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Singular Loci of
Grassmann–Hibi Toric Varieties

J. Brown & V. Lakshmibai

Introduction

Let K denote the base field, which we assume to be algebraically closed and of ar-
bitrary characteristic. Given a distributive lattice L, letX(L) denote the affine vari-
ety in A#L whose vanishing ideal is generated by the binomialsXτXϕ−Xτ∨ϕXτ∧ϕ
in the polynomial algebra K[Xα ,α ∈ L] (here, τ ∨ ϕ (resp. τ ∧ ϕ) denotes the
join—the smallest element of L greater than both τ and ϕ (resp. the meet—the
largest element of L smaller than both τ and ϕ)). These varieties were extensively
studied by Hibi in [10], where it is proved that X(L) is a normal variety. On the
other hand, Eisenbud and Sturmfels [6] showed that a binomial prime ideal is toric
(here, “toric ideal” is in the sense of [17]). Thus one obtains that X(L) is a normal
toric variety. We shall refer to such an X(L) as a Hibi toric variety.

For L the Bruhat poset of Schubert varieties in a minuscule G/P, it is shown in
[8] that X(L) flatly deforms to Ĝ/P (the cone over G/P); in other words, there
exists a flat family over A1 with Ĝ/P as the generic fiber and X(L) as the spe-
cial fiber. More generally, for a Schubert variety X(w) in a minuscule G/P, it is
shown in [8] that X(Lw) flatly deforms to X̂(w), the cone over X(w) (here, Lw is
the Bruhat poset of Schubert subvarieties of X(w)). In a subsequent paper [9], the
authors studied the singularities of X(L) for L the Bruhat poset of Schubert vari-
eties in the Grassmannian; they also gave a conjecture (see [9, Sec. 11]; see also
Remark 9.1 of this paper) giving a necessary and sufficient condition for a point
on X(L) to be smooth and proved the sufficiency part of the conjecture. Subse-
quently, the necessary part of the conjecture was proved in [2] by Batyrev and
colleagues. The toric varieties X(L) for L the Bruhat poset of Schubert varieties
in the Grassmannian play an important role in the area of mirror symmetry; for
more details, see [1; 2]. We refer to such an X(L) as a Grassmann–Hibi toric va-
riety (or G-H toric variety).

The proof (in [9]) of the sufficiency part of the conjecture in [9] uses the Jaco-
bian criterion for smoothness, whereas the proof (in [2]) of the necessary part of
the conjecture in [9] uses certain desingularization of X(L).

It should be remarked that neither [9] nor [2] discusses the relationship between
the singularities of X(L) and the combinatorics of the polyhedral cone associated

Received November 10, 2008. Revision received March 25, 2009.
The second author was partially supported by NSF Grant DMS-0652386 and Northeastern University

RSDF 07-08.

243



244 J. Brown & V. Lakshmibai

toX(L); the main goal of this paper is to bring out this relationship. Our first main
result is a description of the singular locus of a G-H toric variety X(L) in terms
of the faces of the associated polyhedral cone; in particular, we give a proof of the
conjecture of [9] using only the combinatorics of the polyhedral cone associated
to the toric variety X(L). Furthermore, we prove (Theorem 6.19) that the singular
locus of X(L) is pure and of codimension 3 in X(L) and that the generic singu-
larities are of cone type (more precisely, the singularity type is the same as that at
the vertex of the cone over the quadric surface x1x4 − x2x3 = 0 in P3); we also
determine the tangent cone to X(L) at a generic singularity, which turns out to be
a toric variety (by a “generic singularity” we mean a point P ∈X(L) such that the
closure of the torus orbit through P is an irreducible component of SingX(L), the
singular locus of X(L)). We further obtain (see Corollary 7.3 and Theorem 7.11)
an interpretation of the multiplicities at some of the singularities as certain Cata-
lan numbers when L is the Bruhat poset of Schubert varieties in the Grassmannian
of 2-planes in Kn. We also present a product formula (Theorem 7.17).

It turns out that the conjecture of [9] does not extend to a general X(L) (see
Section 9.2 for a counterexample). However, in [4] we proved the conjecture of
[9] for other minuscule posets.

This paper contains more results for the Grassmann–Hibi toric varieties that
cannot be deduced from the results of [4]; for example, the multiplicity formulas
provided in Sections 7 and 8 of this paper are not discussed in [4]. The singular-
ities of the Hibi toric variety were also studied by Wagner in [18], where it was
shown that all Hibi toric varieties have a singular locus of codimension ≥ 3. In
this paper, we go into much more detail about the singularities of a G-H toric
variety.

The balance of the paper is organized as follows. In Sections 1 and 2 we recall
generalities on toric varieties and distributive lattices, respectively. In Section 3,
we introduce the Hibi toric variety X(L) and recall some results from [9; 14] on
X(L). In Section 4, we recall results from [14] on the polyhedral cone associated
to X(L); in Section 5, we introduce the Grassmann–Hibi toric variety. In Sec-
tion 6 we prove our first main result, giving the description of SingX(L) in terms
of faces of the cone associated to X(L); we also present our results on the tan-
gent cones and deduce the multiplicities at the associated points. In Section 7 we
present certain product formulas for X(L), where L is the Bruhat poset of Schu-
bert varieties in the Grassmannian of 2-planes in Kn. In Section 8, we present a
formula for the multiplicity at the unique T -fixed point of X(L) for L the Bruhat
poset of Schubert varieties in the Grassmannian of d-planes in Kn. In Section 9
we present a counterexample to show that the conjecture of [9] does not extend
to a general X(L); in this section, we also present two conjectures that concern
extending the multiplicity formulas of Sections 7 and 8.

1. Generalities on Toric Varieties

Our main object of study is a certain affine toric variety, so in this section we
recall some basic definitions on affine toric varieties. Let T = (K∗)m be an
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m-dimensional torus. Let Al be the affine l-space (i.e., l-tuples of elements of the
field K).

Definition 1.1 [7; 12]. An equivariant affine embedding of a torus T is an affine
variety X ⊆ Al containing T as an open subset and equipped with a T -action
T × X → X extending the action T × T → T given by multiplication. If in
addition X is normal, then X is called an affine toric variety.

1.2. The Cone Associated to a Toric Variety. Let M be the character group
of T, and let N be the Z-dual of M. Let NR = N ⊗Z R, and recall [7; 12] that
there exists a strongly convex rational polyhedral cone σ ⊂ NR such that

K[X] = K[Sσ],

where Sσ is the subsemigroup σ∨ ∩M for σ∨ the cone in MR dual to σ. Note that
Sσ is a finitely generated subsemigroup in M.

1.3. Orbit Decomposition in Affine Toric Varieties. We shall denoteX also
by Xσ . We may suppose, without loss of generality, that σ spans NR so that the
dimension of σ equals dimNR = dimT. (By “dimension of σ” we mean the vec-
tor space dimension of the span of σ.)

Definition 1.4. A face τ of σ is a convex polyhedral subcone of σ of the form
τ = σ ∩ u⊥ for some u∈ σ∨, and it is denoted τ < σ. Note that σ itself is consid-
ered a face.

We have that Xτ is a principal open subset of Xσ ; namely,

Xτ = (Xσ)u.

Each face τ determines a (closed) point Pτ in Xσ : the point corresponding to the
maximal ideal in K[X] = K[Sσ] given by the kernel of eτ : K[Sσ]→ K, where
for u∈ Sσ we have

eτ(u) =
{

1 if u∈ τ ⊥,

0 otherwise.

Remark 1.5. As a point in Al, Pτ may be identified with the l-tuple with 1 at the
ith place if χi is in τ ⊥ and with 0 otherwise. (Here, χi denotes the weight of the
T -weight vector yi—the class of xi in K[Xσ].)

1.6. Orbit Decomposition. Let Oτ denote the T -orbit in Xσ through Pτ . We
have the following orbit decomposition in Xσ :

Xσ =
⋃
θ≤σ

Oθ , Oτ =
⋃
θ≥τ

Oθ , dim τ + dimOτ = dimXσ .

See [7; 12] for details.
Thus τ �→ Oτ defines an order-reversing bijection between {faces of σ} and
{T -orbit closures in Xσ}.
Lemma 1.7 [7, Sec. 3.1]. For a face τ < σ, K[Oτ ] = K[Sσ ∩ τ ⊥].
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2. Finite Distributive Lattices

We shall study a special class of toric varieties—namely, the toric varieties associ-
ated to distributive lattices. We shall first collect some definitions on finite partially
ordered sets. A partially ordered set is also called a poset.

Definition 2.1. A finite poset P is called bounded if it has both a unique maxi-
mal and a unique minimal element, denoted 1̂ and 0̂ respectively. A totally ordered
subset C of P is called a chain, and the number #C − 1 is called the length of the
chain. A bounded poset P is said to be graded (or ranked ) if all maximal chains
have the same length. If P is graded, then the length of a maximal chain in P is
called the rank of P.

Definition 2.2. Let P be a graded poset. For λ,µ∈P with λ ≥ µ, the graded
poset {τ ∈ P | µ ≤ τ ≤ λ} is called the interval from µ to λ and is denoted by
[µ, λ].

Definition 2.3. Let P be a graded poset, and let λ,µ ∈ P with λ ≥ µ. The
ordered pair (λ,µ) is called a cover (and we also say that λ covers µ) if [µ, λ] =
{µ, λ}.
Definition 2.4. A lattice is a partially ordered set (L,≤) such that, for every
pair of elements x, y ∈ L, there exist elements x ∨ y and x ∧ y, called (respec-
tively) the join and the meet of x and y, defined by:

x ∨ y ≥ x, x ∨ y ≥ y, and if z ≥ x and z ≥ y then z ≥ x ∨ y;
x ∧ y ≤ x, x ∧ y ≤ y, and if z ≤ x and z ≤ y then z ≤ x ∧ y.

It is easy to check that the operations ∨ and ∧ are commutative and associative.

Definition 2.5. Given a lattice L, a subset L′ ⊂ L is called a sublattice of L if
x, y ∈L′ implies that x ∧ y ∈L′ and x ∨ y ∈L′.
Definition 2.6. A lattice is called distributive if the following identities hold:

(i) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z);
(ii) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).
Definition 2.7. An element z of a lattice L is called join-irreducible (resp. meet-
irreducible) if z = x ∨ y (resp. z = x ∧ y) implies either z = x or z = y. The set
of join-irreducible elements of L is denoted by J(L).
The following lemma is easily checked.

Lemma 2.8. Let L be a finite distributive lattice. Then

J(L) = {τ ∈L | there exists at most one cover of the form (τ, λ)}.
Definition 2.9. A subset I of a posetP is called an ideal ofP if, for all x, y ∈P,

x ∈ I and y ≤ x �⇒ y ∈ I.
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Theorem 2.10 [3, Chap. III, Sec. 3]. Let L be a finite distributive lattice with
minimal element 0̂, and let P = J(L) \ {0̂} with the induced partial order of
L. Then L is isomorphic to the lattice of ideals of P by means of the lattice
isomorphism

α �→ Iα = {τ ∈P | τ ≤ α}, α ∈L.

For α ∈ L, let Iα denote the ideal corresponding to α under the isomorphism in
Theorem 2.10.

Remark 2.11. As a consequence of Theorem 2.10, we have that every finite dis-
tributive lattice is graded.

3. The Variety X(L)

Throughout the following sections, let L be a finite distributive lattice.
Consider the polynomial algebra K[Xα , α ∈ L], and let I(L) be the ideal

generated by {XαXβ − Xα∨βXα∧β , α,β ∈ L}. Then one knows [10] that
K[Xα , α ∈ L]/I(L) is a normal domain; in particular, we have that I(L) is a
prime ideal. Let X(L) be the affine variety of the zeroes in Kl of I(L) (here l =
#L). Then X(L) is an affine normal variety defined by binomials; on the other
hand, by [6], a binomial prime ideal is a toric ideal (here, “toric ideal” is in the
sense of [17]). Hence X(L) is a toric variety for the action by a suitable torus T.

In the sequel, we shall denote R(L) = K[Xα , α ∈ L]/I(L). Also, for α ∈ L,
we shall denote the image of Xα in R(L) by xα.

Definition 3.1. The variety X(L) will be called a Hibi toric variety.

Remark 3.2. An extensive study of X(L) appeared first in [10].

We have that dimX(L) = dimT.

Theorem 3.3 [14]. The dimension of X(L) is equal to #J(L), which is also
equal to the cardinality of the set of elements in a maximal chain of L.

Definition 3.4. For a finite distributive lattice L, we call the cardinality of J(L)
the dimension of L, denoted dim L. If L′ is a sublattice of L, then the codimension
of L′ in L is defined as dim L− dim L′.

Definition 3.5 [18]. A sublattice L′ of L is called an embedded sublattice of
L if

τ,φ ∈L, τ ∨ φ ∈L′, τ ∧ φ ∈L′ �⇒ τ,φ ∈L′.

Given a sublattice L′ of L, consider the variety X(L′) and the canonical embed-
ding X(L′) ↪→ A#L′ ↪→ A#L.

Proposition 3.6 [9, Prop. 5.16]. X(L′) is a subvariety of X(L) if and only if
L′ is an embedded sublattice of L.
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3.7. Multiplicity of X(L) at the Origin. Let B be a Z+-graded and finitely
generated K-algebra, B =⊕

Bm. Let φm(B) denote the Hilbert function,

φm(B) = dimK Bm,

and let PB(x) denote the Hilbert polynomial of B. Recall that:

• PB(x)∈Q[x];
• degPB(x) = dim ProjB = s, say; and
• the leading coefficient of PB(x) is of the form eB/s!.

Definition 3.8. The number eB is called the degree of the graded ring B, or the
degree of ProjB.

Theorem 3.9. The degree of K[X(L)] is equal to the number of maximal chains
in L.
Proof. Let I(L) be as before. We begin by putting a monomial order on
K[Xα , α ∈ L]. Consider the reverse partial order on L and extend it to a total
order, denoted ≤tot , on the variables {Xα , α ∈ L}. We now take the monomial
order defined as follows. For α1 ≤tot · · · ≤tot αr and β1 ≤tot · · · ≤tot βs , we say
that Xα1 · · ·Xαr ≺ Xβ1 · · ·Xβs if and only if either r < s or r = s and there exists
a t < r such that α1 = β1, . . . , αt = βt with αt+1 <tot βt+1. From [9] we have
that {XαXβ −Xα∧βXα∨β | α,β ∈L non-comparable} is a Gröbner basis for I(L)
for this monomial order. Hence, letting I be the ideal generated by initial terms of
elements of I(L), we have that {XαXβ | α,β noncomparable} is a generating set
for I. Let us denote K[X(L)] by S and K[Xα , α ∈ L]/I by R. By [5, Sec. 15.8]
we have a flat degeneration of Spec(S) to Spec(R). Hence, the degree of S equals
the degree of R.

Let J = {j1, . . . , js} be a subset of L such that Xj1 · · ·Xjs /∈ I. Note that J is
thus a chain of length s − 1 in L. We have

R = K ⊕
⊕

J={j1,...,js }
(Xj1 · · ·Xjs )K[Xj1, . . . ,Xjs ],

where J runs over all chains of any length in L. Therefore,

φm(R) = dimRm =
∑

J={j1,...,js }

(
s + (m− s)− 1

m− s

)
=

∑
J={j1,...,js }

(
m− 1
s − 1

)
.

Note that for m sufficiently large, the leading term appears in the summation only
for J of maximal cardinality s. The result follows from this.

Next we recall multP X, the multiplicity of an algebraic variety at a point P ∈X.
Let OX,P = (A, m). Let CP be the tangent cone at P ; that is, CP = SpecA(P ),
where A(P ) = gr(A, m). Then the multiplicity of X at P is defined to be

multP X = deg ProjA(P ) (= degA(P )).

Thus, using the notation from Section 3.7, we obtain eB = mult 0 Spec(B), the
multiplicity of Spec(B) at the origin.
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The following result is a direct consequence of Theorem 3.9.

Theorem 3.10. The multiplicity of X(L) at the origin is equal to the number of
maximal chains in L.

4. Cone and Dual Cone of X(L)

Let M = Zd for d = #J(L), with basis {fz, z ∈ J(L)}. Let N be the Z-dual of
M, with basis {ez, z ∈ J(L)} dual to {fz, z ∈ J(L)}. We denote the torus acting
on the toric variety X(L) by T, and we identify M with the character group X(T ).
Thus, for t = (ty)y∈J(L) ∈ T (under the identification of T with (K∗)d), we let
fz(t) = tz for z∈ J(L).

Denote by I the lattice of ideals of J(L). For A∈ I, set

fA :=
∑
z∈A

fz.

Let V = NR = N ⊗Z R. Let σ ⊂ V be the cone such that X(L) = Xσ , and let
σ∨ ⊂ V ∗ be the cone that is dual to σ. Let Sσ = σ∨ ∩M, so that K[X(L)] equals
the semigroup algebra K[Sσ].

From [10; 14, Prop. 4.6] we have the following statement.

Proposition 4.1. The semigroup Sσ is generated by fA for A∈ I.
Let M(J(L)) be the set of maximal elements in the poset J(L). Let Z(J(L)) de-
note the set of all covers in the poset J(L) (i.e., (z, z ′) with z > z ′ in the poset
J(L), and there is no other element y ∈ J(L) such that z > y > z ′). For a cover
(y, y ′)∈Z(J(L)), denote

vy,y ′ := ey ′ − ey.

Proposition 4.2 [14, Prop. 4.7]. The cone σ is generated by

{ez, z∈M(J(L)); vy,y ′ , (y, y ′)∈Z(J(L))}.
4.3. Analysis of Faces of σ. We shall concern ourselves just with the closed
points in X(L). So in the sequel, by a point in X(L) we shall mean a closed point.
Let τ be a face of σ. Let Pτ be the distinguished point of Oτ with the associated
maximal ideal being the kernel of the map

K[Sσ]→ K, u∈ Sσ , u �→
{

1 if u∈ τ ⊥,

0 otherwise.

Then, for a point P ∈ X(L) (identified with a point in Al, l = #L) and denoting
by P(α) the αth coordinate of P, we have

Pτ(α) =
{

1 if fIα ∈ τ ⊥,

0 otherwise.
Now let

Dτ = {α ∈L | Pτ(α) �= 0}.
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4.4. The Bijection D (cf. [14]). We have a bijection

D : {faces of σ} bij←→ {embedded sublattices of L}, D(τ ) = Dτ

Proposition 4.5 [14, Prop. 4.11]. Let τ be a face of σ. Then Oτ = X(Dτ ).

5. The Distributive Lattice Id,n and the
Grassmann–Hibi Toric Variety

We now turn our focus to a particular distributive lattice—namely,

L = Id,n = {x = (i1, . . . , id) | 1≤ i1 < · · · < id ≤ n}.
The partial order ≥ on Id,n is given by

(i1, . . . , id) ≥ (j1, . . . , jd) ⇐⇒ i1 ≥ j1, . . . , id ≥ jd .

For x ∈ Id,n, we denote the j th entry in x by x(j), 1≤ j ≤ d.

Remark 5.1. It is a well-known fact (see e.g. [13]) that the partially ordered set
Id,n is isomorphic to the poset determined by the set of Schubert varieties in Gd,n,
the Grassmannian of d-dimensional subspaces in an n-dimensional space, where
the Schubert varieties are partially ordered by inclusion. From [15, Sec. 3] we get
that Id,n is a distributive lattice.

Remark 5.2. Some readers may prefer to work with the lattice of Young dia-
grams that fit into a rectangle with d rows and n − d columns, which we will
denote by 5d,n−d . In this case one may go from Id,n to 5d,n−d using the follow-
ing bijection:

(i1, . . . , id)

�→ λ = (λ1, . . . , λd), λ1 = id − d, λ2 = id−1− (d − 1), . . . , λd = i1− 1.

In the next lemma, by a segment we shall mean a set consisting of consecutive
integers.

Lemma 5.3 [9]. For L = Id,n, the following statements hold.

(i) The element τ = (i1, . . . , id) is join-irreducible if and only if either τ is a
segment (we shall call these elements Type I ) or τ consists of two disjoint
segments (µ, ν), with µ starting with 1 (Type II ).

(ii) The element τ = (i1, . . . , id) is meet-irreducible if and only if either τ is a
segment or τ consists of two disjoint segments (µ, ν), with ν ending with n.

(iii) The element τ = (i1, . . . , id) is join-irreducible and meet-irreducible if and
only if either τ is a segment or τ consists of two disjoint segments (µ, ν),
with µ starting with 1 and ν ending with n.

Remark 5.4. The join irreducible elements of 5d,n−d are those Young diagrams
that are rectangles (i.e., the nonzero rows all have the same length).
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Definition 5.5. We shall denote X(Id,n) by just Xd,n and will refer to it as a
Grassmann–Hibi toric variety, or a G-H toric variety for short.

6. Singular Faces of the G-H Toric Variety Xd,n

Let L represent the distributive lattice Id,n. From Lemma 5.3 we have that the ele-
ments of J(L) are of two types, Type I and Type II.

Since the generators of the cone σ are determined by J(L) (Proposition 4.2), we
will often consider J(L) as a partially ordered set with the partial order induced
from L. Notice that J(L) has one maximal element, which is also the maximal
element of L: 1̂ = (n− d +1, . . . , n); and J(L) has one minimal element, which
is also the minimal element of L: 0̂ = (1, . . . , d). For each element x of J(L),
there are at most two covers of the form (y, x) in J(L).

For example, if x = (1, . . . , k, l + 1, . . . , l + d − k) ∈ J(L) then we have y =
(1, . . . , k, l + 2, . . . , l + d − k + 1) and y ′ = (1, . . . , k −1, l, . . . , l + d − k), form-
ing the two covers of x in J(L) (if k = 1, then y ′ = (l, . . . , l + d − 1)). If l =
n− d + k or if x is of Type I, then x has only one cover.

The following lemma is a corollary of [15, Prop. 3.2].

Lemma 6.1. The partially ordered set J(Id,n) is a distributive lattice.

Remark 6.2. As a lattice, J(L) looks like a tessellation of diamonds in the shape
of a rectangle with sides of length d − 1 and n − d − 1. For example, let d = 3
and n = 7. Then J(L) is the following lattice.

(567)

(456)

����
(167)

����

(345)

����
(156)

���� ����
(127)

����

(234)

����
(145)

���� ����
(126)

���� ����

(134)

���� ����
(125)

���� ����

(124)

����
����

(123)

As in Section 4, let σ be the cone associated to X(L).

Definition 6.3. For 1≤ i ≤ n− d − 1 and 1≤ j ≤ d − 1, let

µij = (1, . . . , j, i + j + 1, . . . , i + d),

λij = (i + 1, . . . , i + j, n+ 1+ j − d, . . . , n).
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Define
L ij = L \ [µij , λij ].

Remark 6.4. (i) By [9, Lemma 11.5] we have that L ij is an embedded sublattice.
(ii) For α,β ∈ J(L) noncomparable, α ∧ β = µij for some 1 ≤ i ≤ n− d − 1

and 1≤ j ≤ d −1; thus every diamond in J(L) has a µij as its minimal element.

Definition 6.5. Let σij be the face of σ for which Dσij = L ij .

Definition 6.6. A face τ of σ is a singular (resp. nonsingular ) face if Pτ is a
singular (resp. nonsingular) point of Xσ .

Our first result is that σij is a singular face. To prove this, we start by determining
a set of generators for σij .

Definition 6.7. Let us denote by W(σ) (or simply W) the set of generators for
σ, as described in Proposition 4.2. For a face τ of σ, define

W(τ) = {v ∈W | fIα(v) = 0 ∀α ∈Dτ}.
(Here, Dτ is as in Section 4.4.) Then W(τ) gives a set of generators for τ.

6.8. Determination of W(σij ). It will aid our proof below to observe a few
facts about the generators of σij . First of all, e1̂ is not a generator for any σij , since
1̂∈L ij for all 1≤ i ≤ n− d −1 and 1≤ j ≤ d −1 and since e1̂ is nonzero on fI1̂

.

Similarly, for the cover (y ′, 0̂) where y ′ = (1, . . . , d − 1, d + 1), e0̂ − ey ′ is not a
generator for any σij .

Second, for any cover (y ′, y) in J(L), if y ∈ L ij then ey − ey ′ is not a gener-
ator of σij because fIy (ey − ey ′) �= 0. Thus, in determining elements of W(σij ),
we need only be concerned with elements ey − ey ′ such that y ∈ J(L)∩ [µij , λij ].
The elements of J(L) ∩ [µij , λij ] are

yt = (1, . . . , j, i + j + 1+ t, . . . , i + d + t) for 0 ≤ t ≤ n− d − i,

zt = (1, . . . , j − t, i + j + 1− t, . . . , i + d) for 0 ≤ t ≤ j.

Note that y0 = z0 = µij and zj = (i + 1, . . . , i + d). In the next theorem we
prove that W(σij ) consists of precisely four elements, forming a diamond in the
distributive lattice J(L) with µij as the smallest element.

Theorem 6.9. W(σij ) = {eµij
− eA, eµij

− eB , eA − eC , eB − eC}, where A, B,
and C are defined in the proof.

Proof. We divide the proof into two cases, j = 1 and j > 1.

Case 1. Let j = 1 and 1≤ i ≤ n− d − 1. Here we have

µij = (1, i + 2, . . . , i + d) and λij = (i + 1, n− d + 2, . . . , n).
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As discussed previously, we find thatµij is covered inJ(L)byA= (i+1, . . . , i+d)
and B = (1, i + 3, . . . , i + d + 1). We have that both A and B are in the interval
[µij , λij ]. Let C be the join of A and B in the lattice J(L):

C = (i + 2, . . . , i + d + 1).

Note that (C,A) and (C,B) are covers in J(L).
We first observe that,

for x = (x1, . . . , xd)∈L ij , if x ≥ µij then x ≥ C. (6.1)

(This follows because x ≥ µij and x ∈ L ij imply that x �≤ λij and hence x1 ≥
i + 2.)

Claim (i): eµij
− eA and eµij

− eB are both in W(σij ). We shall prove the claim
for eµij

− eA (the proof for eµij−eB is similar). To prove that eµij
− eA is inW(σij ),

we need to show that there does not exist an x = (x1, . . . , xd) ∈ L ij such that
x ≥ µij and x �≥ A. But this follows from (6.1) (which implies that, for x =
(x1, . . . , xd)∈L ij , if x ≥ µij then x ≥ A).

Claim (ii): eA − eC and eB − eC are in W(σij ). The proof is similar to that of
Claim (i). Again we show the result for eA − eC (the proof for eB − eC is simi-
lar). We must demonstrate that there does not exist an x = (x1, . . . , xd)∈L ij such
that x ≥ A but x �≥ C. Again this follows from (6.1) (note that x ≥ A implies in
particular that x ≥ µij ).

Claim (iii): W(σij ) = {eµij
−eA, eµij

−eB , eA−eC, eB−eC}. In the case under
consideration, since j = 1 it follows that the only elements of J(L) ∩ [µij , λij ]
are of the following forms:

yt = (1, i + t + 2, . . . , i + d + t) for 0 ≤ t ≤ n− d − i;
z1 = (i + 1, . . . , i + d).

Let y ′t = (i+ t +1, . . . , i+ d+ t) for 1≤ t ≤ n− d− i; thus we have covers of
type (y ′t , yt ) for 0 ≤ t ≤ n−d− i and of type (yt+1, yt ) for 0 ≤ t ≤ n−d−1− i.
Observe that y0 = µij , y1 = B, z1 = y ′0 = A, and y ′1 = C. In Claims (i) and (ii)
we have shown that the covers (y1, y0), (y ′0, y0), (y ′1, y1), and (y ′1, z1) yield ele-
ments of W(σij ). Also note that C is the only cover of A. Hence, it only remains
to show that eyt − ey ′t /∈W(σij ) for 2 ≤ t ≤ n− d − i and that eyt − eyt+1 /∈W(σij )

for 1 ≤ t ≤ n − d − 1− i. For each of these covers, we shall exhibit an x ∈ L ij

such that fIx is nonzero on the cover under consideration.
Define xt = (i+ t, i+ t+2, . . . , i+d+ t); then xt ∈L ij for 2 ≤ t ≤ n−d− i.

Furthermore, fIxt
is nonzero on eyt − eyt+1 for 2 ≤ t ≤ n − d − i − 1 and on

eyt − ey ′t for 2 ≤ t ≤ n− d − i. For (y2, y1), note that C ∈L ij and fIC is nonzero
on ey1 − ey2 . This completes the proof of Case 1.

Case 2. Now let 2 ≤ j ≤ d − 1 and 1≤ i ≤ n− d − 1. We have

µij = (1, . . . , j, i + j + 1, . . . , i + d),

λij = (i + 1, . . . , i + j, n+ 1+ j − d, . . . , n).
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As in Case 1, we look for covers of µij in J(L). They are A = (1, . . . , j − 1,
i + j, . . . , i + d) and B = (1, . . . , j, i + j + 2, . . . , i + d + 1). Define C to be the
join of A and B in the lattice J(L); thus,

C = (1, . . . , j − 1, i + j + 1, . . . , i + d + 1).

Claim (iv): {eµij
− eA, eµij

− eB , eA − eC, eB − eC} are inW(σij ). We first ob-
serve that,

for x = (x1, . . . , xd)∈L ij , if x ≥ µij then x ≥ C. (6.2)

For suppose that x �≥ C; now x ≥ µij and x ∈ L ij together imply that x �≤ λij
and thus xl > i + l for some 1 ≤ l ≤ j. Also, x �≥ C; hence xk < i + k + 1 for
some j ≤ k ≤ d. Therefore,

x = (x1, . . . , xl−1, xl > i + l, xl+1 > i + l + 1, . . . , xk−1 > i + k − 1,

i + k + 1 > xk > i + k, . . . ).

Clearly, no such xk exists and thus (6.2) follows.
By (6.2) we have that, if x ∈L ij is such that x ≥ µij , then x ≥ A,B,C. Hence

Claim (iv) follows.
Claim (v): W(σij ) = {eµij

− eA, eµij
− eB , eA− eC, eB − eC}. As in Claim (iii),

we will show that all other covers in J(L) of the form (y ′, y), y ∈ J(L)∩[µij , λij ],
are not inW(σij ). As in Section 6.8, all of the elements of J(L) ∩ [µij , λij ] are

yt = (1, . . . , j, i + j + 1+ t, . . . , i + d + t) for 0 ≤ t ≤ n− d − i,

zt = (1, . . . , j − t, i + j + 1− t, . . . , i + d) for 0 ≤ t ≤ j

(note that zj = (i + 1, . . . , i + d)). We will examine covers of these elements;
notice that y0 = z0 = µij , z1 = A, and y1 = B.

Let z ′t = (1, . . . , j − t, i+ j +2− t, . . . , i+d+1) for 1≤ t ≤ n−d− i, and let
z ′j = (i+2, . . . , i+d+1). First we want to show that the covers (zt+1, zt )1≤t≤j−1

and (z ′t , zt )2≤t≤j do not yield elements in W(σij ). Observe that (z ′1, z1) = (C,A)
and eA− eC ∈W(σij ). Also, C ∈L ij and fIC (ez1− ez2 ) is nonzero; thus ez1− ez2 /∈
W(σij ), and we may restrict our attention to t ≥ 2. Let

xt = (1, . . . , j − t, i + j + 1− t, n− d + j − t + 2, . . . , n) for 2 ≤ t ≤ j − 1,

xj = (i + 1, n− d + 2, . . . , n).

Now, on the interval 2 ≤ t ≤ j − 1, we have the following facts:

(1) xt ≥ zt ,
(2) xt �≥ zt+1,
(3) xt �≥ z ′t ,
(4) xt �≤ λij .

Facts (1), (3), and (4) hold for the case t = j ; it is just a separate check. Hence,
for 2 ≤ t ≤ j (resp. 2 ≤ t ≤ j − 1) we have that xt ∈ L ij and fIxt

is nonzero on
ezt − ez ′t (resp. ezt − ezt+1).
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Next, we must concern ourselves with covers involving yt . Define

y ′t = (1, . . . , j − 1, i + j + t, . . . , i + d + t) for 1≤ t ≤ n− d − i.

To complete Claim (v), we must show that the covers

(yt+1, yt )1≤t≤n−d−i−1 and (y ′t , yt )2≤t≤n−d−i
do not yield elements of W(σij ). Note that (y ′1, y1) = (C,B) and thus does yield
an element of W(σij ). Also, fIC (ey1 − ey2 ) is nonzero; we can therefore restrict
our attention to t ≥ 2. Let x ′t = (1, . . . , j−1, i+j+1, i+j+ t+1, . . . , i+d+ t).
On the interval 2 ≤ t ≤ n− d − i, we have the following facts:

(1′) x ′t ≥ yt ,
(2′) x ′t �≥ y ′t ,
(3′) x ′t �≥ yt+1 for t ≤ n− d − i − 1,
(4′) x ′t �≤ λij .

Therefore, on the interval 2 ≤ t ≤ n − d − i (resp. 2 ≤ t ≤ n − d − i − 1), we
have that x ′t ∈L ij and fIx ′t

is nonzero on eyt − ey ′t (resp. eyt − eyt+1).

This completes Claim (v), Case 2, and the proof of Theorem 6.9.

Remark 6.10. The face σij corresponds to the following diamond in J(L).
C

A
��

B

��

µij

�� ��

This diamond is a poset of rank 2.

Lemma 6.11. The face σij has dimension 3.

Proof. We have {eµij
− eA, eµij

− eB , eA− eC , eB − eC}, a set of generators for σij .
We can see that a subset of three of these generators is linearly independent. Thus,
if the fourth generator can be put in terms of the first three, the result follows. No-
tice that

(eµij
− eA)− (eµij

− eB)+ (eA − eC) = eB − eC.

Our next theorem is an immediate consequence of Theorem 6.9 and Lemma 6.11.

Theorem 6.12. We have an identification of the (open) affine piece in X(L) cor-
responding to the face σi,j with the product Z× (K∗)#J(L)−3, where Z is the cone
over the quadric surface x1x4 − x2x3 = 0 in P3.

We now prove two lemmas that hold for a general toric variety.

Lemma 6.13. Let Xτ be an affine toric variety with τ as the associated cone.
Then Xτ is a nonsingular variety if and only if it is nonsingular at the distin-
guished point Pτ .

Proof. Only the⇐ implication requires a proof. Let then Pτ be a smooth point.
Let us assume (if possible) that SingXτ �= ∅. We have the following facts.
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• SingXτ is a closed T -stable subset of Xτ .

• Pτ ∈Oθ for every face θ of τ (see Section 1.6); in particular, Pτ ∈Oθ for some
face θ such that Pθ is a singular point (such a θ exists because, by our assump-
tion, SingXτ is nonempty).

We thus obtain that Pτ ∈ SingXτ , a contradiction. Hence our assumption is wrong
and the result follows.

Lemma 6.14. Let τ be a face of σ ( for σ a convex polyhedral cone). Then Pτ

is a smooth point of Xσ if and only if Pτ is a smooth point of Xτ—that is, if and
only if τ is generated by a part of a basis of N (where N is the Z-dual of the
character group of the torus).

Proof. We have that Xτ is a principal open subset of Xσ . Hence Xσ is nonsingular
at Pτ if and only if Xτ is nonsingular at Pτ . By Lemma 6.13, Xτ is nonsingular at
Pτ if and only if Xτ is a nonsingular variety; but by [7, Sec. 2.1], this is true if and
only if τ is generated by a part of a basis of N.

We now return to the case where σ is the convex polyhedral cone associated
to X(Id,n).

Theorem 6.15. Let τ = σi,j . Then the following statements hold.

(i) Pτ ∈ SingXσ .

(ii) We have an identification of TCPτXσ with Z × (K∗)#J(L)−3, with Z as in
Theorem 6.12; furthermore, TCPτXσ is a toric variety.

(iii) The singularity at Pτ is of the same type as that at the vertex of the cone over
the quadric surface x1x4 − x2x3 = 0 in P3. In particular, multPτ Xσ = 2.

Proof. Assertion (i) follows from Lemma 6.13, Lemma 6.14, and Theorem 6.12.
Because Xτ is open in Xσ , we may identify TCPτXσ with TCPτXτ , which in turn
coincides with Xτ (since Xτ is of cone type, where Pτ is identified with the ori-
gin). Assertion (ii) follows from this in view of Theorem 6.12 and given that Xτ

is a toric variety. Assertion (iii) is immediate from (ii).

Next, we will show that the faces containing some σij are the only singular faces.
We first prove some preparatory lemmas.

Lemma 6.16. Let A �= 0̂. If eA − eC is in W (the set of generators of σ as de-
scribed in Proposition 4.2), then eA− eC is in W(σij ) (cf. Definition 6.7 ) for some
(i, j), where 1 ≤ i ≤ n− d − 1 and 1 ≤ j ≤ d − 1.

Proof. If A is equal to some µij , then C must be one of the two covers of µij =
(1, . . . , j, i + j + 1, . . . , i + d) in J(L) and we are done by Theorem 6.9. So we
will assume that A �= µij . Hence A is a join irreducible of one of the following
two forms.

Case 1: A = (1, . . . , k, n − d + k + 1, . . . , n) for some k. Then µn−d−1,k =
(1, . . . , k, n − d + k, . . . , n − 1), and (A,µn−d−1,k) is a cover in J(L). Also, A
has only one cover in J(L), which must be C; thus eA − eC is an element of
W(σn−d−1,k), as shown in Theorem 6.9.
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Case 2: A = (k+1, . . . , k+ d), 1 ≤ k ≤ n− d −1 (note that k < n− d, since
C > A because eA − eC ∈W). Then we have µk,1 = (1, k + 2, . . . , k + d), and
(A,µk,1) is a cover in J(L). Also, we must have C = (k+ 2, . . . , k+ d + 1), and
eA − eC is an element of W(σk,1) by Case 1 of Theorem 6.9.

We now return to the case of a Grassmann–Hibi toric variety.

Theorem 6.17. Let τ be a face such that Dτ is not contained in any L ij for 1 ≤
i ≤ n− d −1 and 1 ≤ j ≤ d −1. Then the associated face τ is nonsingular (i.e.,
if a face τ does not contain any one σij , then τ is nonsingular).

Proof. By Lemma 6.14, for τ to be nonsingular it must be generated by part of a
basis for N. Since τ is generated by a subset W(τ) of W, for τ to be singular its
generators would have to be linearly dependent. (Generally this is not enough to
prove that a face is singular or nonsingular, but since all generators inW have co-
efficients equal to±1, any linearly independent set will serve as part of a basis for
N.) Suppose τ is singular; then there is some subset of the elements ofW(τ) equal
to {e1− e2, . . . } such that

∑
aij(ei − ej ) = 0, with coefficients aij nonzero for at

least one (i, j).
Recall that the elements of W can be represented as all the line segments in the

lattice J(L) with the exception of e1̂ (see diagram in Remark 6.2). Therefore, the
linearly dependent generators of τ must represent a “loop” of line segments in
J(L). This loop will have at least one bottom corner, left corner, top corner, and
right corner.

Choose some particular L ij . By Theorem 6.9, W(σij ) = {eµij
− eA, eµij

− eB ,
eA − eC , eB − eC}. These four generators are represented by the four sides of a
diamond in J(L). Thus, by hypothesis, the generators of τ represent a loop in
J(L) that does not traverse all four sides of the diamond representing all four gen-
erators of σij .

By hypothesis, Dτ is not contained in any L ij for 1 ≤ i ≤ n − d − 1 and 1 ≤
j ≤ d−1; hence there must be at least one element of Dτ in the interval [µij , λij ],
say α ∈ [µij , λij ]. We have α ≥ µij and α �≥ C for C as defined in the proof of
Theorem 6.9. Based on how α compares with both A and B, we can eliminate
certain elements of W from W(τ). There are four possibilities; we list all four,
as well as the corresponding generators inW(σij ) that are not inW(τ) (i.e., those
generators v inW(σij ) such that fIα(v) �= 0):

α �≥ A, α �≥ B �⇒ eµij
− eA, eµij

− eB /∈W(τ);
α ≥ A, α �≥ B �⇒ eA − eC , eµij

− eB /∈W(τ);
α �≥ A, α ≥ B �⇒ eµij

− eA, eB − eC /∈W(τ);
α ≥ A, α ≥ B �⇒ eA − eC , eB − eC /∈W(τ).

Therefore, it is impossible to have {eµij
− eA, eA − eC} or {eµij

− eB , eB − eC}
contained in W(τ). This is true for any (i, j) and so, in view of Lemma 6.16, our
“loop” in J(L) that represented the generators of τ cannot have a left corner or a
right corner. Thus it is really not possible to have a loop at all; hence the genera-
tors of τ are linearly independent, and the result follows.
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Corollary 6.18. The G-H toric variety Xd,n is smooth along the orbit Oτ if
and only if the face τ does not contain any σij .

Combining this corollary with Theorem 6.15 and Lemma 6.11 yields our first main
theorem as follows.

Theorem 6.19. Let L = Id,n. Then the following statements hold.

(i) SingX(L) = ⋃
σi,j

Oσi,j , where the union is taken over all the σi,j (as in
Theorem 6.9).

(ii) SingX(L) is pure and of codimension 3 in X(L), and the generic singulari-
ties are of cone type (more precisely, the singularity type is the same as that
at the vertex of the cone over the quadric surface x1x4 − x2x3 = 0 in P3).

(iii) For τ = σi,j , TCPτX(L) is a toric variety and multPτ X(L) = 2.

Remark 6.20. Theorem 6.19 thus proves the conjecture of [9] using just the com-
binatorics of the cone associated to the toric variety Xd,n (for a statement of the
conjecture of [9], see Remark 9.1). Further, it gives a description of SingXd,n

purely in terms of the faces of the cone associated to Xd,n.

7. Multiplicities of Singular Faces of X2,n

In this section we take L = I2,n, determine the multiplicity of X2,n (= X(I2,n))

at Pτ for certain of the singular faces of X2,n, and deduce a product formula. For
Id,n we have defined L ij and the corresponding face σi,j for 1 ≤ j ≤ d − 1 and
1≤ i ≤ n− d − 1; hence, for I2,n we need only consider L i,1 for 1≤ i ≤ n− 3.

For example, the following diagram is the poset of join irreducibles for I2,6. We
write σi,1 inside each diamond because the four segments surrounding it represent
the four generators of the face.

(5, 6)

(1, 6)

����
σ3,1 (4, 5)

����

(1, 5)

���� ����
σ2,1 (3, 4)

����

(1, 4)

���� ����
σ1,1 (2, 3)

����

(1, 3)

���� ����

(1, 2)

In order to go from the join irreducibles of I2,6 to I2,7, we simply add (1, 7) and
(6, 7) to the poset above, forming σ4,1. We will see that this makes the calculation
of the multiplicities of singular faces of I2,n much easier.

In the sequel, we shall denote the set of join irreducibles of I2,n by J2,n; also, as
in the previous sections, σ will denote the polyhedral cone corresponding to X2,n.
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7.1. multPσ X2,n. Because Xd,n is now of cone type (i.e., the vanishing ideal is
homogeneous), we have a canonical identification of TPσXd,n (the tangent cone
to Xd,n at Pσ) with Xd,n. Hence, by Theorem 3.10, multPσ Xd,n equals the num-
ber of maximal chains in Id,n. So we begin by counting the number of maximal
chains in I2,n.

As we move through a chain from (1, 2), at any point (i, j) we have at most two
possibilities for the next point, (i+1, j) or (i, j +1). For each cover in our chain,
we assign a value: for a cover of type ((i, j + 1), (i, j)), we assign+1; for a cover
of type ((i + 1, j), (i, j)), we assign −1.

A maximal chain C in I2,n contains 2n− 3 lattice points, so every chain can be
uniquely represented by a (2n−4)-tuple of 1s and−1s; let us denote this (2n−4)-
tuple by nC = 〈a1, . . . , a2n−4〉.

For any such nC , it is clear that 1 and −1 occur precisely n− 2 times. Also, we
can see that a1 = +1 and that, for any 1 ≤ k ≤ 2n − 4, if {a1, . . . , ak} contains
more −1s than +1s then we have arrived at a point (i, j) with i > j, which is not
a lattice point. Thus, we must have a1+ · · · + ak ≥ 0 for every 1≤ k ≤ 2n− 4.

Theorem 7.2 [16, Cor. 6.2.3]. The Catalan number

Catn = 1

n+ 1

(
2n
n

)
, n ≥ 0,

counts the number of sequences a1, . . . , a2n of 1s and −1s with

a1+ · · · + ak ≥ 0 (k = 1, 2, . . . , 2n),

and a1+ · · · + a2n = 0.

Corollary 7.3. The multiplicity of X2,n at Pσ is equal to the Catalan number

Catn−2 = 1

n− 1

(
2n− 4
n− 2

)
.

7.4. multPτ X2,n. Next we shall determine multPτ X2,n for τ of block type (see
Definition 7.7 to follow). Let τ be a face of σ such that the associated (embedded
sublattice) Dτ is of the form

Dτ = [(1, 2), (i, i + 1)] ∪ [(i + k + 2, i + k + 3), (n− 1, n)]

= I1 ∪ I2 (say),

where I1 = [(1, 2), (i, i + 1)] and I2 = [(i + k+ 2, i + k+ 3), (n−1, n)] for 1≤
i ≤ n− 3 and 0 ≤ k ≤ n− i − 3.

We shall now determine W(τ) (cf. Section 6.7). Let Aτ denote the interval
[(1, i + 2), (i + k + 2, i + k + 3)] in J2,n:

(i + k + 2, i + k + 3)

(1, i + k + 3)

							

(i + 1, i + 2)


 
 
 
 
 
 
 
 
 
 


(1, i + 2)

� � � � � � � � � � � � �
�����
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Lemma 7.5. With τ as just described, we have that W(τ) = {ey ′ − ey | (y, y ′) is
a cover in Aτ}.
Proof. Clearly, e(n−1,n) (the element in W(σ) corresponding to the unique maxi-
mal element (n−1, n) in J2,n) is not inW(τ), since (n−1, n)∈Dτ . Let us denote

θ = (i + k + 2, i + k + 3) and δ = (i, i + 1).

Claim 1: For a cover (y, y ′) in Aτ , fIα(ey ′ − ey) = 0 for all α ∈ Dτ . The
claim follows in view of the following facts for a cover (y, y ′) in Aτ :

• y, y ′ ∈ Iθ and hence y, y ′ ∈ Iα for all α ∈ I2;
• y, y ′ /∈ Iδ and hence y, y ′ /∈ Iα for all α ∈ I1.

Claim 2: For a cover (y, y ′) in J2,n not contained in Aτ, there exists an α ∈Dτ

such that fIα(ey ′ − ey) �= 0. Note that a cover in J2,n is one of the following three
types.

Type I: ((1, j), (1, j − 1)), 3 ≤ j ≤ n.

Type II: ((j − 1, j), (j − 2, j − 1)), 4 ≤ j ≤ n.

Type III: ((j − 1, j), (1, j)), 3 ≤ j ≤ n.

Let now (y, y ′) be a cover not contained in Aτ .

If (y, y ′) is of Type I, then (y, y ′) = ((1, j), (1, j − 1)), where either j ≤ i+ 2
or j ≥ i + k + 4. Letting

α =
{
(1, j − 1) if j ≤ i + 2,

(j − 2, j − 1) if j ≥ i + k + 4,

we have α ∈Dτ and fIα(ey ′ − ey) �= 0.
If (y, y ′) is of Type II, then (y, y ′) = ((j −1, j), (j − 2, j − 1)), where either

j ≤ i + 2 or j ≥ i + k + 4. Letting α = (j − 2, j − 1), we have α ∈ Dτ and
fIα(ey ′ − ey) �= 0.

If (y, y ′) is of Type III, then (y, y ′) = ((j − 1, j), (1, j)), where either j ≤
i + 1 or j ≥ i + k + 4. Letting

α =
{
(1, j) if j ≤ i + 1,

(j − 2, j) if j ≥ i + k + 4,

we have α ∈Dτ and fIα(ey ′ − ey) �= 0.
The required result now follows from Claims 1 and 2.

Corollary 7.6. With τ as in Lemma 7.5, we have

τ = σi,1 ∪ σi+1,1 ∪ · · · ∪ σi+k,1.
Definition 7.7. We define a face τ as in Lemma 7.5 as a J -block (i.e., τ is a
union of consecutive σi,1).

Remark 7.8. Note that a union of faces need not be a face.

7.9. The Hibi Variety Z2,r . For an integer r ≥ 3, let Ĩ2,r denote the distribu-
tive lattice I2,r \ {(1, 2), (r − 1, r)}. We define Z2,r to be the Hibi variety asso-
ciated to Ĩ2,r . Note (cf. Proposition 4.2) that the cone associated to Z2,r has a
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set of generators consisting of {ey ′ − ey}, where (y, y ′) is a cover in the sub-
lattice [(1, 3), (r − 1, r)] of J2,r (the set of join irreducibles of I2,r ). In view of
Theorem 3.10 we have

mult0 Z2,r = multPσ X2,r = Catr−2,

where 0 denotes the origin.

Theorem 7.10. Let τ be a face of σ that is a “J -block” of k+1 consecutive σi,1
(as in Definition 7.7 ). We have an identification of Xτ (the open affine piece of Xσ

corresponding to τ) with Z2,k+4× (K∗)m, where m = codimσ τ = 2(n− k)− 6.

Proof. In view of Section 1.6 and Proposition 4.5, we have

codimσ τ = dimX(Dτ ) = #{elements in a maximal chain in Dτ}.
From this it is clear that codimσ τ = 2(n− k)− 6. Next, in view of Lemma 7.5
and Section 7.9, we obtain an identification of Xτ with Z2,k+4 × (K∗)m (for m as
in the theorem).

Theorem 7.11. Let τ be as in Theorem 7.10.

(i) We have an identification of TCPτXσ with Z2,k+4 × (K∗)m, where m =
codimσ τ = 2(n− k)− 6; also, TCPτXσ is a toric variety.

(ii) multPτ X2,n = Catk+2 = 1
k+3

(
2k+4
k+2

)
.

Proof. Since Xτ is open in Xσ , we may identify TCPτXσ with TCPτXτ , which in
turn coincides with Xτ (because Xτ is of cone type, where Pτ is identified with
the origin). Assertion (i) follows from this in view of Theorem 7.10 (and the fact
that Xτ is a toric variety).

Assertion (ii) follows from (i) and Corollary 7.3.

7.12. A Product Formula. Here we give a product formula for multPτ X2,n,
where τ is a union of pairwise nonintersecting and nonconsecutive J -blocks (see
Remark 7.15).

Let τ be a face of σ such that the associated (embedded sublattice) Dτ is of the
form

Dτ = [(1, 2), (i1, i1+ 1)] ∪ [(i1+ k1+ 2, i1+ k1+ 3), (i2, i2 + 1)]

∪ [(i2 + k2 + 2, i2 + k2 + 3), (n− 1, n)]

= J1 ∪ J2 ∪ J3 (say),

where i1+ k1+ 1 < i2 and where

J1 = [(1, 2), (i1, i1+ 1)],

J2 = [(i1+ k1+ 2, i1+ k1+ 3), (i2, i2 + 1)],

J3 = [(i2 + k2 + 2, i2 + k2 + 3), (n− 1, n)].

Consider the following sublattices in J2,n (the set of join irreducibles in I2,n):

A = [(1, i1+ 2), (i1+ k1+ 2, i1+ k1+ 3)],

B = [(1, i2 + 2), (i2 + k2 + 2, i2 + k2 + 3)].
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Lemma 7.13. With τ as before, we have W(τ) = {ey ′ − ey | (y, y ′) is a cover in
A ∪ B}.
Proof. We proceed as in the proof of Lemma 7.5, where e(n−1,n) is not in W(τ)

(since (n− 1, n)∈Dτ). Let us denote:

θ1 = (i1+ k1+ 2, i1+ k1+ 3), θ2 = (i2 + k2 + 2, i2 + k2 + 3);
δ1 = (i1, i1+ 1), δ2 = (i2, i2 + 1).

For any cover (y, y ′) in A∪B, we clearly have y, y ′ ∈ Iθ2 and hence y, y ′ ∈ Iα for
all α ∈ J3; also, y, y ′ /∈ Iδ1 and hence y, y ′ /∈ Iα for all α ∈ J1. Thus we obtain that

fIα(ey ′ − ey) = 0 for all α ∈ J1 ∪ J3. (7.1)

Next, if (y, y ′) is a cover in A, then y, y ′ ∈ Iθ1 and hence y, y ′ ∈ Iα for all α ∈
J2. If (y, y ′) is a cover in B, then y, y ′ /∈ Iδ2 and hence y, y ′ /∈ Iα for all α ∈ J2.

Note that θ1 (resp. δ2) is the smallest (resp. largest) element in J2. Therefore,

fIα(ey ′ − ey) = 0 for all α ∈ J2 (7.2)

Together, (7.1) and (7.2) imply the inclusion “⊇”. We shall prove the inclusion
“⊆” by showing that, if a cover (y, y ′) is not contained in A∪B, then there exists
an α ∈Dτ such that fIα(ey ′ − ey) �= 0. This proof runs along lines similar to the
proof of Lemma 7.5. Let then (y, y ′) be a cover in J2,n not contained in A∪B. It
is convenient to introduce the following sublattices in J2,n:

P = [(1, 2), (i1+ 1, i1+ 2)],

Q = [(1, i1+ k1+ 3), (i2 + 1, i2 + 2)],

R = [(1, i2 + k2 + 3), (n− 1, n)].

We distinguish three cases as follows.

Case 1: (y, y ′) is of type I (cf. proof of Lemma 7.5)—say, ((1, j), (1, j − 1)).
(i) If (y, y ′) is contained in P, then j ≤ i1+ 2. We let α = (1, j − 1). Note that

α ∈ J1 and fIα(ey ′ − ey) �= 0.
(ii) If (y, y ′) is contained in Q (resp. R), then i1+ k1+ 4 ≤ j ≤ i2 + 2 (resp.

i2 + k2 + 4 ≤ j ≤ n). We let α = (j − 2, j − 1). Note that α ∈ J2 (resp. J3) and
fIα(ey ′ − ey) �= 0.

Case 2: (y, y ′) is of type II—say, ((j − 1, j), (j − 2, j − 1)). Then 3 ≤ j ≤
i1+ 2, i1+ k1+ 4 ≤ j ≤ i2 + 2, or i2 + k2 + 4 ≤ j ≤ n accordingly as (y, y ′)
is contained in P, Q, or R. We let α = (j − 2, j − 1). Note that α ∈ J1, J2, J3

accordingly as (y, y ′) is contained in P,Q,R, and fIα(ey ′ − ey) �= 0.

Case 3: (y, y ′) is of type III—say, ((j − 1, j), (1, j)).
(i) If (y, y ′) is contained in P, then j ≤ i1 + 1. We let α = (1, j). Note that

α ∈ J1 and fIα(ey ′ − ey) �= 0.
(ii) If (y, y ′) is contained in Q (resp. R), then i1+ k1+ 4 ≤ j ≤ i2 + 1 (resp.

i2 + k2 + 4 ≤ j ≤ n). We let α = (j − 2, j). Note that α ∈ J2, J3 accordingly as
(y, y ′) is contained in Q,R, and fIα(ey ′ − ey) �= 0.
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As an immediate consequence of Lemma 7.13 and Corollary 7.6, we have the fol-
lowing result.

Corollary 7.14. Let τ be as in Lemma 7.13. Then τ = τ1 ∪ τ2, where

τ1 = σi1,1 ∪ · · · ∪ σi1+k1,1,

τ2 = σi2,1 ∪ · · · ∪ σi2+k2,1.

Remark 7.15. We refer to a pair (τ1, τ2) of faces as in Corollary 7.14 as non-
intersecting J -blocks.

Theorem 7.16. Let τ = τ1 ∪ τ2, where τ1 and τ2 are two nonintersecting (and
nonconsecutive) J -blocks (see Corollary 7.14 ). We have an identification of Xτ

(the open affine piece of Xσ corresponding to τ) with Z2,k1+4×Z2,k2+4× (K∗)m,
where m = codimσ τ = 2(n− k1− k2)− 9.

The proof is similar to that of Theorem 7.11 (using Lemma 7.13).
Our next theorem follows as an immediate consequence.

Theorem 7.17. Let τ = τ1 ∪ τ2, where τ1 and τ2 are two nonintersecting (and
nonconsecutive) J -blocks.

(i) We have an identification of TCPτXσ with Z2,k1+4×Z2,k2+4× (K∗)m, where
m = codimσ τ = 2(n−k1−k2)−9; in particular, TCPτXσ is a toric variety.

(ii) multPτ X2,n = (multPτ1
X2,n) · (multPτ2

X2,n).

The proof is similar to that of Theorem 7.11 (using Theorem 7.16).

Remark 7.18. It is clear that we can extend this multiplicative property to τ =
τ1 ∪ · · · ∪ τs , a union of s pairwise nonintersecting, nonconsecutive J -blocks.

8. A Multiplicity Formula for Xd,n

In this section we give a formula for multPσ Xd,n. By Theorem 3.10, multPσ Xd,n

equals the number of maximal chains in Id,n. We shall provide an explicit formula
for the number of maximal chains in Id,n. Observe that the number of chains in
Id,n from (1, 2, . . . , d) to (n − d + 1, . . . , n) is the same as the number of chains
from (0, 0, . . . , 0) to (n − d, n − d, . . . , n − d); hence, for any (i1, . . . , id) in the
chain, i1 ≥ i2 ≥ · · · ≥ id ≥ 0. Now set

µ = (µ1,µ2, . . . ,µd) = (n− d, n− d, . . . , n− d). (8.1)

For any λ ' m, let f λ = Kλ,1m—that is, the number of standard Young tableaux
of shape λ (cf. [16]).

Proposition 8.1 [16, Prop. 7.10.3]. Let λ be a partition of m. Then the number
f λ counts the lattice paths 0 = v0, v1, . . . , vm in Rl (where l = l(λ)) from the ori-
gin v0 to vm = (λ1, λ2, . . . , λl), with each step a coordinate vector, and staying
within the region (or cone) x1 ≥ x2 ≥ · · · ≥ xl ≥ 0.
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Thus, for µ as described in (8.1), the number of maximal chains in Id,n is equal
to f µ.

An explicit description of f λ is given in [16, Cor. 7.21.5].

Proposition 8.2. Let λ ' m. Then

f λ = m!∏
u∈λ h(u)

.

The statement of the proposition refers to u ∈ λ as a box in the Young diagram of
λ and to h(u) as the “hook length” of u. The hook length is easily defined as the
number of boxes to the right and below of u, including u once.

Let us take, for example, I3,6. Then µ = (3, 3, 3), and the Young diagram of
shapeµwith hook lengths given in their corresponding boxes is as follows.

5 4 3
4 3 2
3 2 1

Therefore,

f µ = 9!

5 · 42 · 33 · 22 · 1 = 42.

In fact, in the Id,n scenario our derived partition µ (given by (8.1)) will always
be a rectangle, and we can deduce a formula for f µ that does not require theYoung
tableau. The top left box of µ will always have hook length (n − d) + d − 1 =
n − 1; the box directly below it (and the box directly to the right of it) will have
length n − 2. For any box of µ, the box below and the box to the right will have
hook length 1 less than that of the box with which we started.

Since the posets Id,n, and In−d,n are isomorphic, we may assume that d ≤ n− d.

Then∏
u∈µ

h(u)

= (n− 1)(n− 2)2 · · · (n− d)d(n− d − 1)d · · · (d )d(d − 1)d−1 · · · (2)2(1).

Thus we arrive at the following statement.

Theorem 8.3. The multiplicity of Xd,n at Pσ is equal to

(d(n− d))!

(n− 1)(n− 2)2 · · · (n− d)d(n− d − 1)d · · · (d )d(d − 1)d−1 · · · (2)2(1)
.

9. Conjectures

In this section, we give two conjectures on the multiplicity at a singular point. We
also mention a result relevant to this paper on SingX(L) for L the Bruhat poset of
Schubert varieties in any minuscule G/P.

The generating set W(τ) of a face τ consists of {ey ′ − ey} for certain covers
(y, y ′) in J(L) (assuming that 1̂ ∈Dτ , so that e1̂ is not in W(τ)). Thus W(τ) de-
termines a subset H(τ) := ⋃̇

H(τ)i of J(L) such that W(τ) consists of all the
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covers in the H(τ)i . Thus, H(τ) for τ = σij would be the diamond given in Re-
mark 6.10. In Section 7.12, if τ = τ1 ∪ τ2 for τ1, τ2 a pair of nonconsecutive and
nonintersecting J -blocks, then H(τ) = H(τ1) ∪̇H(τ2).

Conjecture 1. The multiplicity formula for X2,n in Theorem 7.17 extends to
Xd,n. Namely, let σ be the convex polyhedral cone associated to Xd,n and let
τ, τ1, τ2 be faces of σ such that τ = τ1∪ τ2. Then, if H(τ1)∩H(τ2) is empty, we
have multPτ Xd,n = (multPτ1

Xd,n) · (multPτ2
Xd,n).

Theorem 7.11 implies that multPτ1
X2,n = multPτ2

X2,n if both τ1 and τ2 are J -
blocks of the same length; in particular, H(τ1) and H(τ2) are isomorphic. Guided
by this phenomenon, we make the following conjecture.

Conjecture 2. For a face τ of any Hibi toric varietyX(L), multPτ X(L) is deter-
mined by the poset H(τ). By this we mean that if τ, τ ′ are such that H(τ),H(τ ′)
are isomorphic posets, then the multiplicities of X(L) at the points Pτ ,Pτ ′ are
the same.

Remark 9.1. Toward generalizing Theorem 6.19 to other Hibi varieties, we will
first explain how the lattice points µij and λij were chosen. Let δ and θ be two
incomparable meet and join irreducibles in Id,n; say, δ = (i + 1, . . . , i + d) and
θ = (1, . . . , j, n+ j + 1− d, . . . , n). Then θ ∧ δ = µij and θ ∨ δ = λij . In view
of Theorems 6.15 and 6.17, we have the following statement.

In Xd,n, Pτ is a smooth point if and only if, for every pair (θ, δ) of join
and meet irreducibles, there is an α ∈ [θ ∧ δ, θ ∨ δ] such that Pτ(α), the
α th coordinate of Pτ , is nonzero.

In fact, this is the content of the conjecture of [9, Sec. 11].

These results suggest that we look at such pairs of join–meet irreducibles in other
distributive lattices and expect the components of the singular locus of the associ-
ated Hibi toric variety to be given by Theorem 6.19(i) for the case of Id,n. However,
this is not true in general, as the following counterexample shows.

9.2. Counterexample. Let L be the interval [(1, 3, 4), (2, 5, 6)], a sublattice
of I3,6.
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Notice that L has only one pair of join–meet irreducibles, (2, 3, 4) and (1, 5, 6),
and thus the corresponding interval [θ ∧ δ, θ ∨ δ] is the entire lattice. Therefore,
if our result (Theorem 6.19(i)) on the singular locus of G-H toric varieties were to
generalize to other Hibi toric varieties, then any proper face would be nonsingu-
lar. This follows because any face τ must correspond to an embedded sublattice
Dτ , and naturally this sublattice will intersect the interval, which is just L.

But this is not true! For example, let τ be the face of σ such thatDτ = {(1, 5, 6)}.
Then

τ = C〈e145 − e156, e136 − e156, e135 − e145, e135 − e136, e134 − e135〉
is a set of generators for τ. Clearly, τ is not generated by the subset of a basis, so
τ is a singular face (see Lemma 6.14).

Nevertheless, Theorem 6.19 holds for minuscule lattices as described next. Let
G be semisimple, and let P be a maximal parabolic subgroup with ω as the asso-
ciated fundamental weight. Let W (resp. WP) be the Weyl group of G (resp. P).
Then the Schubert varieties in G/P are indexed byW/WP . Let P be minuscule, by
which we mean that the weights in the fundamental representation associated to
ω form one orbit under the Weyl group. It is known that the Bruhat poset W/WP

of the Schubert varieties in G/P is a distributive lattice; see [11] for details.

Definition 9.3. We call L := W/WP a minuscule lattice and X(L) a Bruhat–
Hibi toric variety.

Remark 9.4. Any Grassmann–Hibi toric variety Xd,n is also a Bruhat–Hibi toric
variety.

Now, for L a minuscule lattice as in Definition 9.3, consider a pair (α,β) of in-
comparable join–meet irreducible elements. It has recently been shown [4] that a
Bruhat–Hibi toric variety X(L) is smooth at Pτ (for τ a face of σ) if and only if,
for each incomparable pair (α,β) of join–meet irreducibles in L, there exists at
least one γ ∈ [(α ∧ β), (α ∨ β)] such that Pτ(γ ) is nonzero.
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