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1. Introduction

A partial linear rank-2 incidence geometry, also called a point-line geometry, is a
pair � = (P, L) consisting of a set P whose elements are called points and a col-
lection L of distinguished subsets of P whose elements are called lines, such that
any two distinct points are contained in at most one line. The point-collinearity
graph of � is the graph with vertex set P where two points are adjacent if they
are collinear (i.e., lie on a common line). By a subspace of � we mean a subset S
of P such that, if l ∈ L and l ∩ S contains at least two points, then l ⊂ S. A sub-
space S is singular if each pair of points in S is collinear—that is, if S is a clique
in the collinearity graph of �. We say that (P, L) is a Gamma space (see [13])
if, for every x ∈ P, {x} ∪ �(x) is a subspace. A subspace S �= P is a geometric
hyperplane if it meets every line.

Let e be a positive integer, p a prime, and V a 6-dimensional vector space over
the finite field Fq , q = pe, equipped with a nondegenerate alternating form f. Then
every vector ū ∈V is isotropic, that is, satisfies f(ū, ū) = 0. A subspace U of V
is called totally isotropic (with respect to f ) if f(ū1, ū2) = 0 for all ū1, ū2 ∈U.

Associated with (V, f ) is a polar space denoted by W(5, q). Here, by a polar
space we mean a point-line geometry (P,L) that satisfies the following properties:

1. (P,L) is a Gamma space and, for every point p and line l, p is collinear with
some point of l (this means that p is collinear with one point or all points of l );

2. no point p is collinear with every other point; and
3. there is an integer n called the rank of (P,L) such that, if S0 ⊂ S1 ⊂ · · · ⊂ Sk

is a properly ascending chain of singular subspaces, then k ≤ n.

When n = 2, (P,L) is said to be a generalized quadrangle.
The points (resp. lines) of W(5, q) are the 1-dimensional (resp. 2-dimensional)

subspaces of V that are totally isotropic with respect to f and where incidence is
containment. In W(5, q), two points 〈ū1〉V and 〈ū2〉V are collinear if and only if
f(ū1, ū2) = 0 (i.e., iff ū1 and ū2 are orthogonal).
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Also associated with the alternating form f ofV is a dual polar spaceDW(5, q).
The points (resp. lines) of DW(5, q) are the 3-spaces (resp. 2-spaces) of V that
are totally isotropic with respect to f and where incidence is reverse containment.
We denote the point-set and line-set of DW(5, q) by P and L, respectively. In
the incidence system (P, L), two “points” U1 and U2 are collinear if and only if
dim(U1∩U2) = 2. More generally, one can say that the distance d(U1,U2) (in the
collinearity graph of (P, L)) between two points U1 and U2 of DW(5, q) is equal
to 3 − dim(U1 ∩ U2). The lines of the dual polar space DW(5, q) are maximal
singular subspaces, so this geometry is also a Gamma space.

Alternatively, the geometries (P,L) and (P, L) can be defined as Lie incidence
geometries (see [4]) by making use of a construction of Gamma spaces from a
symmetrical orbital (orbit of the Symplectic group on the Cartesian products P 2

or P 2; see [13]).
By Shult and Yanushka [21] or Cameron [1], the set of totally isotropic 3-

spaces of V that contain a given 1-space of V is a convex subspace of diame-
ter 2 of DW(5, q). Such a convex subspace is called a quad of DW(5, q). The
points and lines contained in a quad define a generalized quadrangle that is iso-
morphic to the classical generalized quadrangle Q(4, q) (Payne and Thas [16,
Sec. 3.1]).

In this paper we are concerned with classifying all the geometric hyperplanes
of DW(5, q), q odd, that arise from an embedding (to be defined). In the Main
Theorem we will show that there are always six isomorphism classes of such
hyperplanes.

The notion of a geometric hyperplane was introduced by Veldkamp (see [23;
24]) in his characterization of polar geometries for the explicit purpose of proving
that such a geometry is embeddable. Geometric hyperplanes have been studied in
many other contexts as well: for example, they arise in the classification by Cohen
and Shult of the affine polar spaces (see [3]) and in Cuypers’characterization of the
graph on 2300 vertices with automorphism group Co2, the second Conway group
[8]. Removing a geometric hyperplane with certain properties from an incidence
geometry often allows one to create interesting affine geometries, and this was the
motivation of Pasini and Shpectorov [15] in studying uniform hyperplanes in dual
polar spaces and of Cooperstein and Pasini [7] in proving that ovoidal hyperplanes
do not exist in DW(5, q).

The research carried out in this paper is part of a larger project of classifying
all hyperplanes of finite dual polar spaces of small rank. A complete classifi-
cation of all hyperplanes of the Hermitian dual polar space DH(5, q2) was ob-
tained by De Bruyn and Pralle [11; 12]. All hyperplanes of the dual polar space
DQ−(7, q) arising from an embedding were classified by De Bruyn [9]. The clas-
sification of all hyperplanes of the dual polar spaces DQ(6, q) and DQ(8, q) that
arise from their spin embeddings was obtained by Cardinali, De Bruyn, and Pasini
[2], De Bruyn [9], Shult [19], and Shult and Thas [20]. A complete list of all hyper-
planes of DW(5, q), q even, arising from an embedding was given by Pralle [17]
(for q = 2) and by De Bruyn [10] (for arbitrary q even).
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2. Technical Description of the Results

2.1. The Grassmann Embedding of DW(5, q)

We continue with the notation introduced in Section 1. Choose a basis S =
{v̄1, w̄1, v̄2, w̄2, v̄3, w̄3} in V such that f(v̄i, w̄i) = 1 and f(v̄i, v̄j ) = f(w̄i, w̄j ) =
f(v̄i, w̄j ) = 0 for all i, j ∈ {1, 2, 3} with i �= j. Let W := ∧3

V be the third
exterior product of V that is a vector space of dimension

(
6
3

) = 20 over Fq .

Define now a bilinear form g(·, ·) from W × W to Fq by setting α ∧ β equal to
g(α,β)(v̄1 ∧ w̄1 ∧ v̄2 ∧ w̄2 ∧ v̄3 ∧ w̄3) for all α,β ∈ W. Since (ū1 ∧ ū2 ∧ ū3) ∧
(ū4 ∧ ū5 ∧ ū6) = (−1)9(ū4 ∧ ū5 ∧ ū6)∧(ū1∧ ū2 ∧ ū3) for all vectors ū1, ū2, . . . , ū6 ∈
V, the form g(·, ·) is alternative. Obviously, it is also nondegenerate.

For every point x = 〈ū1, ū2, ū3〉V of DW(5, q), let ε(x) denote the 1-space
〈ū1 ∧ ū2 ∧ ū3〉W of W = ∧3

V. This 1-space is independent from the generating
set {ū1, ū2, ū3} of x. It is well known that the subspace M of W generated by all
1-spaces ε(x), x ∈ P, is 14-dimensional. One readily verifies that a basis of M is
given by the set SM := {pi | 1 ≤ i ≤ 14}, where

p1 = v̄1 ∧ v̄2 ∧ v̄3, p2 = v̄1 ∧ v̄2 ∧ w̄3, p3 = v̄1 ∧ w̄2 ∧ v̄3,

p4 = v̄1 ∧ w̄2 ∧ w̄3, p5 = w̄1 ∧ v̄2 ∧ v̄3, p6 = w̄1 ∧ v̄2 ∧ w̄3,

p7 = w̄1 ∧ w̄2 ∧ v̄3, p8 = w̄1 ∧ w̄2 ∧ w̄3,

p9 = v̄1 ∧ v̄2 ∧ w̄2 − v̄1 ∧ v̄3 ∧ w̄3, p10 = w̄1 ∧ v̄2 ∧ w̄2 − w̄1 ∧ v̄3 ∧ w̄3,

p11 = v̄1 ∧ w̄1 ∧ v̄2 − v̄2 ∧ v̄3 ∧ w̄3, p12 = v̄1 ∧ w̄1 ∧ w̄2 − w̄2 ∧ v̄3 ∧ w̄3,

p13 = v̄1 ∧ w̄1 ∧ v̄3 − v̄2 ∧ w̄2 ∧ v̄3, p14 = v̄1 ∧ w̄1 ∧ w̄3 − v̄2 ∧ w̄2 ∧ w̄3.

For all i, j ∈ {1, . . . ,14} we have g(pi,pj ) = 0 except when {i, j} is equal to {1, 8},
{2, 7}, {3, 6}, {4, 5}, {9,10}, {11,12}, or {13,14}. Hence, the form g(·, ·) defines a
nondegenerate alternating form in the 14-space M. For every subspace U of M,
let U⊥g = {m∈M | g(u,m) = 0 for all u∈U}.

The map ε defines a full projective embedding of the dual polar space DW(5, q)
into the projective space PG(M) ∼= PG(13, q). This embedding is called the Grass-
mann embedding of DW(5, q). If q �= 2, then by results in [5] and [14] we know
that the Grassmann embedding of DW(5, q) is absolutely universal [18]. This im-
plies that all full embeddings of DW(5, q), q �= 2, can be obtained from its Grass-
mann embedding by taking so-called quotients.

If π is a hyperplane of PG(M), then ε−1(ε(P)∩π) is a (geometric) hyperplane
of DW(5, q)—namely, a proper subset of P intersecting each line of DW(5, q)
in either a unique point or the whole line. We will say that the hyperplane
ε−1(ε(P) ∩ π) arises from the embedding ε.

2.2. The Automorphism Groups of W(5, q) and DW(5, q)

Before proceeding to our main theorem, we describe the automorphism groups of
W(5, q) and DW(5, q). Suppose θ is a permutation of the point-set of W(5, q).
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Then θ will be an automorphism of W(5, q) if and only if it induces a permutation
on the set of all ordered pairs of distinct collinear points of W(5, q). Similarly, a
permutation of P will be an automorphism of DW(5, q) if and only if it induces a
permutation of the set of all ordered pairs of distinct collinear points of DW(5, q).
It is not difficult to see that automorphism groups of DW(5, q) and W(5, q) are
isomorphic.

That automorphisms of W(5, q) induce automorphisms of DW(5, q) is fairly
straightforward. That automorphisms of DW(5, q) induce automorphisms of
W(5, q) follows from two facts: (i) the quads of DW(5, q) are characterized as the
convex subspaces of diameter 2 and (ii) these are in one-to-one correspondence
with the points of W(5, q). We proceed to describe the group Aut(W(5, q)) ∼=
Aut(DW(5, q)).

Recall that S = {v̄1, w̄1, v̄2, w̄2, v̄3, w̄3} is a basis of V such that f(v̄i, w̄i) = 1
and f(v̄i, v̄j ) = f(w̄i, w̄j ) = f(v̄i, w̄j ) = 0 for all i, j ∈{1, 2, 3} with i �= j. A sim-
ilarity of (V, f ) is a linear transformation σ ∈ GL(V ) such that f(σ(ū1), σ(ū2)) =
λσ · f(ū1, ū2) for all ū1, ū2 ∈ V. Here λσ is a nonzero scalar that depends on σ

but is independent of ū1 and ū2. We denote by Gf ≤ GL(V ) the group of all sim-
ilarities. An isometry is a similarity σ with λσ = 1. We denote by Sf the group
of all isometries; Sf is normal in Gf and is isomorphic to Sp(6, Fq). Clearly, sim-
ilarities induce automorphisms of W(5, q). The kernel of the action of Gf on P is
the center of Gf and consists of all the scalar transformations λ · IV , where λ is a
nonzero scalar. Denote by PGf the quotient Gf/Z(Gf) and by PSf the quotient
of Sf by Sf ∩ Z(Gf). We note that Sf ∩ Z(Gf) = Z(Sf) = 〈−IV 〉 and therefore
SfZ(Gf)/Z(Gf) ∼= Sf/Z(Sf). Thus, we may consider PSf to be a subgroup of
PGf . The group PSf is the simple group P Sp(6, Fq). The index of PSf in PGf is
2 (see [22]). For i = 1, 2, 3, if σ ∗ is the linear transformation of V that fixes v̄i and
takes w̄i to dw̄i with d a given nonsquare in Fq , then σ ∗ ∈Gf \Sf and consequently
PGf = PSf 〈σ ∗〉. This describes the automorphisms of W(5, q) that are induced
by linear transformations of V. In addition, there are “field automorphisms”.

For ū∈V, denote by [ū]S the coordinate vector of ū with respect to the basis S
of V. For every γ ∈ Aut(Fq), define a map Tγ : V → V by [Tγ(v̄)]S = γ ([v̄]S).
Then Tγ induces a permutation of the point-set of W(5, q) that preserves or-
thogonality and therefore induces an automorphism of W(5, q). If A = {Tγ |
γ ∈Aut(Fq)}, then Aut(W(5, q)) = PGfA = PSf 〈σ ∗〉A.

2.3. The Main Results

Every element θ of Gf gives rise to a unique element θ ′ ∈ GL
(∧3

V
)

such that
θ ′(ū1 ∧ ū2 ∧ ū3) = θ(ū1)∧ θ(ū2)∧ θ(ū3) for all ū1, ū2, ū3 ∈V. Obviously, θ ′ fixes
M and hence gives rise to an element θ̂ ∈ GL(M). For all α,β ∈W = ∧3

V,

g(θ ′(α), θ ′(β)) = det(θ) · g(α,β). (2.1)

Hence θ̂ is a similarity of (M, g). Now define Ĝf := {θ̂ | θ ∈ Gf } and Ŝf :=
{θ̂ | θ ∈ Sf }. By (2.1),

(φ(U))⊥g = φ(U⊥g ) (2.2)

for every φ ∈ Ĝf and every subspace U of M.
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Now suppose as before that γ ∈Aut(Fq), and let B be the basis {v̄1 ∧ v̄2 ∧ v̄3,
w̄1 ∧ w̄2 ∧ w̄3} ∪ {v̄i ∧ v̄j ∧ w̄k , v̄k ∧ w̄i ∧ w̄j | 1 ≤ i, j, k ≤ 3, i < j} of W.

Let T ′
γ be the Fp-linear map of W defined by [T ′

γ(α)]B = γ ([α]B). We have
T ′
γ(ū1 ∧ ū2 ∧ ū3) = Tγ(ū1)∧ Tγ(ū2)∧ Tγ(ū3) for all ū1, ū2, ū3 ∈V. For all α,β ∈

W, we have
g(T ′

γ(α), T
′
γ(β)) = γ (g(α,β)). (2.3)

Note that T ′
γ fixes each of the vectors of the basis SM of M and hence induces an

Fp-linear map T̂γ : M → M. By (2.3),

(T̂γ (U))⊥g = T̂γ (U
⊥g ) (2.4)

for every subspace U of M.

Let Gf (resp. Ĝf ) denote the group of Fp-linear maps of V (resp.W) generated
by Gf and Tγ , γ ∈Aut(Fq) (resp. Ĝf and T̂γ , γ ∈Aut(Fq)). By our previous dis-
cussion, for every θ ∈ Gf there exists a unique Fp-linear map θ ′ : W → W such
that θ ′(ū1 ∧ ū2 ∧ ū3) = θ(ū1) ∧ θ(ū2) ∧ θ(ū3) for all ū1, ū2, ū3 ∈V. The map θ ′

stabilizes M and hence induces an Fp-linear map θ̂ : M → M. Obviously, θ̂ ∈ Ĝf .

Moreover, the map θ �→ θ̂ is an isomorphism between the groups Gf and Ĝf .

It is the main purpose of this paper to determine the orbits of the group
Aut(DW(5, q)) on the hyperplanes of DW(5, q), q odd, that arise from its Grass-
mann embedding. Because the Grassmann embedding of DW(5, q), q odd, is
absolutely universal, it follows that the hyperplanes of DW(5, q), q odd, arising
from the Grassmann embedding are all the hyperplanes of that dual polar space
that arise from an embedding.

Determining the orbits of Aut(DW(5, q)) on the hyperplanes of DW(5, q) is

equivalent to the enumeration of all Ĝf -orbits on the hyperplanes of M. By equa-
tions (2.2) and (2.4), this is equivalent to enumerating the orbits of Ĝf on the
1-spaces of M—that is, the points of PG(M). We will achieve our objective by
first enumerating the orbits of Ŝf on the 1-spaces of M and then determining when
these Ŝf -orbits fuse when the group is extended to all of Aut(DW(5, q)).

Before stating the Main Theorem, we need to define some extra vectors in M.

Unless indicated otherwise, in the sequel we will always assume that q is an odd
prime power. Let d ∈ Fq be such that d is a nonsquare (if −1 is a nonsquare then
we take d equal to −1). Define the following additional vectors of M:

p15 = p1 + p4, p16 = p1 + dp4, p17 = p1 + p4 + p6, p18 = p1 + p8,

p19 = p1 + dp8, p20 = dp1 + p4 + p6 + p7, p21 = dp2 + dp3 + dp5 + p8.

Also, set Pi = 〈pi〉W and Hi = ε−1(P
⊥g

i ∩ ε(P)) for every i ∈ {1, . . . , 21}. We can
now state our main theorem.

Main Theorem. Let q be an odd prime power. Then the group Aut(DW(5, q))
has six orbits on the geometric hyperplanes of DW(5, q) that arise from an em-
bedding with representatives H1, H15, H16, H17, H18, and H20. The sizes of the
orbits are given in Table 1.
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Table 1 The orbits of Aut(DW(5, q)), q odd,
on the geometric hyperplanes of DW(5, q)

Type Representative Orbit size

I H1 (q3 + 1)(q2 + 1)(q + 1)

II H15
(q6−1)q2(q2+1)

2(q−1)

III H16
(q6−1)q2(q2−1)

2(q−1)

IV H17 q3(q6 − 1)(q2 + 1)(q + 1)

V H18
q6(q4−1)(q3+1)

2

VI H20
q6(q4−1)(q3−1)

2

The Main Theorem is a consequence of the following two results, which we will
prove in Sections 3 and 4 (respectively).

Point Enumeration Theorem. (i) If −1 is a nonsquare in Fq , q odd, then the
group Ŝf has six orbits on the point-set of PG(M) with representatives P1, P15,
P16, P17, P18, and P20. The orbit sizes and the stabilizers of each representative
are given in Table 2.

(ii) If −1 is a square in Fq , q odd, then the group Ŝf has eight orbits on the
point-set of PG(M) with representatives P1, P15, P16, P17, P18, P19, P20, and P21.

The orbit sizes and stabilizers are given in Table 3.

To prove the Point Enumeration Theorem, we will show in both cases that the
conjectured representatives given in the tables are all in different orbits; we then
compute their stabilizers and hence their orbit sizes. Since in both cases the sum
of the orbit sizes is q14−1

q−1 , it will follow that we have enumerated all the Ŝf -orbits
on the points of M.

Fusion Theorem. (i) Assume that −1 is a nonsquare in Fq with q odd. Then
the automorphisms of DW(5, q) induced by σ ∗ and Tγ , γ ∈ Aut(Fq), fix each of
the Ŝf -orbits of the hyperplanes H1, H15, H16, H17, H18, and H20.

(ii) Assume that −1 is a square in Fq with q odd. Then the automorphisms of
DW(5, q) induced by σ ∗ and Tγ , γ ∈ Aut(Fq), fix each of the Ŝf -orbits of the
hyperplanes H1, H15, H16, and H17. On the other hand, the Ŝf -orbits of H18 and
H19 become a single orbit, as do the Ŝf -orbits of H20 and H21.

The Main Theorem classifies all hyperplanes of DW(5, q), q odd, arising from
an embedding. As previously mentioned, all hyperplanes of DW(5, q), q even,
arising from an embedding were classified in [17] (for q = 2, with the aid of a
computer) and [10] (for arbitrary q = 2m, without the use of a computer).
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Table 2 The Ŝf -orbits on the points of PG(M)

when −1 is a nonsquare in Fq

Type Representative Orbit size Stabilizer

I P1 (q3 + 1)(q2 + 1)(q + 1) q6.GL(3, q)

II P15
(q6−1)q2(q2+1)

2(q−1) q5.SL(2, q) × SL(2, q) × Zq−1.2

III P16
(q6−1)q2(q2−1)

2(q−1) q5.SL(2, q2) × Zq−1.2

IV P17 q3(q6 − 1)(q2 + 1)(q + 1) q5.SL(2, q) Zq−1.2

V P18
q6(q4−1)(q3+1)

2 Z2 × SL(3, q)

VI P20
q6(q4−1)(q3−1)

2 Z2 × SU(3, q)

Table 3 The Ŝf -orbits on the points of PG(M)

when −1 is a square in Fq

Type Representative Orbit size Stabilizer

I P1 (q3 + 1)(q2 + 1)(q + 1) q6.GL(3, q)

II P15
(q6−1)q2(q2+1)

2(q−1) q5.SL(2, q) × SL(2, q) × Zq−1.2

III P16
(q6−1)q2(q2−1)

2(q−1) q5.SL(2, q2) × Zq−1.2

IV P17 q3(q6 − 1)(q2 + 1)(q + 1) q5.SL(2, q) Zq−1.2

Va P18
q6(q4−1)(q3+1)

4 Z2 × SL(3, q).2

Vb P19
q6(q4−1)(q3+1)

4 Z2 × SL(3, q).2

VIa P20
q6(q4−1)(q3−1)

4 Z2 × SU(3, q).2

VIb P21
q6(q4−1)(q3−1)

4 Z2 × SU(3, q).2

Several combinatorial properties of the hyperplanes of DW(5, q), q odd, that
arise from an embedding were already obtained by the authors in [6]. For each
hyperplane H of DW(5, q), q odd, they determined (using purely combinatorial
and geometrical techniques) the total number of quads Q for which Q ∩ H is a
certain configuration of points in Q and the total number of points x for which
1(x)∩H is a certain configuration of points in 1(x). Here, 1(x) denotes the set
of points equal to or collinear with x. On the basis of these combinatorial proper-
ties, the authors were able to divide the set of hyperplanes of DW(5, q), q odd, into
six classes: Type I hyperplanes, Type II hyperplanes, . . . , Type VI hyperplanes.
This terminology is consistent with that used in our paper. By the Main Theorem,
each of the six classes defined in [6] is actually an isomorphism class.



202 B. N. Cooperstein & B. De Bruyn

3. Proof of the Point Enumeration Theorem

3.1. Notation and a Few Lemmas

We will continue with the notation introduced in Sections 1 and 2.
Let δ ∈ Fq2 \Fq such that δ2 = d. We may suppose that (i) w̄i = δv̄i for every i ∈

{1, 2, 3} and (ii) V is a 3-dimensional vector space over Fq2 with basis {v̄1, v̄2, v̄3}
and a 6-dimensional vector space over Fq with basis S = {v̄1, v̄2, v̄3, w̄1, w̄2, w̄3}.
Recall that

∧3
V must be regarded as the third exterior power of V as a vector

space over the field Fq .

Lemma 3.1. If τ is an Fq2 -linear transformation of V with det(τ ) = 1, then τ̂

centralizes the vectors p20 and p21.

Proof. Let Eij denote the 3 × 3 matrix with a 1 in the (i, j)th entry and 0s else-
where, and set χij = {I3 + αEij | α ∈ Fq2} for all i, j ∈ {1, 2, 3} with i �= j. Also,
set w1 = E12 − E21 + E33 and w2 = E11 + E23 − E32. Then the group SL(3, q2)

is generated by χ13, w1, and w2. Hence it suffices to prove that the induced action
of each of these centralizes p20 and p21.

Let α = a+bδ where a, b ∈ Fq , and suppose that τ is the Fq2 -linear transforma-
tion of V whose associated matrix with respect to the basis {v̄1, v̄2, v̄3} is equal to
I3 +αE13. Then the matrix of τ with respect to S is

(
A dB
B A

)
, where A = I3 + aE13

and B = bE13. It is now quite straightforward to compute the induced action of τ
on p20 and p21: τ̂ (p20) is equal to

τ̂ (dv̄1 ∧ v̄2 ∧ v̄3 + v̄1 ∧ w̄2 ∧ w̄3 + w̄1 ∧ v̄2 ∧ w̄3 + w̄1 ∧ w̄2 ∧ v̄3)

= d [v̄1 ∧ v̄2 ∧ (av̄1 + v̄3 + bw̄1)] + v̄1 ∧ w̄2 ∧ ((db)v̄1 + aw̄1 + w̄3)

+ w̄1 ∧ v̄2 ∧ ((db)v̄1 + aw̄1 + w̄3) + w̄1 ∧ w̄2 ∧ (av̄1 + v̄3 + bw̄1)

= dv̄1 ∧ v̄2 ∧ v̄3 + (db)v̄1 ∧ v̄2 ∧ w̄1 + v̄1 ∧ w̄2 ∧ w̄3 + av̄1 ∧ w̄2 ∧ w̄1

+ w̄1 ∧ v̄2 ∧ w̄3 + (db)w̄1 ∧ v̄2 ∧ v̄1 + w̄1 ∧ w̄2 ∧ v̄3 + aw̄1 ∧ w̄2 ∧ v̄1

= p20,

since w̄1 ∧ v̄2 ∧ v̄1 = −v̄1 ∧ v̄2 ∧ w̄1 and w̄1 ∧ w̄2 ∧ v̄1 = −v̄1 ∧ w̄2 ∧ w̄1.

Similarly, τ̂ (p21) is equal to

τ̂ (dv̄1 ∧ v̄2 ∧ w̄3 + dv̄1 ∧ w̄2 ∧ v̄3 + dw̄1 ∧ v̄2 ∧ v̄3 + w̄1 ∧ w̄2 ∧ w̄3)

= d [v̄1 ∧ v̄2 ∧ ((db)v̄1 + aw̄1 + w̄3)] + d [v̄1 ∧ w̄2 ∧ (av̄1 + v̄3 + bw̄1)]

+ d [w̄1 ∧ v̄2 ∧ (av̄1 + v̄3 + bw̄1)] + w̄1 ∧ w̄2 ∧ ((db)v̄1 + aw̄1 + w̄3)

= (da)v̄1 ∧ v̄2 ∧ w̄1 + dv̄1 ∧ v̄2 ∧ w̄3 + (db)v̄1 ∧ w̄2 ∧ w̄1 + dv̄1 ∧ w̄2 ∧ v̄3

+ (da)w̄1 ∧ v̄2 ∧ v̄1 + dw̄1 ∧ v̄2 ∧ v̄3 + (db)w̄1 ∧ w̄2 ∧ v̄1 + w̄1 ∧ w̄2 ∧ w̄3

= p21.

The matrix of w1 with respect to S is
(
A O
O A

)
, where A = E12 − E21 + E33 and

O is the 3 × 3 matrix with all entries equal to 0. Now ŵ1(p20) is equal to
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ŵ1(dv̄1 ∧ v̄2 ∧ v̄3 + v̄1 ∧ w̄2 ∧ w̄3 + w̄1 ∧ v̄2 ∧ w̄3 + w̄1 ∧ w̄2 ∧ v̄3)

= d(−v̄2) ∧ v̄1 ∧ v̄3 + (−v̄2) ∧ w̄1 ∧ w̄3

+ (−w̄2) ∧ v̄1 ∧ w̄3 + (−w̄2) ∧ w̄1 ∧ v̄3

= p20,

since (−v̄2)∧ v̄1 = v̄1 ∧ v̄2, (−w̄2)∧ w̄1 = w̄1 ∧ w̄2, (−v̄2)∧ w̄1 = w̄1 ∧ v̄2, and
(−w̄2) ∧ v̄1 = v̄1 ∧ w̄2.

In an entirely similar way, one shows that ŵ1(p21) = p21, ŵ2(p20) = p20, and
ŵ2(p21) = p21.

Recall that every point x ∈ P gives rise to a 1-space ε(x) of M, that is, a point
ε(x) of PG(M). For a line l ∈ L, we define ε(l) := {ε(x) | x ∈ l}. We denote by l̃

the 2-space of M generated by the 1-spaces ε(x), x ∈ l. We put P̃ = P̂ = {ε(x) |
x ∈ P}, L̂ = {ε(l) | l ∈ L}, and L̃ = {l̃ | l ∈ L}.

LetX be a point of PG(V ). By abuse of notation, we will also writeX ∈ PG(V ).

The set Q(X) = {x ∈ P | X ⊂ x ⊂ X⊥} is a convex subspace of DW(5, q) that
defines a generalized quadrangle isomorphic to Q(4, q). We set Q := {Q(X) |
X ∈ PG(V )} and refer to the elements of Q as quads of DW(5, q). For Q ∈ Q,
we will denote by Q̂ the collection {ε(x) | x ∈ Q} and by Q̃ the subspace of M
spanned by the elements of Q̂. We refer to both Q̂ and Q̃ as the quads of M. Set
Q̃ = {Q̃ | Q∈ Q}.

For every point u of DW(5, q), 1(u) denotes the set of points of DW(5, q) that
are collinear or equal to u. If P = ε(u) ∈ P̃, then we define 1(P ) := ε(1(u))

and M(P) is the subspace of M spanned by the elements of 1(P ). We call M(P)

the hemisphere of P.

Lemma 3.2. Let X,Y ∈ PG(V ). Then the following statements hold :

(i) if X ⊥f Y, then Q̃(X) ∩ Q̃(Y )∈ L̃;
(ii) if X and Y are not orthogonal, then Q̃(X) ∩ Q̃(Y ) = 0.

Proof. (i) The group Gf is transitive on pairs {X,Y } of 1-spaces of V such that
X ⊥f Y. Therefore we can take X = 〈v̄1〉 and Y = 〈v̄2〉. Then

Q̃(X) = 〈p1,p2,p3,p4,p9〉, Q̃(Y ) = 〈p1,p2,p5,p6,p11〉,
and Q̃(X) ∩ Q̃(Y ) = 〈p1,p2〉 ∈ L̃.

(ii) The group Gf is also transitive on pairs {X,Y } of 1-spaces of V such that X
and Y are nonorthogonal with respect to f. We can take X = 〈v̄1〉 and Y = 〈w̄1〉.
Now Q̃(X) = 〈p1,p2,p3,p4,p9〉 and Q̃(Y ) = 〈p5,p6,p7,p8,p10〉. Therefore,
Q̃(X) ∩ Q̃(Y ) = 0 as claimed.

This result implies the next corollary, which is fundamental.

Corollary 3.3. Let Q̃∈ Q̃ and P ∈ PG(Q̃) \ P̃. Then Q̃ is the unique quad of
M that contains P.

Lemma 3.4. Let P ∈ P̃ and Q∈ Q̃ be such that P /∈Q. Let R denote the unique
point of Q ∩ P̃ at distance 1 from P. Then M(P) ∩ Q = R.
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Proof. Since Ĝf is transitive on the pairs (P,Q)withP ∈ P̃,Q∈ Q̃, andP /∈Q, we
may without loss of generality suppose thatQ = Q̃(〈v̄1〉) andP = 〈p8〉. ThenR =
〈p4〉. Now Q = 〈p1,p2,p3,p4,p9〉 and M(P) = 〈p4,p6,p7,p8,p10,p12,p14〉;
hence M(P) ∩ Q = 〈p4〉 = R.

Corollary 3.5. Let P ∈ P̃ and R ∈ PG(M(P ))\ P̃. If R is contained in a quad,
then this quad necessarily contains P.

Lemma 3.6. Let Q̃∈ Q̃ and R ∈ PG(Q̃) \ P̃. Then there exists a P ∈ P̃ such that
R ∈ PG(M(P )).

Proof. Let L̃ be contained in Q̃ where L ∈ L. Then Q̃ = ⋃
P∈L̃〈Q̃ ∩ 1(P )〉 ⊂⋃

P∈Q̃ M(P ).

Our next lemma shows that, if a point is contained in two distinct hemispheres,
then in fact it is contained in a quad.

Lemma 3.7. LetP andP ′ be distinct points of P̃, and letX∈ PG(M(P )∩M(P ′)).
Then there is a quad Q̃ containing P such that X ⊂ Q̃.

Proof. For every t ∈ {1, 2, 3}, Ĝf is transitive on the pairs (P,P ′) of points of P̃
with d(P,P ′) = t. Therefore we can take (P,P ′) to be one of (P1,P2), (P1,P4),
or (P1,P8). For every i ∈ {1, 2, 4, 8}, set Mi = M(Pi). Then

M1 = 〈p1,p2,p3,p5,p9,p11,p13〉, M2 = 〈p1,p2,p4,p6,p9,p11,p14〉,
M4 = 〈p2,p3,p4,p8,p9,p12,p14〉, M8 = 〈p4,p6,p7,p8,p10,p12,p14〉.

Now M1 ∩ M2 = 〈p1,p2,p9,p11〉. This space is covered by
⋃

Q̃(〈v̄〉) where v̄ ∈
〈v̄1, v̄2〉. Also M1 ∩ M4 = 〈p2,p3,p9〉 and this is contained in Q̃(〈v̄1〉). Finally,
M1 ∩ M8 = 0.

This lemma has an important corollary as follows.

Corollary 3.8. Assume X ∈ PG(M(P )) for P ∈ P̃ and assume X is not con-
tained in a quad that contains P. Then P is the unique point of P̃ for which
X ∈ PG(M(P )).

3.2. Points Contained in At Least One Hemisphere

We now show that the points P1, P15, P16, and P17 are in distinct orbits of Ŝf , with
orbit sizes and stabilizers as shown in Tables 2 and 3. We also show that the union
of these orbits comprises all points of PG(M) that are contained in at least one
hemisphere.

The orbit of P1 is just P̃. There are (q3 + 1)(q2 + 1)(q + 1) such points, and
the stabilizer SP1 := (Ŝf )P1 of P1 is isomorphic to the subgroup of Sf that fixes a
maximal totally isotropic subspace of V. The group SP1 has a normal elementary
abelian subgroup E(P1) of order q6. This subgroup has a complement L(P1) ∼=
GL(3, q), which justifies the entries of line I of Table 3 and Table 4.

For a point X of PG(V ), the stabilizer in Ŝf of Q̃(X) is isomorphic to SX :=
(Sf)X. The group SX has a normal subgroup E(X) of order q5, which is a special
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group. This subgroup has a complementL(X) that is isomorphic toL(X)′×Z(X),
where L(X)′ ∼= Sp(4, q) is the commutator subgroup of L(X) and Z(X) ∼= Zq−1.

Note that L(X)′/Z(L(X)′) ∼= >(5, q). In fact, the group L(X) preserves a qua-
dratic form on Q̃(X), which we now describe.

Let X = 〈v̄1〉, and set V(X) = 〈v̄2, w̄2, v̄3, w̄3〉. Observe that X ∧ ∧2
(X⊥) =

X ∧ ∧2
(V(X)) has dimension 6. We denote this space by D(X). Any vector v̄

is in D(X) and can be written as v̄1 ∧ α for α ∈ ∧2
(V(X)). Also, for α,β ∈∧2

(V(X)), we have that α ∧ β is a multiple of v̄2 ∧ v̄3 ∧ w̄2 ∧ w̄3. Thus, de-
fine b :

∧2
(V(X)) × ∧2

(V(X)) → Fq by α ∧ β = b(α,β)(v̄2 ∧ v̄3 ∧ w̄2 ∧ w̄3).

This defines a nondegenerate symmetric bilinear form of Witt index 3. Now define
b̂ : D(X)×D(X) → Fq by b̂(v̄1 ∧ α, v̄1 ∧ β) = b(α,β); this also is a nondegen-
erate symmetric bilinear form of Witt index 3. The space Q̃(X) is the subspace of
D(X) that is orthogonal to v̄1∧ v̄2 ∧w̄2 + v̄1∧ v̄3 ∧w̄3 with respect to b̂. The group
L(X) has three orbits on the projective points of Q̃(X): the singular points of the
quadratic form b̂, which are the points of Q̂(X); and the two classes of nonsingu-
lar points with respect to b̂. Note that b̂(p9,p9) = b̂(p15,p15) = 2. Also, p⊥

b̂
9 =

〈p1,p2,p3,p4〉, which is a nondegenerate hyperbolic subspace of (Q̃(X), b̂). On
the other hand, b̂(p16,p16) = 2d and, since b̂(p15,p15) · b̂(p16,p16) = 4d is a non-
square, it follows that P15 and P16 are in different classes of nonsingular points of
(Q̃(X), b̂) and hence are representatives of the two classes. Since there are q6−1

q−1
quads Q(X) for X ∈ PG(V ) and since, for each X, there are q2(q2+1)

2 points in the
class of P15 contained in Q̃(X) and q2(q2−1)

2 points in the class of P16 contained in
Q̃(X), the entries of lines II and III of Table 3 and Table 4 are justified.

We now make use of Corollary 3.3 and simple counting to show that, for P ∈
P̃, there are points in M(P) that are not from classes I, II, or III.

Lemma 3.9. The following statements hold for a point P ∈ P̃ :

(i) the number of points of type I in PG(M(P )) is 1 + q(q2 + q + 1);
(ii) the number of points of type II in PG(M(P )) is q2(q2+q+1)(q+1)

2 ;
(iii) the number of points of type III in PG(M(P )) is q2(q2+q+1)(q−1)

2 ;
(iv) there are q3(q3 − 1) points in PG(M(P )) that do not belong to a quad.

Proof. (i): The points of type I in M(P) are precisely 1(P ). There are q2 + q + 1
lines on P, each with q points of 1(P ) apart from P.

(ii) and (iii): The point P belongs to q2 + q + 1 quads. For a quad Q̃ contain-
ing P, we know that M(P) ∩ Q̃ is the hyperplane of Q̃ spanned by 1(P ) ∩ Q̂. A

simple count yields that M(P) ∩ Q̃ contains q2(q+1)
2 points of type II and q2(q−1)

2
points of type III. The second and third parts follow from this.

(iv): The number of points that have been accounted for is

1 + q + q2 + q3 + (q2 + q + 1)

[
q2(q + 1)

2
+ q2(q − 1)

2

]
= 1 + q + q2 + 2q3 + q4 + q5.

Since |PG(M(P ))| = q7−1
q−1 , there are q6 − q3 = q3(q3 −1) remaining points.
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Lemma 3.10. The stabilizer SP of a point P ∈ P̃ is transitive on the points of
PG(M(P )) that do not belong to quads.

Proof. Since Ŝf is transitive on P̃, we can take P = P2 and M(P) = M2. Recall
that SP = E(P ) ·L(P ), where E(P ) is elementary abelian of order q6 and L(P ) ∼=
GL(3, q). The subgroup E(P ) fixes every projective line of the form P +P ′ with
P ′ ∈1(P )\{P } and, for such a line, is transitive on PG(P +P ′)\{P }. This implies
that E(P ) acts trivially on the 6-dimensional quotient space M(P)/P. The action
of the complement, L(P ), on M(P)/P is equivalent to the action of GL(3, q) on
the space Sym(3, q) of 3 × 3 symmetric matrices for which the action is given by
g � m = gTmg (where gT denotes the transpose of the matrix g). Under this ac-
tion, every matrix is equivalent to a diagonal matrix and there are six orbits on
nonzero vectors, two each for rank 1, 2, and 3. Representatives for the orbits on
vectors are as follows:

(1)


 1 0 0

0 0 0
0 0 0


; (2)


 d 0 0

0 0 0
0 0 0


; (3)


 1 0 0

0 1 0
0 0 0


;

(4)


 1 0 0

0 d 0
0 0 0


; (5)


 1 0 0

0 1 0
0 0 1


; (6)


 d 0 0

0 d 0
0 0 d


.

Note that the vectors in (1) and (2) give rise to the same point of PG(Sym(3, q)),
as do the vectors in (5) and (6); however, the vectors in (3) and (4) do not.

Consequently, L(P ) has four orbits on the points of M(P)/P. However, for any
2-space U of M(P) containing P, the group E(P ) is transitive on PG(U) \ {P }
and therefore SP has four orbits on the points of PG(M(P )) \ {P }. The point P1

is a representative of one orbit, and the points P15 and P16 are the representatives
of two other orbits. Thus, there is one other orbit consisting of all those points of
PG(M(P )) that do not belong to quads.

The point P17 is a point of M(P2) that does not belong to a quad. In view of
Corollary 3.8 and Lemmas 3.9 and 3.10, it now follows that the orbit of P17 has
|P̃| × (q6 − q3) = q3(q6 − 1)(q2 + 1)(q + 1).

3.3. Points Not Belonging to a Hemisphere

We now turn our attention to points that do not belong to M(P) for any point
P ∈ P̃.

Since the group Ŝf is transitive on P̃ and since, for a point P ∈ P̃, the normal
abelian group E(P ) acts regularly on the points P ′ with d(P,P ′) = 3, it follows
that Ŝf is transitive on ordered pairs (P,P ′) of points from P̃ at distance 3. One
such pair is (P1,P8). By [6, Cor. 5.3], an element of Ŝf that stabilizes a given point
of 〈P1,P8〉 \{P1,P8} must either stabilize the ordered pair (P1,P8) or interchange
P1 and P8.

The stabilizer S(P1,P8) of the ordered pair (P1,P8) is isomorphic to GL(3, q).
The normal subgroup SL(3, q) acts trivially on both the points P1 and P8, whereas
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an element of Z(S(P1,P8)) will multiply p8 by a scalar a and multiply p1 by 1/a.
Such an element takes the point 〈p1 + p8〉 to 〈p1 + a2p8〉.

There is also a group element that interchanges the points P1 and P8 and, specif-
ically, takes p1 to p8 and p8 to −p1. This transformation takes the point 〈p1+p8〉
to 〈p1 − p8〉. If −1 is a nonsquare in Fq then all the points of 〈P1,P8〉 \ {P1,P8}
are in the same orbit. On the other hand, if −1 is a square in Fq then 〈p1 + p8〉
and 〈p1 + dp8〉 are in different orbits. We obtain in the former case a single orbit
with representative P18 and orbit size q6(q4−1)(q3+1)

2 ; in the latter case we have two
orbits, with representatives P18 and P19, each with orbit size q6(q4−1)(q3+1)

4 .

We next show that the group Sf contains a subgroup G ∼= GU(3, q2). Recall
that δ is an element of Fq2 such that δ2 = d and w̄i = δv̄i for every i ∈ {1, 2, 3}.
For any α ∈ Fq2 , put ᾱ := αq. Note that for α = a + bδ we have ᾱ = a − bδ.

Now define a map h : V ×V → Fq2 as follows (αi,βi ∈ Fq2 ):

h

( 3∑
i=1

αiv̄i,
3∑

i=1

βiv̄i

)
= 1

2δ̄

3∑
i=1

αiβ̄i .

Since tr(δ) = 0, this defines a skew Hermitian form on V. It then follows that the
map f ′ : V ×V → Fq given by f ′(v̄, w̄) = tr(h(v̄, w̄)) is an alternating form. We
claim that f ′ = f. We compute f ′(v̄i, v̄j ), f ′(w̄i, w̄j ), and f ′(v̄i, w̄j ) for i �= j

and f ′(v̄i, w̄i) for i = 1, 2, 3.
By definition, h(v̄i, v̄j ) = h(w̄i, w̄j ) = h(v̄i, w̄j ) = 0 for i �= j ; consequently,

we need only compute f ′(v̄i, w̄i). By definition this is tr(h(v̄i, δv̄i)) = tr(δ̄/2δ̄) =
tr(1/2) = 1, so our claim holds.

It now follows that if σ is an isometry of (V,h)—that is, a unitary transfor-
mation—then σ is an isometry of the symplectic space (V, f ). Therefore, if G =
{σ ∈ GLFq2(V ) | h(σ(ū1), σ(ū2)) = h(ū1, ū2) ∀ū1, ū2 ∈V }, then G ∼= GU(3, q2)

and G < Sf . Let G′ be the derived subgroup of G; then G′ is isomorphic to
SU(3, q2). By Lemma 3.1, it follows that Ĝ′ centralizes 〈p20,p21〉.

We next determine the stabilizer of the point P20. We will first show in a
series of lemmas that if v̄, w̄ ∈ 〈p20,p21〉 and if θ ∈ Sf satisfies θ(v̄) = w̄,
then θ(〈p20,p21〉) = 〈p20,p21〉.

Let V ′ denote the 6-dimensional vector space over Fq2 with basis S. For a
vector x̄ = a1v̄1 + a2v̄2 + a3v̄3 + b1w̄1 + b2w̄2 + b3w̄3 ∈ V ′ we define x̄ q =
a
q

1 v̄1 + a
q

2 v̄2 + a
q

3 v̄3 + b
q

1 w̄1 + b
q

2w̄2 + b
q

3w̄3. For θ ∈ GL(V ) we denote by
θ̄ the element induced by θ in GL(V ′) and by θ ′ the corresponding element of
GL

(∧3
V ′).

Lemma 3.11. Let {ē1, ē2, . . . , ē6} and {ē ′
1, ē ′

2, . . . , ē ′
6} be two bases of V ′ such that

ē1 ∧ ē2 ∧ ē3 + ē4 ∧ ē5 ∧ ē6 = ē ′
1 ∧ ē ′

2 ∧ ē ′
3 + ē ′

4 ∧ ē ′
5 ∧ ē ′

6. Then {〈ē1, ē2, ē3〉,
〈ē4, ē5, ē6〉} = {〈ē ′

1, ē ′
2, ē ′

3〉, 〈ē ′
4, ē ′

5, ē ′
6〉}.

Proof. Put α := ē1 ∧ ē2 ∧ ē3 + ē4 ∧ ē5 ∧ ē6 = ē ′
1 ∧ ē ′

2 ∧ ē ′
3 + ē ′

4 ∧ ē ′
5 ∧ ē ′

6. For
every vector x̄ of V ′, let Ax̄ denote the subspace of V ′ consisting of all vectors ȳ

satisfying α ∧ x̄ ∧ ȳ = 0. Let B be the subset of V ′ consisting of all vectors x̄ of
V ′ such that dim(Ax̄) ≥ 4. We will now prove that B = 〈ē1, ē2, ē3〉 ∪ 〈ē4, ē5, ē6〉.
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In a completely similar way, one can also prove that B = 〈ē ′
1, ē ′

2, ē ′
3〉 ∪ 〈ē ′

4, ē ′
5, ē ′

6〉,
which then implies that {〈ē1, ē2, ē3〉, 〈ē4, ē5, ē6〉} = {〈ē ′

1, ē ′
2, ē ′

3〉, 〈ē ′
4, ē ′

5, ē ′
6〉}.

Put x̄ = δ1ē1 + δ2 ē2 + · · · + δ6ē6 and ȳ = a1ē1 + a2 ē2 + · · · + a6ē6. Then the
fact that α ∧ x̄ ∧ ȳ = 0 implies that



−δ2 δ1 0 0 0 0

−δ3 0 δ1 0 0 0

0 −δ3 δ2 0 0 0

0 0 0 −δ5 δ4 0

0 0 0 −δ6 0 δ4

0 0 0 0 −δ6 δ5




·




a1

a2

a3

a4

a5

a6




=




0

0

0

0

0

0



.

So, dim(Vx̄) ≥ 4 if and only if the rank of


−δ2 δ1 0 0 0 0

−δ3 0 δ1 0 0 0

0 −δ3 δ2 0 0 0

0 0 0 −δ5 δ4 0

0 0 0 −δ6 0 δ4

0 0 0 0 −δ6 δ5




is at most 2. This happens precisely when (δ1, δ2, δ3) = (0, 0, 0) or (δ4, δ5, δ6) =
(0, 0, 0), that is, when x̄ ∈ 〈ē1, ē2, ē3〉 ∪ 〈ē4, ē5, ē6〉.
The proof of the following lemma is straightforward.

Lemma 3.12. For all a, b ∈ Fq , (a+bδ) · (w̄1+δv̄1)∧ (w̄2 +δv̄2)∧ (w̄3 +δv̄3)+
(a − bδ) · (w̄1 − δv̄1) ∧ (w̄2 − δv̄2) ∧ (w̄3 − δv̄3) = 2a · p21 + 2bd · p20.

Corollary 3.13. The vectors of the 2-space 〈p20,p21〉 of
∧3

V are precisely
the vectors of the form (a + bδ) · (w̄1 + δv̄1) ∧ (w̄2 + δv̄2) ∧ (w̄3 + δv̄3) +
(a − bδ) · (w̄1 − δv̄1) ∧ (w̄2 − δv̄2) ∧ (w̄3 − δv̄3), where a, b ∈ Fq .

By Lemma 3.11 and Corollary 3.13, we have the following result.

Corollary 3.14. If θ ∈ Sf such that θ̂ maps a nonzero vector of 〈p20,p21〉 to
a nonzero vector of 〈p20,p21〉, then θ̂ stabilizes 〈p20,p21〉. Moreover, one of the
following statements holds.

(i) θ ′ stabilizes the 1-spaces 〈(w̄1 + δv̄1) ∧ (w̄2 + δv̄2) ∧ (w̄3 + δv̄3)〉 and
〈(w̄1 − δv̄1) ∧ (w̄2 − δv̄2) ∧ (w̄3 − δv̄3)〉 of

∧3
V ′.

(ii) θ ′ interchanges the 1-spaces 〈(w̄1 + δv̄1) ∧ (w̄2 + δv̄2) ∧ (w̄3 + δv̄3)〉 and
〈(w̄1 − δv̄1) ∧ (w̄2 − δv̄2) ∧ (w̄3 − δv̄3)〉 of

∧3
V ′.

Let Wf denote the subgroup of Sf consisting of all θ ∈ Sf for which θ̂ stabilizes
〈p20,p21〉. Let Uf denote the normal subgroup of Wf consisting of all θ ∈ Wf
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for which case (i) of Corollary 3.14 occurs. Put Ŵf := {θ̂ | θ ∈ Wf } and Ûf :=
{θ̂ | θ ∈Uf }.
Remark 3.15. Let θ be an element of Uf , let µ1 be the restriction of θ̄ to the
3-space 〈w̄1 + δv̄1, w̄2 + δv̄2, w̄3 + δv̄3〉 of V ′, and let µ2 be the restriction of
θ̄ to the 3-space 〈w̄1 − δv̄1, w̄2 − δv̄2, w̄3 − δv̄3〉 of V ′. Then 1 = det(θ̄) =
det(µ1) · det(µ2).

Now let x̄ be an arbitrary vector of 〈w̄1 + δv̄1, w̄2 + δv̄2, w̄3 + δv̄3〉. Since
x̄ + x̄ q ∈ V, we have ȳ := θ̄(x̄ + x̄ q) = θ̄(x̄) + θ̄(x̄ q) ∈ V. Also, ȳ = ȳ q =
[θ̄(x̄ q)]q + [θ̄(x̄)]q. Since there exist unique ȳ1 ∈ 〈w̄1 + δv̄1, w̄2 + δv̄2, w̄3 + δv̄3〉
and ȳ2 ∈ 〈w̄1 − δv̄1, w̄2 − δv̄2, w̄3 − δv̄3〉 such that ȳ = ȳ1 + ȳ2, we necessarily
have θ̄(x̄ q) = [θ̄(x̄)]q. Hence µ2(x̄

q) = θ̄(x̄ q) = [θ̄(x̄)]q = [µ1(x̄)]q.
By the previous paragraph, det(µ2) = [det(µ1)]q. If det(µ1) = a + bδ, then

det(µ2) = a − bδ and, since det(µ1) · det(µ2) = 1, we have a2 − b2d = 1.
Conversely, let a, b ∈ Fq such that a2 − b2d = 1. Then the element of GL(V )

determined by

v̄1 �→ a · v̄1 + b · w̄1, w̄1 �→ bd · v̄1 + a · w̄1,

v̄2 �→ v̄2, w̄2 �→ w̄2, v̄3 �→ v̄3, w̄3 �→ w̄3

determines an element of Uf for which the corresponding value of det(µ1) is equal
to a + bδ.

Lemma 3.16. Let a1, a2, b1, b2 ∈ Fq such that (a1, a2) �= (0, 0) �= (b1, b2). Then
the 1-spaces 〈a1p21 + a2p20〉 and 〈b1p21 + b2p20〉 belong to the same Ûf -orbit if

and only if
(
a2

1 − a2
2
d

)(
b2

1 − b2
2
d

)
is a square.

Proof. By Lemma 3.12,

a1p21 + a2p20 =
(
a1

2
+ a2

2d
δ

)
· (w̄1 + δv̄1) ∧ (w̄2 + δv̄2) ∧ (w̄3 + δv̄3)

+
(
a1

2
− a2

2d
δ

)
· (w̄1 − δv̄1) ∧ (w̄2 − δv̄2) ∧ (w̄3 − δv̄3)

and

b1p21 + b2p20 =
(
b1

2
+ b2

2d
δ

)
· (w̄1 + δv̄1) ∧ (w̄2 + δv̄2) ∧ (w̄3 + δv̄3)

+
(
b1

2
− b2

2d
δ

)
· (w̄1 − δv̄1) ∧ (w̄2 − δv̄2) ∧ (w̄3 − δv̄3).

By Remark 3.15, the 1-spaces 〈a1p21 + a2p20〉 and 〈b1p21 + b2p20〉 belong to
the same Ûf -orbit if and only if there exist a λ ∈ F

∗
q and c1, c2 ∈ Fq satisfying

c2
1 − c2

2d = 1 such that
( a1

2 + a2
2d δ

) · (c1 + c2δ) · λ = b1
2 + b2

2d δ. If c ′
1 and c ′

2 are

the unique elements of Fq such that
( a1

2 + a2
2d δ

)
(c ′

1 + c ′
2δ) = b1

2 + b2
2d δ, then one

readily verifies that b2
1 − b2

2
d

= (
a2

1 − a2
2
d

)
((c ′

1)
2 − (c ′

2)
2d). It now follows that
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〈a1p21 + a2p20〉 and 〈b1p21 + b2p20〉 belong to the same Ûf -orbit if and only if(
a2

1 − a2
2
d

)(
b2

1 − b2
2
d

)
as a square.

Lemma 3.17. There are two Ûf -orbits on the set of 1-spaces of 〈p20,p21〉.
Proof. If a1 = 1 and a2 = 0, then a2

1 − a2
2
d

= 1 is a square.
Now, choose a1 ∈ F

∗
q . Then there exist a2, a3 ∈ F

∗
q such that da2

1 = a2
2 + a2

3 .

Then a2
1 − a2

2
d

= a2
3
d

is a nonsquare.
The claim now follows from Lemma 3.16.

Next we will construct a particular element θ̂∗ of Ŵf \ Ûf . Let A,B ∈ F
∗
q such

that
(
A
B

)2 + (
1
B

)2 = d (hence A2 − B2d = −1), and consider the following map
θ∗ of Sf : 



v̄1 �→ A · v̄1 + B · w̄1,
w̄1 �→ −Bd · v̄1 − A · w̄1,
v̄2 �→ A · v̄2 − B · w̄2,
w̄2 �→ Bd · v̄2 − A · w̄2,
v̄3 �→ A · v̄3 + B · w̄3,
w̄3 �→ −Bd · v̄3 − A · w̄3.

Then one readily verifies that θ∗ ∈Wf \Uf . Moreover, θ̂∗(p21) = Ap21 + Bdp20.

Proposition 3.18. (i) If −1 is a nonsquare, then Ŵf has one orbit on the set of
1-spaces of 〈p20,p21〉.

(ii) If −1 is a square, then Ŵf has two orbits on the set of 1-spaces of 〈p20,p21〉.
Proof. Since Ûf is a normal index-2 subgroup of Ŵf , we can conclude as follows.

• If 〈p21〉 and 〈θ̂∗(p21)〉 belong to the same Ûf -orbit, then θ̂∗ stabilizes the two
Ûf -orbits; in this case, Ŵf has two orbits on the set of 1-spaces of 〈p20,p21〉.

• If 〈p21〉 and 〈θ̂∗(p21)〉 belong to different Ûf -orbits, then θ̂∗ interchanges the
two Ûf -orbits; in this case, Ŵf has one orbit on the set of 1-spaces of 〈p20,p21〉.

Now 〈p21〉 and 〈θ̂∗(p21)〉 belong to the same Ûf -orbit if and only if(
12 − 0

d 2

)(
A2 − (Bd)2

d

)
= A2 − B2d = −1

is a square. The proposition follows.

4. Proof of the Fusion Theorem

Since Ŝf is normal in Ĝf , it follows that if two Ŝf -orbits were to fuse via σ̂ ∗ or T̂γ ,
γ ∈ Aut(Fq), then they must have the same size. When −1 is a nonsquare there
are no such possibilities. When −1 is a square it could be that the orbits with rep-
resentatives P18 and P19 fuse and that the orbits with representatives P20 and P21

also fuse. We show that this is indeed the case.
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Suppose then that −1 is a square. Now σ̂ ∗(p1 + p8) = p1 + d 3p8 and d 3 is a
nonsquare. The points P19 = 〈p1+dp8〉 and 〈p1+d 3p8〉 are in the same Ŝf -orbit.
So, in this case we get the fusion of the Ŝf -orbits with representatives P18 and P19.

We also show that the orbits with representativesP20 andP21 fuse. Before doing so,
observe that the points P21 = 〈p8 +dp2 +dp3 +dp5〉 and 〈p1+dp4 +dp6 +dp7〉
are in the same Ŝf -orbit. Let σ(v̄i) = w̄i and σ(w̄i) = −v̄i for i = 1, 2, 3; then
σ̂(p1 + dp4 + dp6 + dp7) = p8 + dp2 + dp3 + dp5, from which the claim fol-
lows. Now σ̂ ∗(p20) = σ̂ ∗(dp1 +p4 +p6 +p7) = dp1 + d 2p4 + d 2p6 + d 2p7 =
d(p1 + dp4 + dp6 + dp7) and therefore σ̂ ∗(P20) = 〈p1 + dp4 + dp6 + dp7〉 is
in the Ŝf -orbit of P21. This completes the proof of the Fusion Theorem.
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