Singular Loci of Grassmann-Hibi Toric Varieties

J. Brown \& V. Lakshmibai

Introduction

Let K denote the base field, which we assume to be algebraically closed and of arbitrary characteristic. Given a distributive lattice \mathcal{L}, let $X(\mathcal{L})$ denote the affine variety in $\mathbb{A}^{\# \mathcal{L}}$ whose vanishing ideal is generated by the binomials $X_{\tau} X_{\varphi}-X_{\tau \vee \varphi} X_{\tau \wedge \varphi}$ in the polynomial algebra $K\left[X_{\alpha}, \alpha \in \mathcal{L}\right]$ (here, $\tau \vee \varphi($ resp. $\tau \wedge \varphi$) denotes the join-the smallest element of \mathcal{L} greater than both τ and φ (resp. the meet-the largest element of \mathcal{L} smaller than both τ and φ)). These varieties were extensively studied by Hibi in [10], where it is proved that $X(\mathcal{L})$ is a normal variety. On the other hand, Eisenbud and Sturmfels [6] showed that a binomial prime ideal is toric (here, "toric ideal" is in the sense of [17]). Thus one obtains that $X(\mathcal{L})$ is a normal toric variety. We shall refer to such an $X(\mathcal{L})$ as a Hibi toric variety.

For \mathcal{L} the Bruhat poset of Schubert varieties in a minuscule G / P, it is shown in [8] that $X(\mathcal{L})$ flatly deforms to $\widehat{G / P}$ (the cone over $G / P)$; in other words, there exists a flat family over \mathbb{A}^{1} with $\widehat{G / P}$ as the generic fiber and $X(\mathcal{L})$ as the special fiber. More generally, for a Schubert variety $X(w)$ in a minuscule G / P, it is shown in [8] that $X\left(\mathcal{L}_{w}\right)$ flatly deforms to $\widehat{X(w)}$, the cone over $X(w)$ (here, \mathcal{L}_{w} is the Bruhat poset of Schubert subvarieties of $X(w)$). In a subsequent paper [9], the authors studied the singularities of $X(\mathcal{L})$ for \mathcal{L} the Bruhat poset of Schubert varieties in the Grassmannian; they also gave a conjecture (see [9, Sec. 11]; see also Remark 9.1 of this paper) giving a necessary and sufficient condition for a point on $X(\mathcal{L})$ to be smooth and proved the sufficiency part of the conjecture. Subsequently, the necessary part of the conjecture was proved in [2] by Batyrev and colleagues. The toric varieties $X(\mathcal{L})$ for \mathcal{L} the Bruhat poset of Schubert varieties in the Grassmannian play an important role in the area of mirror symmetry; for more details, see $[1 ; 2]$. We refer to such an $X(\mathcal{L})$ as a Grassmann-Hibi toric variety (or G-H toric variety).

The proof (in [9]) of the sufficiency part of the conjecture in [9] uses the Jacobian criterion for smoothness, whereas the proof (in [2]) of the necessary part of the conjecture in [9] uses certain desingularization of $X(\mathcal{L})$.

It should be remarked that neither [9] nor [2] discusses the relationship between the singularities of $X(\mathcal{L})$ and the combinatorics of the polyhedral cone associated

[^0]to $X(\mathcal{L})$; the main goal of this paper is to bring out this relationship. Our first main result is a description of the singular locus of a G-H toric variety $X(\mathcal{L})$ in terms of the faces of the associated polyhedral cone; in particular, we give a proof of the conjecture of [9] using only the combinatorics of the polyhedral cone associated to the toric variety $X(\mathcal{L})$. Furthermore, we prove (Theorem 6.19) that the singular locus of $X(\mathcal{L})$ is pure and of codimension 3 in $X(\mathcal{L})$ and that the generic singularities are of cone type (more precisely, the singularity type is the same as that at the vertex of the cone over the quadric surface $x_{1} x_{4}-x_{2} x_{3}=0$ in \mathbb{P}^{3}); we also determine the tangent cone to $X(\mathcal{L})$ at a generic singularity, which turns out to be a toric variety (by a "generic singularity" we mean a point $P \in X(\mathcal{L})$ such that the closure of the torus orbit through P is an irreducible component of $\operatorname{Sing} X(\mathcal{L})$, the singular locus of $X(\mathcal{L})$). We further obtain (see Corollary 7.3 and Theorem 7.11) an interpretation of the multiplicities at some of the singularities as certain Catalan numbers when \mathcal{L} is the Bruhat poset of Schubert varieties in the Grassmannian of 2-planes in K^{n}. We also present a product formula (Theorem 7.17).

It turns out that the conjecture of [9] does not extend to a general $X(\mathcal{L})$ (see Section 9.2 for a counterexample). However, in [4] we proved the conjecture of [9] for other minuscule posets.

This paper contains more results for the Grassmann-Hibi toric varieties that cannot be deduced from the results of [4]; for example, the multiplicity formulas provided in Sections 7 and 8 of this paper are not discussed in [4]. The singularities of the Hibi toric variety were also studied by Wagner in [18], where it was shown that all Hibi toric varieties have a singular locus of codimension ≥ 3. In this paper, we go into much more detail about the singularities of a G-H toric variety.

The balance of the paper is organized as follows. In Sections 1 and 2 we recall generalities on toric varieties and distributive lattices, respectively. In Section 3, we introduce the Hibi toric variety $X(\mathcal{L})$ and recall some results from [9;14] on $X(\mathcal{L})$. In Section 4, we recall results from [14] on the polyhedral cone associated to $X(\mathcal{L})$; in Section 5, we introduce the Grassmann-Hibi toric variety. In Section 6 we prove our first main result, giving the description of $\operatorname{Sing} X(\mathcal{L})$ in terms of faces of the cone associated to $X(\mathcal{L})$; we also present our results on the tangent cones and deduce the multiplicities at the associated points. In Section 7 we present certain product formulas for $X(\mathcal{L})$, where \mathcal{L} is the Bruhat poset of Schubert varieties in the Grassmannian of 2-planes in K^{n}. In Section 8, we present a formula for the multiplicity at the unique T-fixed point of $X(\mathcal{L})$ for \mathcal{L} the Bruhat poset of Schubert varieties in the Grassmannian of d-planes in K^{n}. In Section 9 we present a counterexample to show that the conjecture of [9] does not extend to a general $X(\mathcal{L})$; in this section, we also present two conjectures that concern extending the multiplicity formulas of Sections 7 and 8.

1. Generalities on Toric Varieties

Our main object of study is a certain affine toric variety, so in this section we recall some basic definitions on affine toric varieties. Let $T=\left(K^{*}\right)^{m}$ be an
m-dimensional torus. Let \mathbb{A}^{l} be the affine l-space (i.e., l-tuples of elements of the field K).

Definition $1.1[7 ; 12]$. An equivariant affine embedding of a torus T is an affine variety $X \subseteq \mathbb{A}^{l}$ containing T as an open subset and equipped with a T-action $T \times X \rightarrow X$ extending the action $T \times T \rightarrow T$ given by multiplication. If in addition X is normal, then X is called an affine toric variety.
1.2. The Cone Associated to a Toric Variety. Let M be the character group of T, and let N be the \mathbb{Z}-dual of M. Let $N_{\mathbb{R}}=N \otimes_{\mathbb{Z}} \mathbb{R}$, and recall [7; 12] that there exists a strongly convex rational polyhedral cone $\sigma \subset N_{\mathbb{R}}$ such that

$$
K[X]=K\left[S_{\sigma}\right],
$$

where S_{σ} is the subsemigroup $\sigma^{\vee} \cap M$ for σ^{\vee} the cone in $M_{\mathbb{R}}$ dual to σ. Note that S_{σ} is a finitely generated subsemigroup in M.
1.3. Orbit Decomposition in Affine Toric Varieties. We shall denote X also by X_{σ}. We may suppose, without loss of generality, that σ spans $N_{\mathbb{R}}$ so that the dimension of σ equals $\operatorname{dim} N_{\mathbb{R}}=\operatorname{dim} T$. (By "dimension of σ " we mean the vector space dimension of the span of σ.)

Definition 1.4. A face τ of σ is a convex polyhedral subcone of σ of the form $\tau=\sigma \cap u^{\perp}$ for some $u \in \sigma^{\vee}$, and it is denoted $\tau<\sigma$. Note that σ itself is considered a face.

We have that X_{τ} is a principal open subset of X_{σ}; namely,

$$
X_{\tau}=\left(X_{\sigma}\right)_{u}
$$

Each face τ determines a (closed) point P_{τ} in X_{σ} : the point corresponding to the maximal ideal in $K[X]=K\left[S_{\sigma}\right]$ given by the kernel of $e_{\tau}: K\left[S_{\sigma}\right] \rightarrow K$, where for $u \in S_{\sigma}$ we have

$$
e_{\tau}(u)= \begin{cases}1 & \text { if } u \in \tau^{\perp} \\ 0 & \text { otherwise }\end{cases}
$$

Remark 1.5. As a point in \mathbb{A}^{l}, P_{τ} may be identified with the l-tuple with 1 at the i th place if χ_{i} is in τ^{\perp} and with 0 otherwise. (Here, χ_{i} denotes the weight of the T-weight vector y_{i}-the class of x_{i} in $K\left[X_{\sigma}\right]$.)
1.6. Orbit Decomposition. Let O_{τ} denote the T-orbit in X_{σ} through P_{τ}. We have the following orbit decomposition in X_{σ} :

$$
X_{\sigma}=\bigcup_{\theta \leq \sigma} O_{\theta}, \quad \overline{O_{\tau}}=\bigcup_{\theta \geq \tau} O_{\theta}, \quad \operatorname{dim} \tau+\operatorname{dim} O_{\tau}=\operatorname{dim} X_{\sigma}
$$

See [7; 12] for details.
Thus $\tau \mapsto \overline{O_{\tau}}$ defines an order-reversing bijection between \{faces of σ \} and $\left\{T\right.$-orbit closures in $\left.X_{\sigma}\right\}$.

Lemma 1.7 [7, Sec. 3.1]. For a face $\tau<\sigma, K\left[\overline{O_{\tau}}\right]=K\left[S_{\sigma} \cap \tau^{\perp}\right]$.

2. Finite Distributive Lattices

We shall study a special class of toric varieties-namely, the toric varieties associated to distributive lattices. We shall first collect some definitions on finite partially ordered sets. A partially ordered set is also called a poset.

Definition 2.1. A finite poset P is called bounded if it has both a unique maximal and a unique minimal element, denoted $\hat{1}$ and $\hat{0}$ respectively. A totally ordered subset C of P is called a chain, and the number $\# C-1$ is called the length of the chain. A bounded poset P is said to be graded (or ranked) if all maximal chains have the same length. If P is graded, then the length of a maximal chain in P is called the rank of P.

Definition 2.2. Let P be a graded poset. For $\lambda, \mu \in P$ with $\lambda \geq \mu$, the graded poset $\{\tau \in P \mid \mu \leq \tau \leq \lambda\}$ is called the interval from μ to λ and is denoted by [$\mu, \lambda]$.

Definition 2.3. Let P be a graded poset, and let $\lambda, \mu \in P$ with $\lambda \geq \mu$. The ordered pair (λ, μ) is called a cover (and we also say that λ covers μ) if $[\mu, \lambda]=$ $\{\mu, \lambda\}$.

Definition 2.4. A lattice is a partially ordered set (\mathcal{L}, \leq) such that, for every pair of elements $x, y \in \mathcal{L}$, there exist elements $x \vee y$ and $x \wedge y$, called (respectively) the join and the meet of x and y, defined by:

$$
\begin{array}{ll}
x \vee y \geq x, & x \vee y \geq y, \quad \text { and } \quad \text { if } z \geq x \text { and } z \geq y \text { then } z \geq x \vee y ; \\
x \wedge y \leq x, \quad x \wedge y \leq y, \quad \text { and } \quad \text { if } z \leq x \text { and } z \leq y \text { then } z \leq x \wedge y .
\end{array}
$$

It is easy to check that the operations \vee and \wedge are commutative and associative.
Definition 2.5. Given a lattice \mathcal{L}, a subset $\mathcal{L}^{\prime} \subset \mathcal{L}$ is called a sublattice of \mathcal{L} if $x, y \in \mathcal{L}^{\prime}$ implies that $x \wedge y \in \mathcal{L}^{\prime}$ and $x \vee y \in \mathcal{L}^{\prime}$.

Definition 2.6. A lattice is called distributive if the following identities hold:
(i) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$;
(ii) $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$.

Definition 2.7. An element z of a lattice \mathcal{L} is called join-irreducible (resp. meetirreducible) if $z=x \vee y$ (resp. $z=x \wedge y$) implies either $z=x$ or $z=y$. The set of join-irreducible elements of \mathcal{L} is denoted by $J(\mathcal{L})$.

The following lemma is easily checked.
Lemma 2.8. Let \mathcal{L} be a finite distributive lattice. Then

$$
J(\mathcal{L})=\{\tau \in \mathcal{L} \mid \text { there exists at most one cover of the form }(\tau, \lambda)\}
$$

Definition 2.9. A subset I of a poset P is called an ideal of P if, for all $x, y \in P$,

$$
x \in I \text { and } y \leq x \Longrightarrow y \in I
$$

Theorem 2.10 [3, Chap. III, Sec. 3]. Let \mathcal{L} be a finite distributive lattice with minimal element $\hat{0}$, and let $P=J(\mathcal{L}) \backslash\{\hat{0}\}$ with the induced partial order of \mathcal{L}. Then \mathcal{L} is isomorphic to the lattice of ideals of P by means of the lattice isomorphism

$$
\alpha \mapsto I_{\alpha}=\{\tau \in P \mid \tau \leq \alpha\}, \quad \alpha \in \mathcal{L} .
$$

For $\alpha \in \mathcal{L}$, let I_{α} denote the ideal corresponding to α under the isomorphism in Theorem 2.10.

Remark 2.11. As a consequence of Theorem 2.10, we have that every finite distributive lattice is graded.

3. The Variety $X(\mathcal{L})$

Throughout the following sections, let \mathcal{L} be a finite distributive lattice.
Consider the polynomial algebra $K\left[X_{\alpha}, \alpha \in \mathcal{L}\right]$, and let $I(\mathcal{L})$ be the ideal generated by $\left\{X_{\alpha} X_{\beta}-X_{\alpha \vee \beta} X_{\alpha \wedge \beta}, \alpha, \beta \in \mathcal{L}\right\}$. Then one knows [10] that $K\left[X_{\alpha}, \alpha \in \mathcal{L}\right] / I(\mathcal{L})$ is a normal domain; in particular, we have that $I(\mathcal{L})$ is a prime ideal. Let $X(\mathcal{L})$ be the affine variety of the zeroes in K^{l} of $I(\mathcal{L})$ (here $l=$ $\# \mathcal{L})$. Then $X(\mathcal{L})$ is an affine normal variety defined by binomials; on the other hand, by [6], a binomial prime ideal is a toric ideal (here, "toric ideal" is in the sense of [17]). Hence $X(\mathcal{L})$ is a toric variety for the action by a suitable torus T.

In the sequel, we shall denote $R(\mathcal{L})=K\left[X_{\alpha}, \alpha \in \mathcal{L}\right] / I(\mathcal{L})$. Also, for $\alpha \in \mathcal{L}$, we shall denote the image of X_{α} in $R(\mathcal{L})$ by x_{α}.

Definition 3.1. The variety $X(\mathcal{L})$ will be called a Hibi toric variety.
Remark 3.2. An extensive study of $X(\mathcal{L})$ appeared first in [10].
We have that $\operatorname{dim} X(\mathcal{L})=\operatorname{dim} T$.
Theorem 3.3 [14]. The dimension of $X(\mathcal{L})$ is equal to \# $J(\mathcal{L})$, which is also equal to the cardinality of the set of elements in a maximal chain of \mathcal{L}.

Definition 3.4. For a finite distributive lattice \mathcal{L}, we call the cardinality of $J(\mathcal{L})$ the dimension of \mathcal{L}, denoted $\operatorname{dim} \mathcal{L}$. If \mathcal{L}^{\prime} is a sublattice of \mathcal{L}, then the codimension of \mathcal{L}^{\prime} in \mathcal{L} is defined as $\operatorname{dim} \mathcal{L}-\operatorname{dim} \mathcal{L}^{\prime}$.

Definition 3.5 [18]. A sublattice \mathcal{L}^{\prime} of \mathcal{L} is called an embedded sublattice of \mathcal{L} if

$$
\tau, \phi \in \mathcal{L}, \tau \vee \phi \in \mathcal{L}^{\prime}, \tau \wedge \phi \in \mathcal{L}^{\prime} \Longrightarrow \tau, \phi \in \mathcal{L}^{\prime}
$$

Given a sublattice \mathcal{L}^{\prime} of \mathcal{L}, consider the variety $X\left(\mathcal{L}^{\prime}\right)$ and the canonical embed$\operatorname{ding} X\left(\mathcal{L}^{\prime}\right) \hookrightarrow \mathbb{A}^{\# \mathcal{L}^{\prime}} \hookrightarrow \mathbb{A}^{\# \mathcal{L}}$.

Proposition 3.6 [9, Prop. 5.16]. $\quad X\left(\mathcal{L}^{\prime}\right)$ is a subvariety of $X(\mathcal{L})$ if and only if \mathcal{L}^{\prime} is an embedded sublattice of \mathcal{L}.
3.7. Multiplicity of $X(\mathcal{L})$ at the Origin. Let B be a \mathbb{Z}_{+}-graded and finitely generated K-algebra, $B=\bigoplus B_{m}$. Let $\phi_{m}(B)$ denote the Hilbert function,

$$
\phi_{m}(B)=\operatorname{dim}_{K} B_{m},
$$

and let $P_{B}(x)$ denote the Hilbert polynomial of B. Recall that:

- $P_{B}(x) \in \mathbb{Q}[x]$;
- $\operatorname{deg} P_{B}(x)=\operatorname{dim} \operatorname{Proj} B=s$, say; and
- the leading coefficient of $P_{B}(x)$ is of the form e_{B} / s !.

Definition 3.8. The number e_{B} is called the degree of the graded ring B, or the degree of Proj B.

Theorem 3.9. The degree of $K[X(\mathcal{L})]$ is equal to the number of maximal chains in \mathcal{L}.

Proof. Let $I(\mathcal{L})$ be as before. We begin by putting a monomial order on $K\left[X_{\alpha}, \alpha \in \mathcal{L}\right]$. Consider the reverse partial order on \mathcal{L} and extend it to a total order, denoted $\leq_{\text {tot }}$, on the variables $\left\{X_{\alpha}, \alpha \in \mathcal{L}\right\}$. We now take the monomial order defined as follows. For $\alpha_{1} \leq_{\text {tot }} \cdots \leq_{\text {tot }} \alpha_{r}$ and $\beta_{1} \leq_{\text {tot }} \cdots \leq_{\text {tot }} \beta_{s}$, we say that $X_{\alpha_{1}} \cdots X_{\alpha_{r}} \prec X_{\beta_{1}} \cdots X_{\beta_{s}}$ if and only if either $r<s$ or $r=s$ and there exists a $t<r$ such that $\alpha_{1}=\beta_{1}, \ldots, \alpha_{t}=\beta_{t}$ with $\alpha_{t+1}<_{\text {tot }} \beta_{t+1}$. From [9] we have that $\left\{X_{\alpha} X_{\beta}-X_{\alpha \wedge \beta} X_{\alpha \vee \beta} \mid \alpha, \beta \in \mathcal{L}\right.$ non-comparable $\}$ is a Gröbner basis for $I(\mathcal{L})$ for this monomial order. Hence, letting I be the ideal generated by initial terms of elements of $I(\mathcal{L})$, we have that $\left\{X_{\alpha} X_{\beta} \mid \alpha, \beta\right.$ noncomparable $\}$ is a generating set for I. Let us denote $K[X(\mathcal{L})]$ by S and $K\left[X_{\alpha}, \alpha \in \mathcal{L}\right] / I$ by R. By [5, Sec. 15.8] we have a flat degeneration of $\operatorname{Spec}(S)$ to $\operatorname{Spec}(R)$. Hence, the degree of S equals the degree of R.

Let $J=\left\{j_{1}, \ldots, j_{s}\right\}$ be a subset of \mathcal{L} such that $X_{j_{1}} \cdots X_{j_{s}} \notin I$. Note that J is thus a chain of length $s-1$ in \mathcal{L}. We have

$$
R=K \oplus \bigoplus_{J=\left\{j_{1}, \ldots, j_{s}\right\}}\left(X_{j_{1}} \cdots X_{j_{s}}\right) K\left[X_{j_{1}}, \ldots, X_{j_{s}}\right]
$$

where J runs over all chains of any length in \mathcal{L}. Therefore,

$$
\phi_{m}(R)=\operatorname{dim} R_{m}=\sum_{J=\left\{j_{1}, \ldots, j_{s}\right\}}\left(\begin{array}{c}
\left.s+\binom{m-s)-1}{m-s}=\sum_{J=\left\{j_{1}, \ldots, j_{s}\right\}}\binom{m-1}{s-1} \begin{array}{c}
\\
m
\end{array}\right) .
\end{array}\right.
$$

Note that for m sufficiently large, the leading term appears in the summation only for J of maximal cardinality s. The result follows from this.

Next we recall mult ${ }_{P} X$, the multiplicity of an algebraic variety at a point $P \in X$. Let $\mathcal{O}_{X, P}=(A, \mathfrak{m})$. Let C_{P} be the tangent cone at P; that is, $C_{P}=\operatorname{Spec} A(P)$, where $A(P)=\operatorname{gr}(A, \mathfrak{m})$. Then the multiplicity of X at P is defined to be

$$
\operatorname{mult}_{P} X=\operatorname{deg} \operatorname{Proj} A(P)(=\operatorname{deg} A(P))
$$

Thus, using the notation from Section 3.7, we obtain $e_{B}=\operatorname{mult}_{0} \operatorname{Spec}(B)$, the multiplicity of $\operatorname{Spec}(B)$ at the origin.

The following result is a direct consequence of Theorem 3.9.
Theorem 3.10. The multiplicity of $X(\mathcal{L})$ at the origin is equal to the number of maximal chains in \mathcal{L}.

4. Cone and Dual Cone of $X(\mathcal{L})$

Let $M=\mathbb{Z}^{d}$ for $d=\# J(\mathcal{L})$, with basis $\left\{f_{z}, z \in J(\mathcal{L})\right\}$. Let N be the \mathbb{Z}-dual of M, with basis $\left\{e_{z}, z \in J(\mathcal{L})\right\}$ dual to $\left\{f_{z}, z \in J(\mathcal{L})\right\}$. We denote the torus acting on the toric variety $X(\mathcal{L})$ by T, and we identify M with the character group $X(T)$. Thus, for $t=\left(t_{y}\right)_{y \in J(\mathcal{L})} \in T$ (under the identification of T with $\left.\left(K^{*}\right)^{d}\right)$, we let $f_{z}(t)=t_{z}$ for $z \in J(\mathcal{L})$.

Denote by \mathcal{I} the lattice of ideals of $J(\mathcal{L})$. For $A \in \mathcal{I}$, set

$$
f_{A}:=\sum_{z \in A} f_{z}
$$

Let $V=N_{\mathbb{R}}=N \otimes_{\mathbb{Z}} \mathbb{R}$. Let $\sigma \subset V$ be the cone such that $X(\mathcal{L})=X_{\sigma}$, and let $\sigma^{\vee} \subset V^{*}$ be the cone that is dual to σ. Let $S_{\sigma}=\sigma^{\vee} \cap M$, so that $K[X(\mathcal{L})]$ equals the semigroup algebra $K\left[S_{\sigma}\right]$.

From [10; 14, Prop. 4.6] we have the following statement.
Proposition 4.1. The semigroup S_{σ} is generated by f_{A} for $A \in \mathcal{I}$.
Let $M(J(\mathcal{L}))$ be the set of maximal elements in the poset $J(\mathcal{L})$. Let $Z(J(\mathcal{L}))$ denote the set of all covers in the poset $J(\mathcal{L})$ (i.e., $\left(z, z^{\prime}\right)$ with $z>z^{\prime}$ in the poset $J(\mathcal{L})$, and there is no other element $y \in J(\mathcal{L})$ such that $\left.z>y>z^{\prime}\right)$. For a cover $\left(y, y^{\prime}\right) \in Z(J(\mathcal{L}))$, denote

$$
v_{y, y^{\prime}}:=e_{y^{\prime}}-e_{y} .
$$

Proposition 4.2 [14, Prop. 4.7]. The cone σ is generated by

$$
\left\{e_{z}, z \in M(J(\mathcal{L})) ; v_{y, y^{\prime}},\left(y, y^{\prime}\right) \in Z(J(\mathcal{L}))\right\} .
$$

4.3. Analysis of Faces of σ. We shall concern ourselves just with the closed points in $X(\mathcal{L})$. So in the sequel, by a point in $X(\mathcal{L})$ we shall mean a closed point. Let τ be a face of σ. Let P_{τ} be the distinguished point of O_{τ} with the associated maximal ideal being the kernel of the map

$$
K\left[S_{\sigma}\right] \rightarrow K, \quad u \in S_{\sigma}, \quad u \mapsto \begin{cases}1 & \text { if } u \in \tau^{\perp} \\ 0 & \text { otherwise }\end{cases}
$$

Then, for a point $P \in X(\mathcal{L})$ (identified with a point in $\left.\mathbb{A}^{l}, l=\# \mathcal{L}\right)$ and denoting by $P(\alpha)$ the α th coordinate of P, we have

$$
P_{\tau}(\alpha)= \begin{cases}1 & \text { if } f_{I_{\alpha}} \in \tau^{\perp} \\ 0 & \text { otherwise }\end{cases}
$$

Now let

$$
D_{\tau}=\left\{\alpha \in \mathcal{L} \mid P_{\tau}(\alpha) \neq 0\right\}
$$

4.4. The Bijection \mathcal{D} (cf. [14]). We have a bijection
$\mathcal{D}:\{$ faces of $\sigma\} \stackrel{\mathrm{bij}}{\longleftrightarrow}\{$ embedded sublattices of $\mathcal{L}\}, \quad \mathcal{D}(\tau)=D_{\tau}$
Proposition 4.5 [14, Prop. 4.11]. Let τ be a face of σ. Then $\overline{O_{\tau}}=X\left(D_{\tau}\right)$.

5. The Distributive Lattice $I_{d, n}$ and the Grassmann-Hibi Toric Variety

We now turn our focus to a particular distributive lattice-namely,

$$
\mathcal{L}=I_{d, n}=\left\{x=\left(i_{1}, \ldots, i_{d}\right) \mid 1 \leq i_{1}<\cdots<i_{d} \leq n\right\} .
$$

The partial order \geq on $I_{d, n}$ is given by

$$
\left(i_{1}, \ldots, i_{d}\right) \geq\left(j_{1}, \ldots, j_{d}\right) \Longleftrightarrow i_{1} \geq j_{1}, \ldots, i_{d} \geq j_{d}
$$

For $x \in I_{d, n}$, we denote the j th entry in x by $x(j), 1 \leq j \leq d$.
Remark 5.1. It is a well-known fact (see e.g. [13]) that the partially ordered set $I_{d, n}$ is isomorphic to the poset determined by the set of Schubert varieties in $G_{d, n}$, the Grassmannian of d-dimensional subspaces in an n-dimensional space, where the Schubert varieties are partially ordered by inclusion. From [15, Sec. 3] we get that $I_{d, n}$ is a distributive lattice.

Remark 5.2. Some readers may prefer to work with the lattice of Young diagrams that fit into a rectangle with d rows and $n-d$ columns, which we will denote by $\Lambda_{d, n-d}$. In this case one may go from $I_{d, n}$ to $\Lambda_{d, n-d}$ using the following bijection:

$$
\begin{aligned}
& \left(i_{1}, \ldots, i_{d}\right) \\
& \quad \mapsto \lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right), \lambda_{1}=i_{d}-d, \lambda_{2}=i_{d-1}-(d-1), \ldots, \lambda_{d}=i_{1}-1 .
\end{aligned}
$$

In the next lemma, by a segment we shall mean a set consisting of consecutive integers.

Lemma 5.3 [9]. For $\mathcal{L}=I_{d, n}$, the following statements hold.
(i) The element $\tau=\left(i_{1}, \ldots, i_{d}\right)$ is join-irreducible if and only if either τ is a segment (we shall call these elements Type I) or τ consists of two disjoint segments (μ, ν), with μ starting with 1 (Type II).
(ii) The element $\tau=\left(i_{1}, \ldots, i_{d}\right)$ is meet-irreducible if and only if either τ is a segment or τ consists of two disjoint segments (μ, ν), with v ending with n.
(iii) The element $\tau=\left(i_{1}, \ldots, i_{d}\right)$ is join-irreducible and meet-irreducible if and only if either τ is a segment or τ consists of two disjoint segments (μ, ν), with μ starting with 1 and ν ending with n.

Remark 5.4. The join irreducible elements of $\Lambda_{d, n-d}$ are those Young diagrams that are rectangles (i.e., the nonzero rows all have the same length).

Definition 5.5. We shall denote $X\left(I_{d, n}\right)$ by just $X_{d, n}$ and will refer to it as a Grassmann-Hibi toric variety, or a G-H toric variety for short.

6. Singular Faces of the G-H Toric Variety $\boldsymbol{X}_{\boldsymbol{d}, \boldsymbol{n}}$

Let \mathcal{L} represent the distributive lattice $I_{d, n}$. From Lemma 5.3 we have that the elements of $J(\mathcal{L})$ are of two types, Type I and Type II.

Since the generators of the cone σ are determined by $J(\mathcal{L})$ (Proposition 4.2), we will often consider $J(\mathcal{L})$ as a partially ordered set with the partial order induced from \mathcal{L}. Notice that $J(\mathcal{L})$ has one maximal element, which is also the maximal element of $\mathcal{L}: \hat{1}=(n-d+1, \ldots, n)$; and $J(\mathcal{L})$ has one minimal element, which is also the minimal element of $\mathcal{L}: \hat{0}=(1, \ldots, d)$. For each element x of $J(\mathcal{L})$, there are at most two covers of the form (y, x) in $J(\mathcal{L})$.

For example, if $x=(1, \ldots, k, l+1, \ldots, l+d-k) \in J(\mathcal{L})$ then we have $y=$ $(1, \ldots, k, l+2, \ldots, l+d-k+1)$ and $y^{\prime}=(1, \ldots, k-1, l, \ldots, l+d-k)$, forming the two covers of x in $J(\mathcal{L})$ (if $k=1$, then $y^{\prime}=(l, \ldots, l+d-1)$). If $l=$ $n-d+k$ or if x is of Type I, then x has only one cover.

The following lemma is a corollary of [15, Prop. 3.2].
Lemma 6.1. The partially ordered set $J\left(I_{d, n}\right)$ is a distributive lattice.
Remark 6.2. As a lattice, $J(\mathcal{L})$ looks like a tessellation of diamonds in the shape of a rectangle with sides of length $d-1$ and $n-d-1$. For example, let $d=3$ and $n=7$. Then $J(\mathcal{L})$ is the following lattice.

As in Section 4, let σ be the cone associated to $X(\mathcal{L})$.
Definition 6.3. For $1 \leq i \leq n-d-1$ and $1 \leq j \leq d-1$, let

$$
\begin{aligned}
\mu_{i j} & =(1, \ldots, j, i+j+1, \ldots, i+d) \\
\lambda_{i j} & =(i+1, \ldots, i+j, n+1+j-d, \ldots, n)
\end{aligned}
$$

Define

$$
\mathcal{L}_{i j}=\mathcal{L} \backslash\left[\mu_{i j}, \lambda_{i j}\right] .
$$

Remark 6.4. (i) By [9, Lemma 11.5] we have that $\mathcal{L}_{i j}$ is an embedded sublattice.
(ii) For $\alpha, \beta \in J(\mathcal{L})$ noncomparable, $\alpha \wedge \beta=\mu_{i j}$ for some $1 \leq i \leq n-d-1$ and $1 \leq j \leq d-1$; thus every diamond in $J(\mathcal{L})$ has a $\mu_{i j}$ as its minimal element.

Definition 6.5. Let $\sigma_{i j}$ be the face of σ for which $D_{\sigma_{i j}}=\mathcal{L}_{i j}$.
Definition 6.6. A face τ of σ is a singular (resp. nonsingular) face if P_{τ} is a singular (resp. nonsingular) point of X_{σ}.

Our first result is that $\sigma_{i j}$ is a singular face. To prove this, we start by determining a set of generators for $\sigma_{i j}$.

Definition 6.7. Let us denote by $W(\sigma)$ (or simply W) the set of generators for σ, as described in Proposition 4.2. For a face τ of σ, define

$$
W(\tau)=\left\{v \in W \mid f_{I_{\alpha}}(v)=0 \forall \alpha \in D_{\tau}\right\} .
$$

(Here, D_{τ} is as in Section 4.4.) Then $W(\tau)$ gives a set of generators for τ.
6.8. Determination of $W\left(\sigma_{i j}\right)$. It will aid our proof below to observe a few facts about the generators of $\sigma_{i j}$. First of all, $e_{\hat{1}}$ is not a generator for any $\sigma_{i j}$, since $\hat{1} \in \mathcal{L}_{i j}$ for all $1 \leq i \leq n-d-1$ and $1 \leq j \leq d-1$ and since $e_{\hat{1}}$ is nonzero on $f_{I_{\hat{1}}}$. Similarly, for the cover $\left(y^{\prime}, \hat{0}\right)$ where $y^{\prime}=(1, \ldots, d-1, d+1), e_{\hat{0}}-e_{y^{\prime}}$ is not a generator for any $\sigma_{i j}$.

Second, for any cover $\left(y^{\prime}, y\right)$ in $J(\mathcal{L})$, if $y \in \mathcal{L}_{i j}$ then $e_{y}-e_{y^{\prime}}$ is not a generator of $\sigma_{i j}$ because $f_{I_{y}}\left(e_{y}-e_{y^{\prime}}\right) \neq 0$. Thus, in determining elements of $W\left(\sigma_{i j}\right)$, we need only be concerned with elements $e_{y}-e_{y^{\prime}}$ such that $y \in J(\mathcal{L}) \cap\left[\mu_{i j}, \lambda_{i j}\right]$. The elements of $J(\mathcal{L}) \cap\left[\mu_{i j}, \lambda_{i j}\right]$ are

$$
\begin{array}{ll}
y_{t}=(1, \ldots, j, i+j+1+t, \ldots, i+d+t) & \text { for } 0 \leq t \leq n-d-i, \\
z_{t}=(1, \ldots, j-t, i+j+1-t, \ldots, i+d) & \text { for } 0 \leq t \leq j
\end{array}
$$

Note that $y_{0}=z_{0}=\mu_{i j}$ and $z_{j}=(i+1, \ldots, i+d)$. In the next theorem we prove that $W\left(\sigma_{i j}\right)$ consists of precisely four elements, forming a diamond in the distributive lattice $J(\mathcal{L})$ with $\mu_{i j}$ as the smallest element.

Theorem 6.9. $W\left(\sigma_{i j}\right)=\left\{e_{\mu_{i j}}-e_{A}, e_{\mu_{i j}}-e_{B}, e_{A}-e_{C}, e_{B}-e_{C}\right\}$, where A, B, and C are defined in the proof.

Proof. We divide the proof into two cases, $j=1$ and $j>1$.
Case 1. Let $j=1$ and $1 \leq i \leq n-d-1$. Here we have

$$
\mu_{i j}=(1, i+2, \ldots, i+d) \quad \text { and } \quad \lambda_{i j}=(i+1, n-d+2, \ldots, n)
$$

As discussed previously, we find that $\mu_{i j}$ is covered in $J(\mathcal{L})$ by $A=(i+1, \ldots, i+d)$ and $B=(1, i+3, \ldots, i+d+1)$. We have that both A and B are in the interval [$\mu_{i j}, \lambda_{i j}$]. Let C be the join of A and B in the lattice $J(\mathcal{L})$:

$$
C=(i+2, \ldots, i+d+1)
$$

Note that (C, A) and (C, B) are covers in $J(\mathcal{L})$.
We first observe that,

$$
\begin{equation*}
\text { for } x=\left(x_{1}, \ldots, x_{d}\right) \in \mathcal{L}_{i j}, \quad \text { if } x \geq \mu_{i j} \text { then } x \geq C . \tag{6.1}
\end{equation*}
$$

(This follows because $x \geq \mu_{i j}$ and $x \in \mathcal{L}_{i j}$ imply that $x \not \leq \lambda_{i j}$ and hence $x_{1} \geq$ $i+2$.)

Claim (i): $e_{\mu_{i j}}-e_{A}$ and $e_{\mu_{i j}}-e_{B}$ are both in $W\left(\sigma_{i j}\right)$. We shall prove the claim for $e_{\mu_{i j}}-e_{A}$ (the proof for $e_{\mu_{i j}-e_{B}}$ is similar). To prove that $e_{\mu_{i j}}-e_{A}$ is in $W\left(\sigma_{i j}\right)$, we need to show that there does not exist an $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathcal{L}_{i j}$ such that $x \geq \mu_{i j}$ and $x \not \geq A$. But this follows from (6.1) (which implies that, for $x=$ $\left(x_{1}, \ldots, x_{d}\right) \in \mathcal{L}_{i j}$, if $x \geq \mu_{i j}$ then $\left.x \geq A\right)$.

Claim (ii): $e_{A}-e_{C}$ and $e_{B}-e_{C}$ are in $W\left(\sigma_{i j}\right)$. The proof is similar to that of Claim (i). Again we show the result for $e_{A}-e_{C}$ (the proof for $e_{B}-e_{C}$ is similar). We must demonstrate that there does not exist an $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathcal{L}_{i j}$ such that $x \geq A$ but $x \not \geq C$. Again this follows from (6.1) (note that $x \geq A$ implies in particular that $\left.x \geq \mu_{i j}\right)$.
Claim (iii): $W\left(\sigma_{i j}\right)=\left\{e_{\mu_{i j}}-e_{A}, e_{\mu_{i j}}-e_{B}, e_{A}-e_{C}, e_{B}-e_{C}\right\}$. In the case under consideration, since $j=1$ it follows that the only elements of $J(\mathcal{L}) \cap\left[\mu_{i j}, \lambda_{i j}\right]$ are of the following forms:

$$
\begin{aligned}
& y_{t}=(1, i+t+2, \ldots, i+d+t) \quad \text { for } 0 \leq t \leq n-d-i \\
& z_{1}=(i+1, \ldots, i+d) .
\end{aligned}
$$

Let $y_{t}^{\prime}=(i+t+1, \ldots, i+d+t)$ for $1 \leq t \leq n-d-i$; thus we have covers of type $\left(y_{t}^{\prime}, y_{t}\right)$ for $0 \leq t \leq n-d-i$ and of type $\left(y_{t+1}, y_{t}\right)$ for $0 \leq t \leq n-d-1-i$. Observe that $y_{0}=\mu_{i j}, y_{1}=B, z_{1}=y_{0}^{\prime}=A$, and $y_{1}^{\prime}=C$. In Claims (i) and (ii) we have shown that the covers $\left(y_{1}, y_{0}\right),\left(y_{0}^{\prime}, y_{0}\right),\left(y_{1}^{\prime}, y_{1}\right)$, and $\left(y_{1}^{\prime}, z_{1}\right)$ yield elements of $W\left(\sigma_{i j}\right)$. Also note that C is the only cover of A. Hence, it only remains to show that $e_{y_{t}}-e_{y_{t}^{\prime}} \notin W\left(\sigma_{i j}\right)$ for $2 \leq t \leq n-d-i$ and that $e_{y_{t}}-e_{y_{t+1}} \notin W\left(\sigma_{i j}\right)$ for $1 \leq t \leq n-d-1-i$. For each of these covers, we shall exhibit an $x \in \mathcal{L}_{i j}$ such that $f_{I_{x}}$ is nonzero on the cover under consideration.

Define $x_{t}=(i+t, i+t+2, \ldots, i+d+t)$; then $x_{t} \in \mathcal{L}_{i j}$ for $2 \leq t \leq n-d-i$. Furthermore, $f_{I_{x_{t}}}$ is nonzero on $e_{y_{t}}-e_{y_{t+1}}$ for $2 \leq t \leq n-d-i-1$ and on $e_{y_{t}}-e_{y_{t}^{\prime}}$ for $2 \leq t \leq n-d-i$. For $\left(y_{2}, y_{1}\right)$, note that $C \in \mathcal{L}_{i j}$ and $f_{I_{C}}$ is nonzero on $e_{y_{1}}-e_{y_{2}}$. This completes the proof of Case 1 .

Case 2. Now let $2 \leq j \leq d-1$ and $1 \leq i \leq n-d-1$. We have

$$
\begin{aligned}
\mu_{i j} & =(1, \ldots, j, i+j+1, \ldots, i+d) \\
\lambda_{i j} & =(i+1, \ldots, i+j, n+1+j-d, \ldots, n)
\end{aligned}
$$

As in Case 1, we look for covers of $\mu_{i j}$ in $J(\mathcal{L})$. They are $A=(1, \ldots, j-1$, $i+j, \ldots, i+d)$ and $B=(1, \ldots, j, i+j+2, \ldots, i+d+1)$. Define C to be the join of A and B in the lattice $J(\mathcal{L})$; thus,

$$
C=(1, \ldots, j-1, i+j+1, \ldots, i+d+1)
$$

Claim (iv): $\left\{e_{\mu_{i j}}-e_{A}, e_{\mu_{i j}}-e_{B}, e_{A}-e_{C}, e_{B}-e_{C}\right\}$ are in $W\left(\sigma_{i j}\right)$. We first observe that,

$$
\begin{equation*}
\text { for } x=\left(x_{1}, \ldots, x_{d}\right) \in \mathcal{L}_{i j}, \quad \text { if } x \geq \mu_{i j} \text { then } x \geq C \tag{6.2}
\end{equation*}
$$

For suppose that $x \not \geq C$; now $x \geq \mu_{i j}$ and $x \in \mathcal{L}_{i j}$ together imply that $x \not 又 \lambda_{i j}$ and thus $x_{l}>i+l$ for some $1 \leq l \leq j$. Also, $x \nsupseteq C$; hence $x_{k}<i+k+1$ for some $j \leq k \leq d$. Therefore,

$$
\begin{aligned}
x=\left(x_{1}, \ldots, x_{l-1}, x_{l}>i+l, x_{l+1}>i+l+1\right. & , \ldots, x_{k-1}>i+k-1 \\
& \left.i+k+1>x_{k}>i+k, \ldots\right) .
\end{aligned}
$$

Clearly, no such x_{k} exists and thus (6.2) follows.
By (6.2) we have that, if $x \in \mathcal{L}_{i j}$ is such that $x \geq \mu_{i j}$, then $x \geq A, B, C$. Hence Claim (iv) follows.
$\operatorname{Claim}(v): W\left(\sigma_{i j}\right)=\left\{e_{\mu_{i j}}-e_{A}, e_{\mu_{i j}}-e_{B}, e_{A}-e_{C}, e_{B}-e_{C}\right\}$. As in Claim (iii), we will show that all other covers in $J(\mathcal{L})$ of the form $\left(y^{\prime}, y\right), y \in J(\mathcal{L}) \cap\left[\mu_{i j}, \lambda_{i j}\right]$, are not in $W\left(\sigma_{i j}\right)$. As in Section 6.8, all of the elements of $J(\mathcal{L}) \cap\left[\mu_{i j}, \lambda_{i j}\right]$ are

$$
\begin{array}{ll}
y_{t}=(1, \ldots, j, i+j+1+t, \ldots, i+d+t) & \text { for } 0 \leq t \leq n-d-i, \\
z_{t}=(1, \ldots, j-t, i+j+1-t, \ldots, i+d) & \text { for } 0 \leq t \leq j
\end{array}
$$

(note that $z_{j}=(i+1, \ldots, i+d)$). We will examine covers of these elements; notice that $y_{0}=z_{0}=\mu_{i j}, z_{1}=A$, and $y_{1}=B$.

Let $z_{t}^{\prime}=(1, \ldots, j-t, i+j+2-t, \ldots, i+d+1)$ for $1 \leq t \leq n-d-i$, and let $z_{j}^{\prime}=(i+2, \ldots, i+d+1)$. First we want to show that the covers $\left(z_{t+1}, z_{t}\right)_{1 \leq t \leq j-1}$ and $\left(z_{t}^{\prime}, z_{t}\right)_{2 \leq t \leq j}$ do not yield elements in $W\left(\sigma_{i j}\right)$. Observe that $\left(z_{1}^{\prime}, z_{1}\right)=(C, A)$ and $e_{A}-e_{C} \in W\left(\sigma_{i j}\right)$. Also, $C \in \mathcal{L}_{i j}$ and $f_{I_{C}}\left(e_{z_{1}}-e_{z 2}\right)$ is nonzero; thus $e_{z_{1}}-e_{z_{2}} \notin$ $W\left(\sigma_{i j}\right)$, and we may restrict our attention to $t \geq 2$. Let
$x_{t}=(1, \ldots, j-t, i+j+1-t, n-d+j-t+2, \ldots, n) \quad$ for $2 \leq t \leq j-1$, $x_{j}=(i+1, n-d+2, \ldots, n)$.

Now, on the interval $2 \leq t \leq j-1$, we have the following facts:
(1) $x_{t} \geq z_{t}$,
(2) $x_{t} \not \nexists z_{t+1}$,
(3) $x_{t} \not \nexists z_{t}^{\prime}$,
(4) $x_{t} \npreceq \lambda_{i j}$.

Facts (1), (3), and (4) hold for the case $t=j$; it is just a separate check. Hence, for $2 \leq t \leq j$ (resp. $2 \leq t \leq j-1$) we have that $x_{t} \in \mathcal{L}_{i j}$ and $f_{I_{x_{t}}}$ is nonzero on $e_{z_{t}}-e_{z_{t}^{\prime}}^{\prime}\left(\right.$ resp. $\left.e_{z_{t}}-e_{z_{t+1}}\right)$.

Next, we must concern ourselves with covers involving y_{t}. Define

$$
y_{t}^{\prime}=(1, \ldots, j-1, i+j+t, \ldots, i+d+t) \quad \text { for } 1 \leq t \leq n-d-i .
$$

To complete Claim (v), we must show that the covers

$$
\left(y_{t+1}, y_{t}\right)_{1 \leq t \leq n-d-i-1} \quad \text { and } \quad\left(y_{t}^{\prime}, y_{t}\right)_{2 \leq t \leq n-d-i}
$$

do not yield elements of $W\left(\sigma_{i j}\right)$. Note that $\left(y_{1}^{\prime}, y_{1}\right)=(C, B)$ and thus does yield an element of $W\left(\sigma_{i j}\right)$. Also, $f_{I_{C}}\left(e_{y_{1}}-e_{y_{2}}\right)$ is nonzero; we can therefore restrict our attention to $t \geq 2$. Let $x_{t}^{\prime}=(1, \ldots, j-1, i+j+1, i+j+t+1, \ldots, i+d+t)$. On the interval $2 \leq t \leq n-d-i$, we have the following facts:
(1') $x_{t}^{\prime} \geq y_{t}$,
(2') $x_{t}^{\prime} \not \geq y_{t}^{\prime}$,
(3') $x_{t}^{\prime} \nsupseteq y_{t+1}$ for $t \leq n-d-i-1$,
(4') $x_{t}^{\prime} \not \leq \lambda_{i j}$.
Therefore, on the interval $2 \leq t \leq n-d-i$ (resp. $2 \leq t \leq n-d-i-1$), we have that $x_{t}^{\prime} \in \mathcal{L}_{i j}$ and $f_{I_{x_{t}^{\prime}}}$ is nonzero on $e_{y_{t}}-e_{y_{t}^{\prime}}\left(\right.$ resp. $\left.e_{y_{t}}-e_{y_{t+1}}\right)$.

This completes Claim (v), Case 2, and the proof of Theorem 6.9.
Remark 6.10. The face $\sigma_{i j}$ corresponds to the following diamond in $J(\mathcal{L})$.

This diamond is a poset of rank 2.
Lemma 6.11. The face $\sigma_{i j}$ has dimension 3.
Proof. We have $\left\{e_{\mu_{i j}}-e_{A}, e_{\mu_{i j}}-e_{B}, e_{A}-e_{C}, e_{B}-e_{C}\right\}$, a set of generators for $\sigma_{i j}$. We can see that a subset of three of these generators is linearly independent. Thus, if the fourth generator can be put in terms of the first three, the result follows. Notice that

$$
\left(e_{\mu_{i j}}-e_{A}\right)-\left(e_{\mu_{i j}}-e_{B}\right)+\left(e_{A}-e_{C}\right)=e_{B}-e_{C} .
$$

Our next theorem is an immediate consequence of Theorem 6.9 and Lemma 6.11.
Theorem 6.12. We have an identification of the (open) affine piece in $X(\mathcal{L})$ corresponding to the face $\sigma_{i, j}$ with the product $Z \times\left(K^{*}\right)^{\# J(\mathcal{L})-3}$, where Z is the cone over the quadric surface $x_{1} x_{4}-x_{2} x_{3}=0$ in \mathbb{P}^{3}.

We now prove two lemmas that hold for a general toric variety.
Lemma 6.13. Let X_{τ} be an affine toric variety with τ as the associated cone. Then X_{τ} is a nonsingular variety if and only if it is nonsingular at the distinguished point P_{τ}.

Proof. Only the \Leftarrow implication requires a proof. Let then P_{τ} be a smooth point. Let us assume (if possible) that $\operatorname{Sing} X_{\tau} \neq \varnothing$. We have the following facts.

- $\operatorname{Sing} X_{\tau}$ is a closed T-stable subset of X_{τ}.
- $P_{\tau} \in \overline{O_{\theta}}$ for every face θ of τ (see Section 1.6); in particular, $P_{\tau} \in \overline{O_{\theta}}$ for some face θ such that P_{θ} is a singular point (such a θ exists because, by our assumption, $\operatorname{Sing} X_{\tau}$ is nonempty).
We thus obtain that $P_{\tau} \in \operatorname{Sing} X_{\tau}$, a contradiction. Hence our assumption is wrong and the result follows.

Lemma 6.14. Let τ be a face of σ (for σ a convex polyhedral cone). Then P_{τ} is a smooth point of X_{σ} if and only if P_{τ} is a smooth point of X_{τ}-that is, if and only if τ is generated by a part of a basis of N (where N is the \mathbb{Z}-dual of the character group of the torus).

Proof. We have that X_{τ} is a principal open subset of X_{σ}. Hence X_{σ} is nonsingular at P_{τ} if and only if X_{τ} is nonsingular at P_{τ}. By Lemma 6.13, X_{τ} is nonsingular at P_{τ} if and only if X_{τ} is a nonsingular variety; but by [7, Sec. 2.1], this is true if and only if τ is generated by a part of a basis of N.

We now return to the case where σ is the convex polyhedral cone associated to $X\left(I_{d, n}\right)$.

Theorem 6.15. Let $\tau=\sigma_{i, j}$. Then the following statements hold.
(i) $P_{\tau} \in \operatorname{Sing} X_{\sigma}$.
(ii) We have an identification of $T C_{P_{\tau}} X_{\sigma}$ with $Z \times\left(K^{*}\right)^{\# J(\mathcal{L})-3}$, with Z as in Theorem 6.12; furthermore, $T C_{P_{\tau}} X_{\sigma}$ is a toric variety.
(iii) The singularity at P_{τ} is of the same type as that at the vertex of the cone over the quadric surface $x_{1} x_{4}-x_{2} x_{3}=0$ in \mathbb{P}^{3}. In particular, $\operatorname{mult}_{P_{\tau}} X_{\sigma}=2$.

Proof. Assertion (i) follows from Lemma 6.13, Lemma 6.14, and Theorem 6.12. Because X_{τ} is open in X_{σ}, we may identify $T C_{P_{\tau}} X_{\sigma}$ with $T C_{P_{\tau}} X_{\tau}$, which in turn coincides with X_{τ} (since X_{τ} is of cone type, where P_{τ} is identified with the origin). Assertion (ii) follows from this in view of Theorem 6.12 and given that X_{τ} is a toric variety. Assertion (iii) is immediate from (ii).

Next, we will show that the faces containing some $\sigma_{i j}$ are the only singular faces. We first prove some preparatory lemmas.

Lemma 6.16. Let $A \neq \hat{0}$. If $e_{A}-e_{C}$ is in W (the set of generators of σ as described in Proposition 4.2), then $e_{A}-e_{C}$ is in $W\left(\sigma_{i j}\right)$ (cf. Definition 6.7) for some (i, j), where $1 \leq i \leq n-d-1$ and $1 \leq j \leq d-1$.

Proof. If A is equal to some $\mu_{i j}$, then C must be one of the two covers of $\mu_{i j}=$ $(1, \ldots, j, i+j+1, \ldots, i+d)$ in $J(\mathcal{L})$ and we are done by Theorem 6.9. So we will assume that $A \neq \mu_{i j}$. Hence A is a join irreducible of one of the following two forms.

Case 1: $A=(1, \ldots, k, n-d+k+1, \ldots, n)$ for some k. Then $\mu_{n-d-1, k}=$ $(1, \ldots, k, n-d+k, \ldots, n-1)$, and $\left(A, \mu_{n-d-1, k}\right)$ is a cover in $J(\mathcal{L})$. Also, A has only one cover in $J(\mathcal{L})$, which must be C; thus $e_{A}-e_{C}$ is an element of $W\left(\sigma_{n-d-1, k}\right)$, as shown in Theorem 6.9.

Case 2: $A=(k+1, \ldots, k+d), 1 \leq k \leq n-d-1$ (note that $k<n-d$, since $C>A$ because $\left.e_{A}-e_{C} \in W\right)$. Then we have $\mu_{k, 1}=(1, k+2, \ldots, k+d)$, and $\left(A, \mu_{k, 1}\right)$ is a cover in $J(\mathcal{L})$. Also, we must have $C=(k+2, \ldots, k+d+1)$, and $e_{A}-e_{C}$ is an element of $W\left(\sigma_{k, 1}\right)$ by Case 1 of Theorem 6.9.

We now return to the case of a Grassmann-Hibi toric variety.
Theorem 6.17. Let τ be a face such that D_{τ} is not contained in any $\mathcal{L}_{i j}$ for $1 \leq$ $i \leq n-d-1$ and $1 \leq j \leq d-1$. Then the associated face τ is nonsingular (i.e., if a face τ does not contain any one $\sigma_{i j}$, then τ is nonsingular).

Proof. By Lemma 6.14, for τ to be nonsingular it must be generated by part of a basis for N. Since τ is generated by a subset $W(\tau)$ of W, for τ to be singular its generators would have to be linearly dependent. (Generally this is not enough to prove that a face is singular or nonsingular, but since all generators in W have coefficients equal to ± 1, any linearly independent set will serve as part of a basis for N.) Suppose τ is singular; then there is some subset of the elements of $W(\tau)$ equal to $\left\{e_{1}-e_{2}, \ldots\right\}$ such that $\sum a_{i j}\left(e_{i}-e_{j}\right)=0$, with coefficients $a_{i j}$ nonzero for at least one (i, j).

Recall that the elements of W can be represented as all the line segments in the lattice $J(\mathcal{L})$ with the exception of $e_{\hat{1}}$ (see diagram in Remark 6.2). Therefore, the linearly dependent generators of τ must represent a "loop" of line segments in $J(\mathcal{L})$. This loop will have at least one bottom corner, left corner, top corner, and right corner.

Choose some particular $\mathcal{L}_{i j}$. By Theorem 6.9, $W\left(\sigma_{i j}\right)=\left\{e_{\mu_{i j}}-e_{A}, e_{\mu_{i j}}-e_{B}\right.$, $\left.e_{A}-e_{C}, e_{B}-e_{C}\right\}$. These four generators are represented by the four sides of a diamond in $J(\mathcal{L})$. Thus, by hypothesis, the generators of τ represent a loop in $J(\mathcal{L})$ that does not traverse all four sides of the diamond representing all four generators of $\sigma_{i j}$.

By hypothesis, D_{τ} is not contained in any $\mathcal{L}_{i j}$ for $1 \leq i \leq n-d-1$ and $1 \leq$ $j \leq d-1$; hence there must be at least one element of D_{τ} in the interval $\left[\mu_{i j}, \lambda_{i j}\right.$], say $\alpha \in\left[\mu_{i j}, \lambda_{i j}\right]$. We have $\alpha \geq \mu_{i j}$ and $\alpha \nsupseteq C$ for C as defined in the proof of Theorem 6.9. Based on how α compares with both A and B, we can eliminate certain elements of W from $W(\tau)$. There are four possibilities; we list all four, as well as the corresponding generators in $W\left(\sigma_{i j}\right)$ that are not in $W(\tau)$ (i.e., those generators v in $W\left(\sigma_{i j}\right)$ such that $\left.f_{I_{\alpha}}(v) \neq 0\right)$:

$$
\begin{aligned}
\alpha \nsupseteq A, \alpha \nsupseteq B & \Longrightarrow e_{\mu_{i j}}-e_{A}, e_{\mu_{i j}}-e_{B} \notin W(\tau) ; \\
\alpha \geq A, \alpha \nsupseteq B & \Longrightarrow e_{A}-e_{C}, e_{\mu_{i j}}-e_{B} \notin W(\tau) ; \\
\alpha \nsupseteq A, \alpha \geq B & \Longrightarrow e_{\mu_{i j}}-e_{A}, e_{B}-e_{C} \notin W(\tau) ; \\
\alpha \geq A, \alpha \geq B & \Longrightarrow e_{A}-e_{C}, e_{B}-e_{C} \notin W(\tau) .
\end{aligned}
$$

Therefore, it is impossible to have $\left\{e_{\mu_{i j}}-e_{A}, e_{A}-e_{C}\right\}$ or $\left\{e_{\mu_{i j}}-e_{B}, e_{B}-e_{C}\right\}$ contained in $W(\tau)$. This is true for any (i, j) and so, in view of Lemma 6.16, our "loop" in $J(\mathcal{L})$ that represented the generators of τ cannot have a left corner or a right corner. Thus it is really not possible to have a loop at all; hence the generators of τ are linearly independent, and the result follows.

Corollary 6.18. The G - H toric variety $X_{d, n}$ is smooth along the orbit O_{τ} if and only if the face τ does not contain any $\sigma_{i j}$.

Combining this corollary with Theorem 6.15 and Lemma 6.11 yields our first main theorem as follows.

Theorem 6.19. Let $\mathcal{L}=I_{d, n}$. Then the following statements hold.
(i) $\operatorname{Sing} X(\mathcal{L})=\bigcup_{\sigma_{i, j}} \bar{O}_{\sigma_{i, j}}$, where the union is taken over all the $\sigma_{i, j}$ (as in Theorem 6.9).
(ii) Sing $X(\mathcal{L})$ is pure and of codimension 3 in $X(\mathcal{L})$, and the generic singularities are of cone type (more precisely, the singularity type is the same as that at the vertex of the cone over the quadric surface $x_{1} x_{4}-x_{2} x_{3}=0$ in \mathbb{P}^{3}).
(iii) For $\tau=\sigma_{i, j}, T C_{P_{\tau}} X(\mathcal{L})$ is a toric variety and $\operatorname{mult}_{P_{\tau}} X(\mathcal{L})=2$.

Remark 6.20. Theorem 6.19 thus proves the conjecture of [9] using just the combinatorics of the cone associated to the toric variety $X_{d, n}$ (for a statement of the conjecture of [9], see Remark 9.1). Further, it gives a description of $\operatorname{Sing} X_{d, n}$ purely in terms of the faces of the cone associated to $X_{d, n}$.

7. Multiplicities of Singular Faces of $\boldsymbol{X}_{2, n}$

In this section we take $\mathcal{L}=I_{2, n}$, determine the multiplicity of $X_{2, n}\left(=X\left(I_{2, n}\right)\right)$ at P_{τ} for certain of the singular faces of $X_{2, n}$, and deduce a product formula. For $I_{d, n}$ we have defined $\mathcal{L}_{i j}$ and the corresponding face $\sigma_{i, j}$ for $1 \leq j \leq d-1$ and $1 \leq i \leq n-d-1$; hence, for $I_{2, n}$ we need only consider $\mathcal{L}_{i, 1}$ for $1 \leq i \leq n-3$.

For example, the following diagram is the poset of join irreducibles for $I_{2,6}$. We write $\sigma_{i, 1}$ inside each diamond because the four segments surrounding it represent the four generators of the face.

In order to go from the join irreducibles of $I_{2,6}$ to $I_{2,7}$, we simply add $(1,7)$ and $(6,7)$ to the poset above, forming $\sigma_{4,1}$. We will see that this makes the calculation of the multiplicities of singular faces of $I_{2, n}$ much easier.

In the sequel, we shall denote the set of join irreducibles of $I_{2, n}$ by $J_{2, n}$; also, as in the previous sections, σ will denote the polyhedral cone corresponding to $X_{2, n}$.
7.1. $\operatorname{mult}_{P_{\sigma}} X_{2, n}$. Because $X_{d, n}$ is now of cone type (i.e., the vanishing ideal is homogeneous), we have a canonical identification of $T_{P_{\sigma}} X_{d, n}$ (the tangent cone to $X_{d, n}$ at P_{σ}) with $X_{d, n}$. Hence, by Theorem 3.10, mult $P_{\sigma} X_{d, n}$ equals the number of maximal chains in $I_{d, n}$. So we begin by counting the number of maximal chains in $I_{2, n}$.

As we move through a chain from $(1,2)$, at any point (i, j) we have at most two possibilities for the next point, $(i+1, j)$ or $(i, j+1)$. For each cover in our chain, we assign a value: for a cover of type $((i, j+1),(i, j))$, we assign +1 ; for a cover of type $((i+1, j),(i, j))$, we assign -1 .

A maximal chain C in $I_{2, n}$ contains $2 n-3$ lattice points, so every chain can be uniquely represented by a $(2 n-4)$-tuple of 1 s and -1 s; let us denote this $(2 n-4)$ tuple by $n_{C}=\left\langle a_{1}, \ldots, a_{2 n-4}\right\rangle$.

For any such n_{C}, it is clear that 1 and -1 occur precisely $n-2$ times. Also, we can see that $a_{1}=+1$ and that, for any $1 \leq k \leq 2 n-4$, if $\left\{a_{1}, \ldots, a_{k}\right\}$ contains more -1 s than +1 s then we have arrived at a point (i, j) with $i>j$, which is not a lattice point. Thus, we must have $a_{1}+\cdots+a_{k} \geq 0$ for every $1 \leq k \leq 2 n-4$.

Theorem 7.2 [16, Cor. 6.2.3]. The Catalan number

$$
\mathrm{Cat}_{n}=\frac{1}{n+1}\binom{2 n}{n}, \quad n \geq 0
$$

counts the number of sequences $a_{1}, \ldots, a_{2 n}$ of $1 s$ and $-1 s$ with

$$
a_{1}+\cdots+a_{k} \geq 0 \quad(k=1,2, \ldots, 2 n)
$$

and $a_{1}+\cdots+a_{2 n}=0$.
Corollary 7.3. The multiplicity of $X_{2, n}$ at P_{σ} is equal to the Catalan number

$$
\mathrm{Cat}_{n-2}=\frac{1}{n-1}\binom{2 n-4}{n-2}
$$

7.4. mult $_{P_{\tau}} X_{2, n}$. Next we shall determine mult $P_{\tau} X_{2, n}$ for τ of block type (see Definition 7.7 to follow). Let τ be a face of σ such that the associated (embedded sublattice) D_{τ} is of the form

$$
\begin{aligned}
D_{\tau} & =[(1,2),(i, i+1)] \cup[(i+k+2, i+k+3),(n-1, n)] \\
& =I_{1} \cup I_{2} \quad(\text { say }),
\end{aligned}
$$

where $I_{1}=[(1,2),(i, i+1)]$ and $I_{2}=[(i+k+2, i+k+3),(n-1, n)]$ for $1 \leq$ $i \leq n-3$ and $0 \leq k \leq n-i-3$.

We shall now determine $W(\tau)$ (cf. Section 6.7). Let A_{τ} denote the interval $[(1, i+2),(i+k+2, i+k+3)]$ in $J_{2, n}$:

Lemma 7.5. With τ as just described, we have that $W(\tau)=\left\{e_{y^{\prime}}-e_{y} \mid\left(y, y^{\prime}\right)\right.$ is a cover in $\left.A_{\tau}\right\}$.

Proof. Clearly, $e_{(n-1, n)}$ (the element in $W(\sigma)$ corresponding to the unique maximal element $(n-1, n)$ in $\left.J_{2, n}\right)$ is not in $W(\tau)$, since $(n-1, n) \in D_{\tau}$. Let us denote

$$
\theta=(i+k+2, i+k+3) \quad \text { and } \quad \delta=(i, i+1)
$$

Claim 1: For a cover $\left(y, y^{\prime}\right)$ in $A_{\tau}, f_{I_{\alpha}}\left(e_{y^{\prime}}-e_{y}\right)=0$ for all $\alpha \in D_{\tau}$. The claim follows in view of the following facts for a cover $\left(y, y^{\prime}\right)$ in A_{τ} :

- $y, y^{\prime} \in I_{\theta}$ and hence $y, y^{\prime} \in I_{\alpha}$ for all $\alpha \in I_{2}$;
- $y, y^{\prime} \notin I_{\delta}$ and hence $y, y^{\prime} \notin I_{\alpha}$ for all $\alpha \in I_{1}$.

Claim 2: For a cover $\left(y, y^{\prime}\right)$ in $J_{2, n}$ not contained in A_{τ}, there exists an $\alpha \in D_{\tau}$ such that $f_{I_{\alpha}}\left(e_{y^{\prime}}-e_{y}\right) \neq 0$. Note that a cover in $J_{2, n}$ is one of the following three types.
Type I: $((1, j),(1, j-1)), 3 \leq j \leq n$.
Type II: $((j-1, j),(j-2, j-1)), 4 \leq j \leq n$.
Type III: $((j-1, j),(1, j)), 3 \leq j \leq n$.
Let now (y, y^{\prime}) be a cover not contained in A_{τ}.
If $\left(y, y^{\prime}\right)$ is of Type I, then $\left(y, y^{\prime}\right)=((1, j),(1, j-1))$, where either $j \leq i+2$ or $j \geq i+k+4$. Letting

$$
\alpha= \begin{cases}(1, j-1) & \text { if } j \leq i+2 \\ (j-2, j-1) & \text { if } j \geq i+k+4\end{cases}
$$

we have $\alpha \in D_{\tau}$ and $f_{I_{\alpha}}\left(e_{y^{\prime}}-e_{y}\right) \neq 0$.
If $\left(y, y^{\prime}\right)$ is of Type II, then $\left(y, y^{\prime}\right)=((j-1, j),(j-2, j-1))$, where either $j \leq i+2$ or $j \geq i+k+4$. Letting $\alpha=(j-2, j-1)$, we have $\alpha \in D_{\tau}$ and $f_{I_{\alpha}}\left(e_{y^{\prime}}-e_{y}\right) \neq 0$.

If $\left(y, y^{\prime}\right)$ is of Type III, then $\left(y, y^{\prime}\right)=((j-1, j),(1, j))$, where either $j \leq$ $i+1$ or $j \geq i+k+4$. Letting

$$
\alpha= \begin{cases}(1, j) & \text { if } j \leq i+1 \\ (j-2, j) & \text { if } j \geq i+k+4\end{cases}
$$

we have $\alpha \in D_{\tau}$ and $f_{I_{\alpha}}\left(e_{y^{\prime}}-e_{y}\right) \neq 0$.
The required result now follows from Claims 1 and 2.
Corollary 7.6. With τ as in Lemma 7.5, we have

$$
\tau=\sigma_{i, 1} \cup \sigma_{i+1,1} \cup \cdots \cup \sigma_{i+k, 1}
$$

Definition 7.7. We define a face τ as in Lemma 7.5 as a J-block (i.e., τ is a union of consecutive $\sigma_{i, 1}$).

Remark 7.8. Note that a union of faces need not be a face.
7.9. The Hibi Variety $Z_{2, r}$. For an integer $r \geq 3$, let $\widetilde{I_{2, r}}$ denote the distributive lattice $I_{2, r} \backslash\{(1,2),(r-1, r)\}$. We define $Z_{2, r}$ to be the Hibi variety associated to $\widetilde{I_{2, r}}$. Note (cf. Proposition 4.2) that the cone associated to $Z_{2, r}$ has a
set of generators consisting of $\left\{e_{y^{\prime}}-e_{y}\right\}$, where $\left(y, y^{\prime}\right)$ is a cover in the sublattice $[(1,3),(r-1, r)]$ of $J_{2, r}$ (the set of join irreducibles of $\left.I_{2, r}\right)$. In view of Theorem 3.10 we have

$$
\operatorname{mult}_{\mathbf{0}} Z_{2, r}=\operatorname{mult}_{P_{\sigma}} X_{2, r}=\text { Cat }_{r-2},
$$

where $\mathbf{0}$ denotes the origin.
Theorem 7.10. Let τ be a face of σ that is a " J-block" of $k+1$ consecutive $\sigma_{i, 1}$ (as in Definition 7.7). We have an identification of X_{τ} (the open affine piece of X_{σ} corresponding to τ) with $Z_{2, k+4} \times\left(K^{*}\right)^{m}$, where $m=\operatorname{codim}_{\sigma} \tau=2(n-k)-6$.

Proof. In view of Section 1.6 and Proposition 4.5, we have $\operatorname{codim}_{\sigma} \tau=\operatorname{dim} X\left(D_{\tau}\right)=\#\left\{\right.$ elements in a maximal chain in $\left.D_{\tau}\right\}$.
From this it is clear that $\operatorname{codim}_{\sigma} \tau=2(n-k)-6$. Next, in view of Lemma 7.5 and Section 7.9, we obtain an identification of X_{τ} with $Z_{2, k+4} \times\left(K^{*}\right)^{m}$ (for m as in the theorem).

Theorem 7.11. Let τ be as in Theorem 7.10.
(i) We have an identification of $T C_{P_{\tau}} X_{\sigma}$ with $Z_{2, k+4} \times\left(K^{*}\right)^{m}$, where $m=$ $\operatorname{codim}_{\sigma} \tau=2(n-k)-6$; also, $T C_{P_{\tau}} X_{\sigma}$ is a toric variety.
(ii) mult $_{P_{\tau}} X_{2, n}=$ Cat $_{k+2}=\frac{1}{k+3}\binom{2 k+4}{k+2}$.

Proof. Since X_{τ} is open in X_{σ}, we may identify $T C_{P_{\tau}} X_{\sigma}$ with $T C_{P_{\tau}} X_{\tau}$, which in turn coincides with X_{τ} (because X_{τ} is of cone type, where P_{τ} is identified with the origin). Assertion (i) follows from this in view of Theorem 7.10 (and the fact that X_{τ} is a toric variety).

Assertion (ii) follows from (i) and Corollary 7.3.
7.12. A Product Formula. Here we give a product formula for mult $_{P_{\tau}} X_{2, n}$, where τ is a union of pairwise nonintersecting and nonconsecutive J-blocks (see Remark 7.15).

Let τ be a face of σ such that the associated (embedded sublattice) D_{τ} is of the form

$$
\begin{aligned}
D_{\tau}= & {\left[(1,2),\left(i_{1}, i_{1}+1\right)\right] \cup\left[\left(i_{1}+k_{1}+2, i_{1}+k_{1}+3\right),\left(i_{2}, i_{2}+1\right)\right] } \\
& \cup\left[\left(i_{2}+k_{2}+2, i_{2}+k_{2}+3\right),(n-1, n)\right] \\
= & \left.J_{1} \cup J_{2} \cup J_{3} \quad \text { (say }\right),
\end{aligned}
$$

where $i_{1}+k_{1}+1<i_{2}$ and where

$$
\begin{aligned}
& J_{1}=\left[(1,2),\left(i_{1}, i_{1}+1\right)\right], \\
& J_{2}=\left[\left(i_{1}+k_{1}+2, i_{1}+k_{1}+3\right),\left(i_{2}, i_{2}+1\right)\right], \\
& J_{3}=\left[\left(i_{2}+k_{2}+2, i_{2}+k_{2}+3\right),(n-1, n)\right] .
\end{aligned}
$$

Consider the following sublattices in $J_{2, n}$ (the set of join irreducibles in $I_{2, n}$):

$$
\begin{aligned}
& A=\left[\left(1, i_{1}+2\right),\left(i_{1}+k_{1}+2, i_{1}+k_{1}+3\right)\right] \\
& B=\left[\left(1, i_{2}+2\right),\left(i_{2}+k_{2}+2, i_{2}+k_{2}+3\right)\right] .
\end{aligned}
$$

Lemma 7.13. With τ as before, we have $W(\tau)=\left\{e_{y^{\prime}}-e_{y} \mid\left(y, y^{\prime}\right)\right.$ is a cover in $A \cup B\}$.

Proof. We proceed as in the proof of Lemma 7.5, where $e_{(n-1, n)}$ is not in $W(\tau)$ (since $(n-1, n) \in D_{\tau}$). Let us denote:

$$
\begin{aligned}
\theta_{1}=\left(i_{1}+k_{1}+2, i_{1}+k_{1}+3\right), & \theta_{2} & =\left(i_{2}+k_{2}+2, i_{2}+k_{2}+3\right) \\
\delta_{1}=\left(i_{1}, i_{1}+1\right), & \delta_{2} & =\left(i_{2}, i_{2}+1\right)
\end{aligned}
$$

For any cover $\left(y, y^{\prime}\right)$ in $A \cup B$, we clearly have $y, y^{\prime} \in I_{\theta_{2}}$ and hence $y, y^{\prime} \in I_{\alpha}$ for all $\alpha \in J_{3}$; also, $y, y^{\prime} \notin I_{\delta_{1}}$ and hence $y, y^{\prime} \notin I_{\alpha}$ for all $\alpha \in J_{1}$. Thus we obtain that

$$
\begin{equation*}
f_{I_{\alpha}}\left(e_{y^{\prime}}-e_{y}\right)=0 \quad \text { for all } \alpha \in J_{1} \cup J_{3} . \tag{7.1}
\end{equation*}
$$

Next, if $\left(y, y^{\prime}\right)$ is a cover in A, then $y, y^{\prime} \in I_{\theta_{1}}$ and hence $y, y^{\prime} \in I_{\alpha}$ for all $\alpha \in$ J_{2}. If (y, y^{\prime}) is a cover in B, then $y, y^{\prime} \notin I_{\delta_{2}}$ and hence $y, y^{\prime} \notin I_{\alpha}$ for all $\alpha \in J_{2}$. Note that θ_{1} (resp. δ_{2}) is the smallest (resp. largest) element in J_{2}. Therefore,

$$
\begin{equation*}
f_{I_{\alpha}}\left(e_{y^{\prime}}-e_{y}\right)=0 \quad \text { for all } \alpha \in J_{2} \tag{7.2}
\end{equation*}
$$

Together, (7.1) and (7.2) imply the inclusion " \supseteq ". We shall prove the inclusion " \subseteq " by showing that, if a cover $\left(y, y^{\prime}\right)$ is not contained in $A \cup B$, then there exists an $\alpha \in D_{\tau}$ such that $f_{I_{\alpha}}\left(e_{y^{\prime}}-e_{y}\right) \neq 0$. This proof runs along lines similar to the proof of Lemma 7.5. Let then $\left(y, y^{\prime}\right)$ be a cover in $J_{2, n}$ not contained in $A \cup B$. It is convenient to introduce the following sublattices in $J_{2, n}$:

$$
\begin{aligned}
& P=\left[(1,2),\left(i_{1}+1, i_{1}+2\right)\right], \\
& Q=\left[\left(1, i_{1}+k_{1}+3\right),\left(i_{2}+1, i_{2}+2\right)\right], \\
& R=\left[\left(1, i_{2}+k_{2}+3\right),(n-1, n)\right] .
\end{aligned}
$$

We distinguish three cases as follows.
Case 1: $\left(y, y^{\prime}\right)$ is of type I (cf. proof of Lemma 7.5)—say, $((1, j),(1, j-1))$.
(i) If $\left(y, y^{\prime}\right)$ is contained in P, then $j \leq i_{1}+2$. We let $\alpha=(1, j-1)$. Note that $\alpha \in J_{1}$ and $f_{I_{\alpha}}\left(e_{y^{\prime}}-e_{y}\right) \neq 0$.
(ii) If (y, y^{\prime}) is contained in Q (resp. R), then $i_{1}+k_{1}+4 \leq j \leq i_{2}+2$ (resp. $\left.i_{2}+k_{2}+4 \leq j \leq n\right)$. We let $\alpha=(j-2, j-1)$. Note that $\alpha \in J_{2}$ (resp. J_{3}) and $f_{I_{\alpha}}\left(e_{y^{\prime}}-e_{y}\right) \neq 0$.

Case 2: $\left(y, y^{\prime}\right)$ is of type II—say, $((j-1, j),(j-2, j-1))$. Then $3 \leq j \leq$ $i_{1}+2, i_{1}+k_{1}+4 \leq j \leq i_{2}+2$, or $i_{2}+k_{2}+4 \leq j \leq n$ accordingly as $\left(y, y^{\prime}\right)$ is contained in P, Q, or R. We let $\alpha=(j-2, j-1)$. Note that $\alpha \in J_{1}, J_{2}, J_{3}$ accordingly as $\left(y, y^{\prime}\right)$ is contained in P, Q, R, and $f_{I_{\alpha}}\left(e_{y^{\prime}}-e_{y}\right) \neq 0$.

Case 3: $\left(y, y^{\prime}\right)$ is of type III—say, $((j-1, j),(1, j))$.
(i) If $\left(y, y^{\prime}\right)$ is contained in P, then $j \leq i_{1}+1$. We let $\alpha=(1, j)$. Note that $\alpha \in J_{1}$ and $f_{I_{\alpha}}\left(e_{y^{\prime}}-e_{y}\right) \neq 0$.
(ii) If (y, y^{\prime}) is contained in Q (resp. R), then $i_{1}+k_{1}+4 \leq j \leq i_{2}+1$ (resp. $\left.i_{2}+k_{2}+4 \leq j \leq n\right)$. We let $\alpha=(j-2, j)$. Note that $\alpha \in J_{2}, J_{3}$ accordingly as $\left(y, y^{\prime}\right)$ is contained in Q, R, and $f_{I_{\alpha}}\left(e_{y^{\prime}}-e_{y}\right) \neq 0$.

As an immediate consequence of Lemma 7.13 and Corollary 7.6, we have the following result.

Corollary 7.14. Let τ be as in Lemma 7.13. Then $\tau=\tau_{1} \cup \tau_{2}$, where

$$
\begin{aligned}
\tau_{1} & =\sigma_{i_{1}, 1} \cup \cdots \cup \sigma_{i_{1}+k_{1}, 1} \\
\tau_{2} & =\sigma_{i_{2}, 1} \cup \cdots \cup \sigma_{i_{2}+k_{2}, 1}
\end{aligned}
$$

Remark 7.15. We refer to a pair (τ_{1}, τ_{2}) of faces as in Corollary 7.14 as nonintersecting J-blocks.

Theorem 7.16. Let $\tau=\tau_{1} \cup \tau_{2}$, where τ_{1} and τ_{2} are two nonintersecting (and nonconsecutive) J-blocks (see Corollary 7.14). We have an identification of X_{τ} (the open affine piece of X_{σ} corresponding to τ) with $Z_{2, k_{1}+4} \times Z_{2, k_{2}+4} \times\left(K^{*}\right)^{m}$, where $m=\operatorname{codim}_{\sigma} \tau=2\left(n-k_{1}-k_{2}\right)-9$.

The proof is similar to that of Theorem 7.11 (using Lemma 7.13).
Our next theorem follows as an immediate consequence.
Theorem 7.17. Let $\tau=\tau_{1} \cup \tau_{2}$, where τ_{1} and τ_{2} are two nonintersecting (and nonconsecutive) J-blocks.
(i) We have an identification of $T C_{P_{\tau}} X_{\sigma}$ with $Z_{2, k_{1}+4} \times Z_{2, k_{2}+4} \times\left(K^{*}\right)^{m}$, where $m=\operatorname{codim}_{\sigma} \tau=2\left(n-k_{1}-k_{2}\right)-9$; in particular, $T C_{P_{\tau}} X_{\sigma}$ is a toric variety.
(ii) $\operatorname{mult}_{P_{\tau}} X_{2, n}=\left(\operatorname{mult}_{P_{\tau_{1}}} X_{2, n}\right) \cdot\left(\operatorname{mult}_{T_{\tau_{2}}} X_{2, n}\right)$.

The proof is similar to that of Theorem 7.11 (using Theorem 7.16).
Remark 7.18. It is clear that we can extend this multiplicative property to $\tau=$ $\tau_{1} \cup \cdots \cup \tau_{s}$, a union of s pairwise nonintersecting, nonconsecutive J-blocks.

8. A Multiplicity Formula for $\boldsymbol{X}_{\boldsymbol{d}, \boldsymbol{n}}$

In this section we give a formula for mult $P_{\sigma} X_{d, n}$. By Theorem 3.10, mult $P_{P_{\sigma}} X_{d, n}$ equals the number of maximal chains in $I_{d, n}$. We shall provide an explicit formula for the number of maximal chains in $I_{d, n}$. Observe that the number of chains in $I_{d, n}$ from $(1,2, \ldots, d)$ to $(n-d+1, \ldots, n)$ is the same as the number of chains from $(0,0, \ldots, 0)$ to $(n-d, n-d, \ldots, n-d)$; hence, for any $\left(i_{1}, \ldots, i_{d}\right)$ in the chain, $i_{1} \geq i_{2} \geq \cdots \geq i_{d} \geq 0$. Now set

$$
\begin{equation*}
\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{d}\right)=(n-d, n-d, \ldots, n-d) \tag{8.1}
\end{equation*}
$$

For any $\lambda \vdash m$, let $f^{\lambda}=K_{\lambda, 1^{m}}$-that is, the number of standard Young tableaux of shape λ (cf. [16]).

Proposition 8.1 [16, Prop. 7.10.3]. Let λ be a partition of m. Then the number f^{λ} counts the lattice paths $0=v_{0}, v_{1}, \ldots, v_{m}$ in $\mathbb{R}^{l}($ where $l=l(\lambda))$ from the origin v_{0} to $v_{m}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$, with each step a coordinate vector, and staying within the region (or cone) $x_{1} \geq x_{2} \geq \cdots \geq x_{l} \geq 0$.

Thus, for μ as described in (8.1), the number of maximal chains in $I_{d, n}$ is equal to f^{μ}.

An explicit description of f^{λ} is given in [16, Cor. 7.21.5].
Proposition 8.2. Let $\lambda \vdash m$. Then

$$
f^{\lambda}=\frac{m!}{\prod_{u \in \lambda} h(u)} .
$$

The statement of the proposition refers to $u \in \lambda$ as a box in the Young diagram of λ and to $h(u)$ as the "hook length" of u. The hook length is easily defined as the number of boxes to the right and below of u, including u once.

Let us take, for example, $I_{3,6}$. Then $\mu=(3,3,3)$, and the Young diagram of shape μ with hook lengths given in their corresponding boxes is as follows.

5	4	3
4	3	2
3	2	1

Therefore,

$$
f^{\mu}=\frac{9!}{5 \cdot 4^{2} \cdot 3^{3} \cdot 2^{2} \cdot 1}=42
$$

In fact, in the $I_{d, n}$ scenario our derived partition μ (given by (8.1)) will always be a rectangle, and we can deduce a formula for f^{μ} that does not require the Young tableau. The top left box of μ will always have hook length $(n-d)+d-1=$ $n-1$; the box directly below it (and the box directly to the right of it) will have length $n-2$. For any box of μ, the box below and the box to the right will have hook length 1 less than that of the box with which we started.

Since the posets $I_{d, n}$, and $I_{n-d, n}$ are isomorphic, we may assume that $d \leq n-d$. Then

$$
\begin{aligned}
& \prod_{u \in \mu} h(u) \\
& \quad=(n-1)(n-2)^{2} \cdots(n-d)^{d}(n-d-1)^{d} \cdots(d)^{d}(d-1)^{d-1} \cdots(2)^{2}(1) .
\end{aligned}
$$

Thus we arrive at the following statement.
Theorem 8.3. The multiplicity of $X_{d, n}$ at P_{σ} is equal to

$$
\frac{(d(n-d))!}{(n-1)(n-2)^{2} \cdots(n-d)^{d}(n-d-1)^{d} \cdots(d)^{d}(d-1)^{d-1} \cdots(2)^{2}(1)} .
$$

9. Conjectures

In this section, we give two conjectures on the multiplicity at a singular point. We also mention a result relevant to this paper on $\operatorname{Sing} X(\mathcal{L})$ for \mathcal{L} the Bruhat poset of Schubert varieties in any minuscule G / P.

The generating set $W(\tau)$ of a face τ consists of $\left\{e_{y^{\prime}}-e_{y}\right\}$ for certain covers $\left(y, y^{\prime}\right)$ in $J(\mathcal{L})$ (assuming that $\hat{1} \in D_{\tau}$, so that $e_{\hat{1}}$ is not in $\left.W(\tau)\right)$. Thus $W(\tau)$ determines a subset $H(\tau):=\dot{\bigcup} H(\tau)_{i}$ of $J(\mathcal{L})$ such that $W(\tau)$ consists of all the
covers in the $H(\tau)_{i}$. Thus, $H(\tau)$ for $\tau=\sigma_{i j}$ would be the diamond given in Remark 6.10. In Section 7.12, if $\tau=\tau_{1} \cup \tau_{2}$ for τ_{1}, τ_{2} a pair of nonconsecutive and nonintersecting J-blocks, then $H(\tau)=H\left(\tau_{1}\right) \dot{\cup} H\left(\tau_{2}\right)$.

Conjecture 1. The multiplicity formula for $X_{2, n}$ in Theorem 7.17 extends to $X_{d, n}$. Namely, let σ be the convex polyhedral cone associated to $X_{d, n}$ and let τ, τ_{1}, τ_{2} be faces of σ such that $\tau=\tau_{1} \cup \tau_{2}$. Then, if $H\left(\tau_{1}\right) \cap H\left(\tau_{2}\right)$ is empty, we have mult $P_{\tau} X_{d, n}=\left(\operatorname{mult}_{P_{\tau_{1}}} X_{d, n}\right) \cdot\left(\operatorname{mult}_{P_{\tau_{2}}} X_{d, n}\right)$.

Theorem 7.11 implies that mult $P_{\tau_{1}} X_{2, n}=\operatorname{mult}_{P_{\tau_{2}}} X_{2, n}$ if both τ_{1} and τ_{2} are J blocks of the same length; in particular, $H\left(\tau_{1}\right)$ and $H\left(\tau_{2}\right)$ are isomorphic. Guided by this phenomenon, we make the following conjecture.

Conjecture 2. For a face τ of any Hibi toric variety $X(\mathcal{L})$, mult $_{P_{\tau}} X(\mathcal{L})$ is determined by the poset $H(\tau)$. By this we mean that if τ, τ^{\prime} are such that $H(\tau), H\left(\tau^{\prime}\right)$ are isomorphic posets, then the multiplicities of $X(\mathcal{L})$ at the points $P_{\tau}, P_{\tau^{\prime}}$ are the same.

Remark 9.1. Toward generalizing Theorem 6.19 to other Hibi varieties, we will first explain how the lattice points $\mu_{i j}$ and $\lambda_{i j}$ were chosen. Let δ and θ be two incomparable meet and join irreducibles in $I_{d, n}$; say, $\delta=(i+1, \ldots, i+d)$ and $\theta=(1, \ldots, j, n+j+1-d, \ldots, n)$. Then $\theta \wedge \delta=\mu_{i j}$ and $\theta \vee \delta=\lambda_{i j}$. In view of Theorems 6.15 and 6.17, we have the following statement.

In $X_{d, n}, P_{\tau}$ is a smooth point if and only if, for every pair (θ, δ) of join and meet irreducibles, there is an $\alpha \in[\theta \wedge \delta, \theta \vee \delta]$ such that $P_{\tau}(\alpha)$, the α th coordinate of P_{τ}, is nonzero.
In fact, this is the content of the conjecture of [9, Sec. 11].
These results suggest that we look at such pairs of join-meet irreducibles in other distributive lattices and expect the components of the singular locus of the associated Hibi toric variety to be given by Theorem 6.19(i) for the case of $I_{d, n}$. However, this is not true in general, as the following counterexample shows.
9.2. Counterexample. Let \mathcal{L} be the interval $[(1,3,4),(2,5,6)]$, a sublattice of $I_{3,6}$.

Notice that \mathcal{L} has only one pair of join-meet irreducibles, $(2,3,4)$ and $(1,5,6)$, and thus the corresponding interval $[\theta \wedge \delta, \theta \vee \delta]$ is the entire lattice. Therefore, if our result (Theorem 6.19(i)) on the singular locus of G-H toric varieties were to generalize to other Hibi toric varieties, then any proper face would be nonsingular. This follows because any face τ must correspond to an embedded sublattice D_{τ}, and naturally this sublattice will intersect the interval, which is just \mathcal{L}.

But this is not true! For example, let τ be the face of σ such that $D_{\tau}=\{(1,5,6)\}$. Then

$$
\tau=C\left\langle e_{145}-e_{156}, e_{136}-e_{156}, e_{135}-e_{145}, e_{135}-e_{136}, e_{134}-e_{135}\right\rangle
$$

is a set of generators for τ. Clearly, τ is not generated by the subset of a basis, so τ is a singular face (see Lemma 6.14).

Nevertheless, Theorem 6.19 holds for minuscule lattices as described next. Let G be semisimple, and let P be a maximal parabolic subgroup with ω as the associated fundamental weight. Let W (resp. W_{P}) be the Weyl group of G (resp. P). Then the Schubert varieties in G / P are indexed by W / W_{P}. Let P be minuscule, by which we mean that the weights in the fundamental representation associated to ω form one orbit under the Weyl group. It is known that the Bruhat poset W / W_{P} of the Schubert varieties in G / P is a distributive lattice; see [11] for details.

Definition 9.3. We call $\mathcal{L}:=W / W_{P}$ a minuscule lattice and $X(\mathcal{L})$ a BruhatHibi toric variety.

Remark 9.4. Any Grassmann-Hibi toric variety $X_{d, n}$ is also a Bruhat-Hibi toric variety.

Now, for \mathcal{L} a minuscule lattice as in Definition 9.3, consider a pair (α, β) of incomparable join-meet irreducible elements. It has recently been shown [4] that a Bruhat-Hibi toric variety $X(\mathcal{L})$ is smooth at P_{τ} (for τ a face of σ) if and only if, for each incomparable pair (α, β) of join-meet irreducibles in \mathcal{L}, there exists at least one $\gamma \in[(\alpha \wedge \beta),(\alpha \vee \beta)]$ such that $P_{\tau}(\gamma)$ is nonzero.

References

[1] V. V. Batyrev, I. Ciocan-Fontanine, B. Kim, and D. van Straten, Conifold transitions and mirror symmetry for Calabi-Yau complete intersections in Grassmannians, Nuclear Phys. B 514 (1998), 640-666.
[2] ——, Mirror symmetry and toric degenerations of partial flag manifolds, Acta Math. 184 (2000), 1-39.
[3] G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., Amer. Math. Soc., Providence, RI, 1967.
[4] J. Brown and V. Lakshmibai, Singular loci of Bruhat-Hibi toric varieties, J. Algebra 319 (2008), 4759-4779.
[5] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, Berlin, 1995.
[6] D. Eisenbud and B. Sturmfels, Binomial ideals, Duke Math. J. 84 (1996), 1-45.
[7] W. Fulton, Introduction to toric varieties, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993.
[8] N. Gonciulea and V. Lakshmibai, Degenerations of flag and Schubert varieties to toric varieties, Transform. Groups 1 (1996), 215-248.
[9] ——, Schubert varieties, toric varieties and ladder determinantal varieties, Ann. Inst. Fourier (Grenoble) 47 (1997), 1013-1064.
[10] T. Hibi, Distributive lattices, affine semigroup rings, and algebras with straightening laws, Commutative algebra and combinatorics (Kyoto, 1985), Adv. Stud. Pure Math., 11, pp. 93-109, Elsevier, Amsterdam, 1987.
[11] H. Hiller, Geometry of Coxeter groups, Res. Notes Math., 54, Pitman, Boston, 1982.
[12] G. Kempf et al., Toroidal embeddings, Lecture Notes in Math., 339, Springer-Verlag, Berlin, 1973.
[13] V. Lakshmibai and N. Gonciulea, Flag varieties, Hermann, Paris, 2001.
[14] V. Lakshmibai and H. Mukherjee, Singular loci of Hibi toric varieties, J. Ramanujan Math. Soc. (submitted).
[15] R. A. Proctor, Bruhat lattices, plane partition generating functions, and minuscule representations, European J. Combin. 5 (1984), 331-350.
[16] R. P. Stanley, Enumerative combinatorics, vol. 2, Cambridge Stud. Adv. Math., 62, Cambridge Univ. Press, Cambridge, 1999.
[17] B. Sturmfels, Gröbner bases and convex polytopes, Univ. Lecture Ser., 8, Amer. Math. Soc., Providence, RI, 1996.
[18] D. G. Wagner, Singularities of toric varieties associated with finite distributive lattices, J. Algebraic Combin. 5 (1996), 149-165.

J. Brown
Department of Mathematics
Northeastern University
Boston, MA 02115
brown.justin1@neu.edu

V. Lakshmibai
Department of Mathematics
Northeastern University
Boston, MA 02115
lakshmibai@neu.edu

[^0]: Received November 10, 2008. Revision received March 25, 2009.
 The second author was partially supported by NSF Grant DMS-0652386 and Northeastern University RSDF 07-08.

