,...,i+d+1)forl <t <n—d —i; thus we have covers of
type (y/,y;) forO <t <n—d —iandof type (y4+1,y;) forO0 <t <n—d—1—i.
Observe that yo = u;j, yi = B,z1 = yj = A, and y{ = C. In Claims (i) and (ii)
we have shown that the covers (y1, ¥o0), (¥4, Y0), (¥1, ¥1), and (y1,z1) yield ele-
ments of W(o;;). Also note that C is the only cover of A. Hence, it only remains
to show that ey, — e,/ ¢ W(o;) for2 <t <n—d —i and thate,, —e,,,, ¢ W(0;)
for1 <t <n—d —1-i. For each of these covers, we shall exhibit an x € L;;
such that f; is nonzero on the cover under consideration.

Definex; = (i+t,i+t+2,...,i+d+1t);thenx, € L;jfor2 <t <n—d—i.
Furthermore, f7, is nonzero on ey, — e, for2 <t <n—d —i —1and on
ey, — ey for2 <t <n—d—i. For (y,,y1), note that C € £;; and f;. is nonzero
on ey, — ey,. This completes the proof of Case 1.

Case2. Nowlet2 < j<d—1landl <i <n—d —1. Wehave
wij =, i+ j+1,..,i+d),
rj=(G+1,..i+jn+1+j—d, ... n).
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As in Case 1, we look for covers of w;; in J(£). They are A = (1,...,j — 1,
i+j,...,i+d)yandB=(1,...,j,i+j+2,....,i +d+ 1). Define C to be the
join of A and B in the lattice J(L£); thus,

C=(,....j—Lli4+j+1,....i+d+1).

Claim (iv): {ew —ea,eyu,; — €p,exs — ec,ep — ec} are in W(o;;). We first ob-
serve that,

for x = (x1,...,xq) € Ly, if x > p;; then x > C. (6.2)

For suppose that x # C; now x > u;; and x € £;; together imply that x £ A;;
and thus x; > i +/ forsome 1 <[ < j. Also, x # C; hence x;, < i + k + 1 for
some j < k < d. Therefore,

x=@&,..x—Lxy>i+Lx>i+HI+1L o x>l +k—1,
i+k+1>x,>i4k,...).

Clearly, no such x; exists and thus (6.2) follows.

By (6.2) we have that, if x € £;; is such that x > u;;, thenx > A, B, C. Hence
Claim (iv) follows.

Claim (v): W(oi;) = {ey; —ea,eu,; —ep,ea —ec,ep —ec}. Asin Claim (iii),
we will show that all other covers in J(£) of the form (y’, y), y € J(L) N[ 1ij, Aijl,
are not in W(oj;). As in Section 6.8, all of the elements of J(L£) N [w;j, A;;] are

v=U,...,ji+j+1+t,...,i+d+1t) for 0<t<n-—d-—i,
zi=U,...,j—ti+j+1—t,....,i+d) for0<r<j

(note that z; = (i +1,...,1 + d)). We will examine covers of these elements;
notice that yo = z¢9 = uij, 21 = A, and y; = B.

Letz,=(1,...,j—t,i+j+2—t,...,i+d+1)forl <t <n—d—i, andlet
z]’. = (i+2,...,i+d+1). First we want to show that the covers (z,41,2:)1<s< -1
and (z),2)2</<; do not yield elements in W(o;;). Observe that (z{,z;) = (C, A)
and ey —ec € W(oyj). Also, C € L;; and f_(e;, —e;,) is nonzero; thus e;, — e, ¢
W(oi;), and we may restrict our attention to ¢ > 2. Let

xx=0,...,j—ti+j+1—-t,n—d+j—t+2,....,n) for2<tr<j—1,
xi=@+Ln—-d+2,...,n).
Now, on the interval 2 < t < j — 1, we have the following facts:

0 x; = zy,

(2) xi # ze41s

3) x: % z;s

@) x; £ Ayj.

Facts (1), (3), and (4) hold for the case t = j; it is just a separate check. Hence,
for2 <t < j(resp.2 <t < j— 1) we have that x, € £;; and fj,_ is nonzero on
ez, — ey (resp.e;, —ez,,).
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Next, we must concern ourselves with covers involving y,. Define
yvi=,....j—Li+j+t....i+d+t) forl<t<n—d-—i.
To complete Claim (v), we must show that the covers

(Yit1s yt)lftgnfdfifl and (y[, yt)2§t§n7d7i

do not yield elements of W(o;;). Note that (y;, y1) = (C, B) and thus does yield
an element of W(o;;). Also, f.(ey, — ey,) is nonzero; we can therefore restrict
ourattentiontor > 2. Letx; = (1,...,j—Li+j+Li+j+t+1,...,i+d+1).
On the interval 2 < t < n — d — i, we have the following facts:
") x{ = i,
(2" x; 2 ¥/,
@) x; Zypfort <n—d—i—1,
&) x; £ Aij.
Therefore, on the interval 2 <t <n—d —i(resp.2 <t <n—d—i—1),we
have that x; € £;; and fj,, is nonzero on ey, — e,/ (resp. ey, — ey,,).

This completes Claim (v), Case 2, and the proof of Theorem 6.9. U

REMARK 6.10. The face o;; corresponds to the following diamond in J(£).

This diamond is a poset of rank 2.
LEMMA 6.11.  The face o;; has dimension 3.

Proof. We have {ew —ep, ey, —€p,ep—€c,ep — ec}, a set of generators for o;;.
We can see that a subset of three of these generators is linearly independent. Thus,
if the fourth generator can be put in terms of the first three, the result follows. No-
tice that

(eu; —ea) — (ey,; —ep) + (ea —ec) = ep —ec. U

Our next theorem is an immediate consequence of Theorem 6.9 and Lemma 6.11.

THEOREM 6.12.  We have an identification of the (open) affine piece in X (L) cor-
responding to the face o; ; with the product Z x (K73 \where Z is the cone
over the quadric surface x1x4 — x2x3 = 0 in P3.

We now prove two lemmas that hold for a general toric variety.

LEMMA 6.13. Let X, be an affine toric variety with t as the associated cone.
Then X, is a nonsingular variety if and only if it is nonsingular at the distin-
guished point P;.

Proof. Only the < implication requires a proof. Let then P, be a smooth point.
Let us assume (if possible) that Sing X, # &. We have the following facts.
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» Sing X, is a closed T-stable subset of X;.

e P, € O, for every face 6 of 7 (see Section 1.6); in particular, P, € O, for some
face 0 such that P, is a singular point (such a 6 exists because, by our assump-
tion, Sing X, is nonempty).

We thus obtain that P; € Sing X, a contradiction. Hence our assumption is wrong

and the result follows. O

LEmMMA 6.14. Let T be a face of o (for o a convex polyhedral cone). Then P,
is a smooth point of X, if and only if P; is a smooth point of X.—that is, if and
only if T is generated by a part of a basis of N (where N is the Z-dual of the
character group of the torus).

Proof. We have that X, is a principal open subset of X,,. Hence X,, is nonsingular
at P, if and only if X is nonsingular at P,. By Lemma 6.13, X; is nonsingular at
P, if and only if X, is a nonsingular variety; but by [7, Sec. 2.1], this is true if and
only if 7 is generated by a part of a basis of N. O

We now return to the case where o is the convex polyhedral cone associated
to X(/ d,n)-

THEOREM 6.15. Let T = o; ;. Then the following statements hold.
(i) P; eSingX,.
(it) We have an identification of TCp, X, with Z x (K*E=3 with Z as in
Theorem 6.12; furthermore, TCp X, is a toric variety.
(iii) The singularity at P, is of the same type as that at the vertex of the cone over
the quadric surface x1x4 — x2x3 = 0 in P3. In particular, multp, X, = 2.

Proof. Assertion (i) follows from Lemma 6.13, Lemma 6.14, and Theorem 6.12.
Because X, is open in X, we may identify TCp, X, with TCp, X, which in turn
coincides with X; (since X, is of cone type, where P; is identified with the ori-
gin). Assertion (ii) follows from this in view of Theorem 6.12 and given that X,
is a toric variety. Assertion (iii) is immediate from (ii). O

Next, we will show that the faces containing some o;; are the only singular faces.
We first prove some preparatory lemmas.

LEMMA 6.16. Let A # 0. If ex — ec is in W (the set of generators of o as de-
scribed in Proposition 4.2), then ey — ec is in W(0y;) (cf. Definition 6.7) for some
(i,j),wherel <i<n—d—1land1<j<d-1.

Proof. If A is equal to some ft;;, then C must be one of the two covers of u;; =
A,...,0i+j+1,...,i +d) in J(L) and we are done by Theorem 6.9. So we
will assume that A # u;;. Hence A is a join irreducible of one of the following
two forms.

Case 1: A =(1,....k,n —d +k+1,...,n) for some k. Then p,_4_1x =
(1,...,k,n —d +k,...,n — 1), and (A, p—a—1,x) is a cover in J(L). Also, A
has only one cover in J(L£), which must be C; thus e4 — ec is an element of
W(0n—d—1,k), as shown in Theorem 6.9.
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Case2: A= (k+1,....k+d),1 <k <n—d—1(notethatk < n —d, since
C > A because e — ec € W). Then we have py; = (1,k+2,...,k+d), and
(A, pug,1) is acoverin J(L). Also, we musthave C = (k+2,...,k+d + 1), and
es — ec is an element of W(oy,1) by Case 1 of Theorem 6.9. O

We now return to the case of a Grassmann—Hibi toric variety.

THEOREM 6.17.  Let T be a face such that D is not contained in any L;; for 1 <
i<n—d-—1land1 < j <d—1. Then the associated face t is nonsingular (i.e.,
if a face T does not contain any one o;;, then T is nonsingular).

Proof. By Lemma 6.14, for t to be nonsingular it must be generated by part of a
basis for N. Since t is generated by a subset W(t) of W, for t to be singular its
generators would have to be linearly dependent. (Generally this is not enough to
prove that a face is singular or nonsingular, but since all generators in W have co-
efficients equal to &1, any linearly independent set will serve as part of a basis for
N.) Suppose 7 is singular; then there is some subset of the elements of W(t) equal
to {e; — ea,...} such that ) a;j(e; — e;) = 0, with coefficients a;; nonzero for at
least one (i, j).

Recall that the elements of W can be represented as all the line segments in the
lattice J(L£) with the exception of e; (see diagram in Remark 6.2). Therefore, the
linearly dependent generators of T must represent a “loop” of line segments in
J(L). This loop will have at least one bottom corner, left corner, top corner, and
right corner.

Choose some particular £;;. By Theorem 6.9, W(o;;) = {emj —ea,eyu; —ep,
es — ec,ep — ec}. These four generators are represented by the four sides of a
diamond in J(£). Thus, by hypothesis, the generators of T represent a loop in
J(L) that does not traverse all four sides of the diamond representing all four gen-
erators of o;;.

By hypothesis, D, is not contained in any £;; forl1 <i <n—d—1and1 <
J = d —1; hence there must be at least one element of D; in the interval [, A1,
say o € [pij, Aij]. We have o > p;; and o # C for C as defined in the proof of
Theorem 6.9. Based on how o compares with both A and B, we can eliminate
certain elements of W from W(t). There are four possibilities; we list all four,
as well as the corresponding generators in W(o;;) that are not in W(t) (i.e., those
generators v in W(o;;) such that f7,(v) # 0):

a2 A a0t B = e, —eaey —epg W),
a>A, 0B = eA—ec,eMij—eB¢W(t);
a2 A, a>B = ey, —eaep—ecgW(r);
a>A,a>B = e4 —ec,ep —ec & W(1).

Therefore, it is impossible to have {e,,, — ea,ea —ec} or {e,,, — ep,ep — ec}
contained in W(t). This is true for any (i, j) and so, in view of Lemma 6.16, our
“loop” in J(L) that represented the generators of T cannot have a left corner or a
right corner. Thus it is really not possible to have a loop at all; hence the genera-
tors of 7 are linearly independent, and the result follows. UJ
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COROLLARY 6.18. The G-H toric variety X 4, is smooth along the orbit O, if
and only if the face T does not contain any o;;.

Combining this corollary with Theorem 6.15 and Lemma 6.11 yields our first main
theorem as follows.

THEOREM 6.19. Let £ = 1 ,. Then the following statements hold.

(i) Sing X(£) = Ua’_]_ 5%,, where the union is taken over all the o; ; (as in
Theorem 6.9). “

(ii) Sing X (L) is pure and of codimension 3 in X(L), and the generic singulari-
ties are of cone type (more precisely, the singularity type is the same as that
at the vertex of the cone over the quadric surface x,x4 — x2x3 = 0 in P3).

(iii) For T =0y j, TCp X (L) is a toric variety and multp. X(L) = 2.

REMARK 6.20. Theorem 6.19 thus proves the conjecture of [9] using just the com-
binatorics of the cone associated to the toric variety X, , (for a statement of the
conjecture of [9], see Remark 9.1). Further, it gives a description of Sing X, ,
purely in terms of the faces of the cone associated to X4 .

7. Multiplicities of Singular Faces of X ,

In this section we take £ = I, ,, determine the multiplicity of X, , (= X(I3,,))
at P, for certain of the singular faces of X ,, and deduce a product formula. For
14, we have defined £;; and the corresponding face o; ; for1 < j < d —1and
1 <i <n—d —1; hence, for I, , we need only consider £, ; forl <i <n —3.

For example, the following diagram is the poset of join irreducibles for 15 5. We
write o; 1 inside each diamond because the four segments surrounding it represent
the four generators of the face.

5,6)
SN
(1,6) 031 (45)
N RN
(1,S) 021 (3,4
N RN
(L4 o (2,3)
~ 7
(1,3)
|
(1,2)

In order to go from the join irreducibles of I, ¢ to I5 7, we simply add (1,7) and
(6,7) to the poset above, forming o4 ;. We will see that this makes the calculation
of the multiplicities of singular faces of I, , much easier.

In the sequel, we shall denote the set of join irreducibles of I , by J; ,; also, as
in the previous sections, o will denote the polyhedral cone corresponding to X5 ,.
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7.1. multp, X, ,. Because X, , is now of cone type (i.e., the vanishing ideal is
homogeneous), we have a canonical identification of Tp X, , (the tangent cone
to X4, at P,) with X, ,. Hence, by Theorem 3.10, multp, X4, equals the num-
ber of maximal chains in /; ,. So we begin by counting the number of maximal
chainsin /I ,.

As we move through a chain from (1, 2), at any point (i, j) we have at most two
possibilities for the next point, (i +1, j) or (i, j + 1). For each cover in our chain,
we assign a value: for a cover of type ((i, j + 1), (i, j)), we assign +1; for a cover
of type ((i + 1, j), (i, j)), we assign —1.

A maximal chain C in I, ,, contains 2n — 3 lattice points, so every chain can be
uniquely represented by a (2n — 4)-tuple of 1s and —1s; let us denote this (2n —4)-
tuple by n¢e = (ai, ..., a2—4).

For any such nc, it is clear that 1 and —1 occur precisely n — 2 times. Also, we
can see that a; = +1 and that, for any 1 < k < 2n — 4, if {ay, ..., a;} contains
more —1s than +1s then we have arrived at a point (i, j) with i > j, which is not
a lattice point. Thus, we must have a; + -+ - + a; > O forevery 1 < k < 2n — 4.

THEOREM 7.2 [16, Cor. 6.2.3]. The Catalan number

1 2n
Cat, = —— , n>0,
n+1\n

counts the number of sequences ay, ..., a, of Is and —Is with
al+"'+ak20 (k=1,2,...,2n),
anday+---+an, =0.

COROLLARY 7.3.  The multiplicity of X2 , at P, is equal to the Catalan number

1 2n —4
Cat, , = —— .
A2 n—l(n—Z)
7.4. multp, X, ,. Next we shall determine multp, X, , for T of block type (see
Definition 7.7 to follow). Let T be a face of o such that the associated (embedded
sublattice) D; is of the form
D, =[(1,2),0,i+DJVU[G+k+2,i +k+3),(n —1,n)]
=NLUDL (say),
where I} = [(1,2),(i,i + D]and I, = [ +k+2,i +k+3),(n —1,n)] for1 <
i<n—3and0<k<n-—i-—3.
We shall now determine W(t) (cf. Section 6.7). Let A, denote the interval
[(1L,i +2), G +k+2,i +k+3)]inJy,:

G+k+2,i+k+3)

/ \\\
(1,i +k+3) ~ -
\\\\\\ (+1,i+2)
\\\ /

T(1L,i42)
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LEMMA 7.5.  With T as just described, we have that W(t) = {eyy —ey | (,¥') is
a coverin A.}.

Proof. Clearly, e, ) (the element in W(o) corresponding to the unique maxi-
mal element (n —1,n) in J, ,,) is notin W(r), since (n —1,n) € D;. Let us denote

0={+k+2,i+k+3) and 5§=C(,i+1).
Claim 1: For a cover (y,y') in A, fi,(eyr —ey) = 0 forall « € D,. The
claim follows in view of the following facts for a cover (y, y’) in A,:

e v,y €lgandhence y,y’ € I, forall a € I;
* v,y ¢ Is and hence y, y' ¢ I, for all « € I;.

Claim 2: For a cover (y,y') in J» , not contained in A, there exists an o € D,
such that fi (e, —ey) # 0. Note that a coverin J; , is one of the following three
types.

Type I ((1,/),(1,j —1)),3<j <n.

Let now (y,y’) be a cover not contained in A..

If (y,y') is of Type I, then (y, y") = ((1, j), (1, j — 1)), where either j <i +2
or j > i+ k+4. Letting

(1,j-D if j<i+2,

(=2j—1 if jzi+k+4,
we have o € D; and fj (e, —e,) # 0.

If (y,y’) is of Type II, then (y, y') = ((j — 1, j), (j — 2, j — 1)), where either
j<i+2orj>i+k+4. Lettinga = (j —2,j — 1), we have ¢ € D, and
fla(ey’ - ey) 75 0.

If (y,y") is of Type III, then (y,y") = ((j — 1, /), (1, j)), where either j <
i+1lorj>i—+k+4. Letting

(1, ) if j<i+],
G20 i jzitk+4
we have o € D; and fj (e, —e,) # 0.
The required result now follows from Claims 1 and 2. U

COROLLARY 7.6.  With t as in Lemma 7.5, we have

T=0,1U0i411 U Ui

DEeFINITION 7.7. We define a face t as in Lemma 7.5 as a J-block (i.e., T is a
union of consecutive o; ;).

REMARK 7.8. Note that a union of faces need not be a face.

7.9. THE HIBI VARIETY Z, ,. For an integer r > 3, let I,; denote the distribu-
tive lattice I , \ {(1,2), (r — 1,r)}. We define Z, , to be the Hibi variety asso-
ciated to I, .. Note (cf. Proposition 4.2) that the cone associated to Z, , has a
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set of generators consisting of {e,» — e,}, where (y,y’) is a cover in the sub-
lattice [(1,3), (r — 1,r)] of J, , (the set of join irreducibles of I, ,). In view of
Theorem 3.10 we have

multy Z, , = multp, X, , = Cat,_»,

where 0 denotes the origin.

THEOREM 7.10.  Let t© be a face of o thatis a “J-block” of k + 1 consecutive o; |
(as in Definition 7.7 ). We have an identification of X, (the open affine piece of X,
corresponding to T) with Zy j+4 x (K*)™, where m = codim, 7 = 2(n — k) — 6.

Proof. In view of Section 1.6 and Proposition 4.5, we have
codim, T = dim X(D,) = #{elements in a maximal chain in D.}.

From this it is clear that codim, T = 2(n — k) — 6. Next, in view of Lemma 7.5
and Section 7.9, we obtain an identification of X, with Z; 14 x (K*)™ (for m as
in the theorem). O

THEOREM 7.11. Let T be as in Theorem 7.10.

(i) We have an identification of TCp, X, with Z3 xra X (K*)", where m =
codim, T = 2(n — k) — 6; also, TCp,_ X is a toric variety.
(i) multp, X , = Catiir = 75(3)-

Proof. Since X, is open in X, we may identify 7Cp, X, with TCp_ X, which in
turn coincides with X; (because X; is of cone type, where P; is identified with
the origin). Assertion (i) follows from this in view of Theorem 7.10 (and the fact
that X is a toric variety).

Assertion (ii) follows from (i) and Corollary 7.3. O

7.12. A ProbpuCT ForMULA. Here we give a product formula for multp. X5 ,,
where 7 is a union of pairwise nonintersecting and nonconsecutive J-blocks (see
Remark 7.15).

Let 7 be a face of o such that the associated (embedded sublattice) D, is of the
form

D, =[(1,2), (i, i1 + DIU[G + ki + 2,0 + ki + 3), (2,02 + D]
Ul(ia + ko +2,ip+ky +3),(n —1,n)]
=Lh1UJpLUJs (say),

where i; + k; + 1 < i, and where
Ji=1(1,2), (i, i1 + DI,
Jo =[G+ ki +2,ii + ki +3), (i2,i2 + D],
Ji=[(i2+ky+2,i2+ky+3),(n —1,n)].

Consider the following sublattices in J; , (the set of join irreducibles in I, ,):

A=[1,i1 +2), (i1 + ki +2,i1 + k1 +3)],
B =[(,i2+2),(i2 +ky +2,i2 + ko + 3)].
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LeEmMMA 7.13.  With T as before, we have W(t) = {eys — e, | (y, ') is a cover in
AU B}

Proof. We proceed as in the proof of Lemma 7.5, where e(,—_1 ) is not in W(t)
(since (n — 1,n) € D;). Let us denote:

01 =(1+k+2,i1+ ki +3), 0r = (ia+ ko +2,in+ ko +3);
8= (i1 + 1), 8y = (ip,in +1).

For any cover (y,y’) in AU B, we clearly have y, y’ € Iy, and hence y, y" € I,, for
all « € J3; also, y, y’' ¢ I5, and hence y, y’ ¢ I, for all « € J;. Thus we obtain that

f[a(e‘y/ —ey) =0 forall C(GJIUJ3. (71)

Next, if (y,y’) is a cover in A, then y, y’ € Iy, and hence y,y’ € I, forall o €
Jy. If (y,y") is acover in B, then y,y’ ¢ I5, and hence y,y’' ¢ I, for all « € J5.
Note that 9, (resp. §,) is the smallest (resp. largest) element in J,. Therefore,

fr.(eyr —ey) =0 forall e/, (7.2)

Together, (7.1) and (7.2) imply the inclusion “2”. We shall prove the inclusion
“C” by showing that, if a cover (y, y’) is not contained in A U B, then there exists
an o € D; such that f (e,» — e,) # 0. This proof runs along lines similar to the
proof of Lemma 7.5. Let then (y, y") be a cover in J, , not contained in A U B. It
is convenient to introduce the following sublattices in J; ,:

P =[(1,2),>G+1Lia+2)]
O =[(Li+k+3),>G+1i+2)],
R=[(1,i2+ky+3),(n—1Ln)].

We distinguish three cases as follows.

Case 1: (y,y’) is of type I (cf. proof of Lemma 7.5)—say, ((1, j), (1, j — 1)).

(1) If (v, y’) is contained in P, then j < i;+2. Weleta = (1, j — 1). Note that
a e Jyand fi, (e, —e,) #0.

(ii) If (y, y’) is contained in Q (resp. R), then iy + k; +4 < j < iy + 2 (resp.
ir+k,+4<j<n)Weletaa = (j—2,j—1). Note that « € J, (resp. J3) and
Ji1,(ey —ey) #0.

Case 2: (y,y") is of type II—say, ((j —1,),(j —2,j —1)). Then3 < j <
i1+2,ii+ki+4<j<i+2,0rip+ky;+4 < j < naccordingly as (y,y’)
is contained in P, Q,or R. Weleta = (j — 2, j — 1). Note that ¢ € Jy, J», J3
accordingly as (y,y’) is contained in P, Q, R, and fj (e, —e,) # 0.

Case 3: (y,y') is of type lll—say, ((j — 1, j), (1, j)).

(i) If (y,y’) is contained in P, then j < ij + 1. We let « = (1, j). Note that
a € Jyand fi (e, —ey) #0.

(i) If (y, y’) is contained in Q (resp. R), theni; + &k +4 < j < iy + 1 (resp.
ir+k,+4<j<n).Weleta = (j —2,j). Note that @ € J,, J3 accordingly as
(y,y") is contained in Q, R, and fi,(eyr —ey) # 0. O
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As an immediate consequence of Lemma 7.13 and Corollary 7.6, we have the fol-
lowing result.

COROLLARY 7.14. Let T be as in Lemma 7.13. Then t = t1 U 14, where
T = ail,l u..-u Ui1+k1,1,

T2 =0jp,1 U -+ U Ojyphy, 1

REMARK 7.15. We refer to a pair (71, 72) of faces as in Corollary 7.14 as non-
intersecting J-blocks.

THEOREM 7.16. Let t = 11 U 15, where t| and T, are two nonintersecting (and
nonconsecutive) J-blocks (see Corollary 7.14). We have an identification of X,
(the open affine piece of X, corresponding to T) with Z y, 44 X Z3 gy+4 X (K*)™,
where m = codim, T = 2(n — k; — kp) — 9.

The proof is similar to that of Theorem 7.11 (using Lemma 7.13).
Our next theorem follows as an immediate consequence.

THEOREM 7.17. Let T = 171 U T2, where 11 and t, are two nonintersecting (and

nonconsecutive) J-blocks.

(i) We have an identification of TCp, Xs With Z j+4 X Z3 k44 X (K*)™, where
m = codim, T = 2(n —k;—ky) —9; in particular, TCp, X, is a toric variety.

(i1) multp, Xo , = (multptl X20) - (multpr2 X20).

The proof is similar to that of Theorem 7.11 (using Theorem 7.16).

REMARK 7.18. It is clear that we can extend this multiplicative property to T =
71U - U 14, a union of s pairwise nonintersecting, nonconsecutive J-blocks.

8. A Multiplicity Formula for X, ,

In this section we give a formula for multp, X4 ,. By Theorem 3.10, multp, X4 ,
equals the number of maximal chains in 7, ,. We shall provide an explicit formula
for the number of maximal chains in I, ,. Observe that the number of chains in
1y, from (1,2,...,d) to (n —d +1,...,n) is the same as the number of chains
from (0,0,...,0) to (n —d,n — d,...,n — d); hence, for any (ii,...,iy) in the
chain, i; > i, > --- >i; > 0. Now set

M:(/’Lh:u’Z’---,/’Ld):(n_d3n_d’---,n_d)' (81)

For any A - m, let f »=K »,mm—that is, the number of standard Young tableaux
of shape A (cf. [16]).

PROPOSITION 8.1 [16, Prop. 7.10.3].  Let X be a partition of m. Then the number
f* counts the lattice paths 0 = vg, vy, ..., Uy in R! (Wherel = 1(1)) from the ori-
gin vg to v, = (A1, Ao, ..., A1), with each step a coordinate vector, and staying
within the region (or cone) x; > xp > --- > x; > 0.
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Thus, for u as described in (8.1), the number of maximal chains in /; , is equal
to f~
An explicit description of f* is given in [16, Cor. 7.21.5].

PROPOSITION 8.2. Let A = m. Then

fr=

m!
[Tuci h@)

The statement of the proposition refers to u € A as a box in the Young diagram of
A and to i (u) as the “hook length” of u. The hook length is easily defined as the
number of boxes to the right and below of u, including u once.

Let us take, for example, I3 6. Then u = (3,3, 3), and the Young diagram of
shape p with hook lengths given in their corresponding boxes is as follows.

5|43
432
31211

Therefore,
. 9!
= 5.42.33.22.1

In fact, in the I, ,, scenario our derived partition  (given by (8.1)) will always
be arectangle, and we can deduce a formula for f# that does not require the Young
tableau. The top left box of w will always have hook length (n —d) +d — 1 =
n — 1; the box directly below it (and the box directly to the right of it) will have
length n — 2. For any box of u, the box below and the box to the right will have
hook length 1 less than that of the box with which we started.

Since the posets 1, ,,and I,,_ 4 , are isomorphic, we may assume thatd < n — d.
Then

l_[h(u)

uep

=(n—-Dm=27%(n—d)n—d-D" - d-1""- 2.

42.

Thus we arrive at the following statement.

THEOREM 8.3. The multiplicity of X, , at P, is equal to
(d(n—d))!
(1= D =22 (n—d)i(n —d — D7 (@d)id — DI @X(1)’

9. Conjectures

In this section, we give two conjectures on the multiplicity at a singular point. We
also mention a result relevant to this paper on Sing X(£) for £ the Bruhat poset of
Schubert varieties in any minuscule G/P.

The generating set W(t) of a face t consists of {e,” — e,} for certain covers
(y,y") in J(L) (assuming that ile D¢, so that e; is not in W(r)). Thus W(z) de-
termines a subset H(t) := | J H(t); of J(L) such that W(t) consists of all the
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covers in the H(t);. Thus, H(t) for T = 0;; would be the diamond given in Re-
mark 6.10. In Section 7.12, if T = 7; U 1, for 7y, 72 a pair of nonconsecutive and
nonintersecting J-blocks, then H(t) = H(1;) U H(t).

CoNJECTURE 1. The multiplicity formula for X, , in Theorem 7.17 extends to
X 4. Namely, let o be the convex polyhedral cone associated to X, , and let
7,71, T3 be faces of o such that t = 7; U ;. Then, if H(r;) N H(t;) is empty, we
have multp, X4, = (multp, X4 ,) - (multp,, X4 ,).

Theorem 7.11 implies that multp” Xon = mult,urz X, , if both 7; and 7, are J-
blocks of the same length; in particular, H(7;) and H(t;) are isomorphic. Guided
by this phenomenon, we make the following conjecture.

CoNJECTURE 2.  For a face T of any Hibi toric variety X (£), multp, X(L£) is deter-
mined by the poset H(t). By this we mean that if 7, t" are such that H(t), H(t')
are isomorphic posets, then the multiplicities of X(£) at the points P;, P,/ are
the same.

REMARK 9.1.  Toward generalizing Theorem 6.19 to other Hibi varieties, we will
first explain how the lattice points u;; and A;; were chosen. Let § and 6 be two
incomparable meet and join irreducibles in 1,4 ,; say, 6 = (i +1,...,i +d) and
0=Q,....5,n+j+1—d,...,n). Thend A§ = p;5and 6 vV § = A;;. In view
of Theorems 6.15 and 6.17, we have the following statement.

In X g, P; is a smooth point if and only if, for every pair (0,5) of join
and meet irreducibles, there is an a € [0 A 5,0 V 8] such that P.(«), the
ath coordinate of P, is nonzero.

In fact, this is the content of the conjecture of [9, Sec. 11].

These results suggest that we look at such pairs of join—meet irreducibles in other
distributive lattices and expect the components of the singular locus of the associ-
ated Hibi toric variety to be given by Theorem 6.19(i) for the case of 1, ,,. However,
this is not true in general, as the following counterexample shows.

9.2. CoUNTEREXAMPLE. Let £ be the interval [(1,3,4), (2,5, 6)], a sublattice
of 13,6-

(256)
pd N
(246) (156)
N e
(245) (146)
N
(145) ~ (236)
N
(235) (136)
e N
(234) (135)
N e
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Notice that £ has only one pair of join—meet irreducibles, (2, 3,4) and (1, 5, 6),
and thus the corresponding interval [0 A §,60 Vv 4] is the entire lattice. Therefore,
if our result (Theorem 6.19(i)) on the singular locus of G-H toric varieties were to
generalize to other Hibi toric varieties, then any proper face would be nonsingu-
lar. This follows because any face t must correspond to an embedded sublattice
D., and naturally this sublattice will intersect the interval, which is just L.

But this is not true! For example, let t be the face of o such that D, = {(1, 5, 6)}.
Then

T = C{eus — €156, €136 — €156, €135 — €145, €135 — €136, €134 — €135)

is a set of generators for t. Clearly, t is not generated by the subset of a basis, so
7 is a singular face (see Lemma 6.14).

Nevertheless, Theorem 6.19 holds for minuscule lattices as described next. Let
G be semisimple, and let P be a maximal parabolic subgroup with w as the asso-
ciated fundamental weight. Let W (resp. Wp) be the Weyl group of G (resp. P).
Then the Schubert varieties in G/P are indexed by W/Wp. Let P be minuscule, by
which we mean that the weights in the fundamental representation associated to
o form one orbit under the Weyl group. It is known that the Bruhat poset W/Wp
of the Schubert varieties in G/P is a distributive lattice; see [11] for details.

DEFINITION 9.3. We call £ := W/Wp a minuscule lattice and X(L) a Bruhat—
Hibi toric variety.

REMARK 9.4.  Any Grassmann-Hibi toric variety X 4 , is also a Bruhat-Hibi toric
variety.

Now, for £ a minuscule lattice as in Definition 9.3, consider a pair («, 8) of in-
comparable join—meet irreducible elements. It has recently been shown [4] that a
Bruhat-Hibi toric variety X(£) is smooth at P, (for t a face of o) if and only if,
for each incomparable pair (o, B) of join—meet irreducibles in L, there exists at
least one y € [(@¢ A B), (o Vv B)] such that P;(y) is nonzero.
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