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I. Introduction

We are interested in the complexity of real-valued polynomials that are defined on
real Euclidean space R" and are constant on a hyperplane. This issue arises as a
simplified version of a difficult question in CR geometry, which we discuss shortly
and also in Section VI. We intend to fully address the CR issues in a subsequent
paper.

Let H denote the hyperplane in R” defined by {x : s(x) = }_/_ x; = 1}. We
write R[x] = R[xy, ..., x,] for the ring of real-valued polynomials in n real vari-
ables. Suppose p € R[x] and that p is constant on H. How complicated can p be?
Two possible measurements of the complexity of a polynomial are its degree d and

the number N of its distinct monomials. We always have the standard estimate

n+d
<
V()
which estimates d from below. Even when p is constant on H, no upper estimate
for d in terms of N is possible without additional assumptions. For example, for
d > 2 consider

p(x) =xls(x) — x4 1L )

It is evident that p = 1 on H, that p has n + 2 distinct monomials, and that its de-
gree d can be arbitrarily large. On the other hand, such degree estimates become
possible when we assume that n > 2 and that the coefficients of p are nonnega-
tive. We prove such results in this paper.

Before describing our results we briefly discuss the motivation behind them; see
Section VI for additional information. In a future paper we will say more about
this connection with CR geometry. Let f: C" — C¥ be a rational mapping such
that f maps the unit ball in its domain properly to the unit ball in its target. It fol-
lows that f maps the unit sphere in C” to the unit sphere in CV. For n > 2, the
work of Forstneric [F1] implies that the degree of f is bounded in terms of n and
N. The bound in [F1] is not sharp, and finding a sharp bound seems to be difficult.
Meylan [M] has improved the bound when n = 2.

The problem simplifies somewhat by assuming that f is a monomial mapping—
that is, a polynomial mapping for which (after a coordinate change if necessary)

Received September 30, 2006. Revision received April 2, 2007.

693



694 JouN P. D’ANGELO, JiRif LEBL, & HAN PETERS

each component is a monomial. The condition || f(z)||*> = 1 on ||z||*> = I then
depends upon only the real variables |z; |2, ey lZn |2, and all coefficients involved
appear as |c|? for complex numbers c. The relationship between the degree of f
and the domain and target dimensions then becomes the combinatorial issue de-
scribed in Problem 1.

We need to consider various subsets of R[xy, ..., x,]. Let J(n) denote the sub-
set of polynomials p in R[xy,...,x,] for which p(x) = 1 on the hyperplane H.
The set [J(n) is closed under multiplication, convex combinations, and the opera-
tion X described in Section I1. Let P (n) denote those polynomials in R[x, ..., x,]
whose coefficients are nonnegative. The set P(n) is closed under addition and mul-
tiplication. Let P(n, d) denote the subset of P(n) whose elements are of degree d.
The crucial sets for us are H(n) and H(n,d):

H(n) = J(n) NP(n),
H(n,d) = J(n)NP(n,d).

Thus the elements of H(n,d) are polynomials of degree d in n real variables,
with nonnegative coefficients, and whose values are 1 on the set ) xj=1TForpe
R[x], we write N(p) for the number of distinct monomials occurring in p. Our
goal is to prove sharp estimates relating the degree of p to N(p) when p € H(n).

PROBLEM 1. Assume n > 2. For p € H(n), find a sharp upper bound for d(p) in
terms of N(p) and n.

There is no such upper bound when n = 1, as we note in Section II. Whenn = 2,
the sharp upper bound is given by d(p) < 2N(p) — 3, a result from [DKR] also
discussed in Section II. For n > 3, the first author has conjectured the bound
N(p) -1
n—1 "~
Example 4 provides polynomials of each degree where equality holds in (3).
In Proposition 4 we pull back to the two-dimensional case via a Veronese map-
ping to obtain a general but crude bound. For n > 2 and p € H(n,d) we obtain

2N(p) -3

d(p) < ? “)

This result is not sharp unless n = 2. In Section IV we improve (4) by pulling
back via the optimal mappings in two dimensions. In Theorem 1 we obtain
2n(2N(p) —3) - 42N(p) —3
3n2—-3n—-2 3 2n-3

In Theorem 2 we prove our main result: for n sufficiently large compared with
d, the estimate (3) holds, and we can find all polynomials for which equality holds
in (3). We remark and later demonstrate that, when n = 3 (for example), there are
additional polynomials for which equality holds. Hence it is reasonable to think
of Theorem 2 as a stabilization result: certain complicated issues arise in low di-
mensions but become irrelevant as the dimension 7 rises. Corollary 2 also lends

d(p) < (3)

d(p) =

&)
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support to the conjecture. When n > 3 we show that the conjecture holds for de-
gree up to 4, and we also show that the conjecture holds when N < 4n — 3.

This paper may be briefly summarized as follows. In Theorem 1 we prove a gen-
eral bound that is not sharp unless n = 2. Lemmas 4 and 5 show how to sharpen
that bound in specific situations. In Corollary 2 we prove a sharp bound for all n
when either d < 4 or N < 4n — 3. In Theorem 2 we establish the sharp bound
when 7 is sufficiently large given d.

We close this introduction with one additional comment. When p € J(n), the
function
p—1
s—1
is a polynomial; its coefficients need not be nonnegative even if p € H(n). The
polynomial Q plays a crucial role in the proof in two dimensions and thus plays an
implicit role here. Perhaps some of our results can be better understood in terms

of O(p).

ACKNOWLEDGMENTS. The first author posed Problem 1 at the workshop on CR
Geometry held at MSRI in July 2005; the other two authors attended that work-
shop and began working on it at that time. All three authors acknowledge MSRI.
The authors obtained one of the results here and put the finishing touches on this
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thors thus acknowledge AIM. The first author also acknowledges NSF Grant no.
DMS-0500765.

Q(p) = (6)

I1. The Situations in One and Two Dimensions

The situation in one dimension is not interesting, so we dispense with it now and
assume thereafter that n > 2. When n = 1, observe that p € H (1) when p has
nonnegative coefficients and p(1) = 1. The particular polynomial p(x;) = x{ lies
in H(l,d), and N(p) = 1. Furthermore, for any fixed value of N, we can find a
polynomial p of arbitrarily large degree with N(p) = N. Hence no upper bound
for d(p) is possible.

When n = 2, a sharp result is known [DKR].

THEOREM 0. Let p be a polynomial in two real variables (x, y) such that

(1) p(x,y) =1whenx+y=1,and
(2) each coefficient of p is nonnegative.

Let N be the number of distinct monomials in p, and let d be the degree of p. Then
d < 2N —3. Furthermore, for each N > 2 there exists a polynomial p, satisfying
(1) and (2) and whose degree is 2N — 3.

The estimate d < 2N — 3 can of course be rewritten N > dzi The proof of

Theorem 0 shows that a slightly stronger conclusion holds. If p satisfies (1) and
(2) then p must have at least % mixed terms (those containing both x and y) and
at least two pure terms.
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There is an interesting family of polynomials providing the sharp bound in
Theorem 0. The polynomials in this family have integer coefficients, are group-
invariant, and exhibit many interesting combinatorial and number-theoretic prop-
erties. We mention for example that p,(x, y) = x¢ + y? if and only if d is prime.
See [D1; D2; D3; D5; DKR] for this fact and much additional information. Here
is an explicit formula for these polynomials for d odd:

x2+4y)d+(x—‘/x2+4y)d
2 2 '

We also provide a recurrence formula relating these polynomials as the degree
varies. Put go(x,y) = x and g;(x, y) = x> + 3xy. Define g;, and then p,;; by

paxy) = yi + (" * ™

G2 (x,y) = (X% +20) g1 (x, ) — y2g(x, y),
2k+1

®)

Pak+1(x,y) = gr(x,y) +y

The equations in (8) determine the polynomials in (7). For odd d, the polyno-

mial defined by (7) has precisely d# terms and so the bound in Theorem O is

sharp. We can obtain a second sharp example by interchanging the roles of x and

y. Other examples exhibiting the sharp bound exist for some but not all N. See
Example 3 where N = 5.

Each pj, 4 is group-invariant; we have Por1(@x, w?y) = par41(x,y) when-
ever w is a (2r 4 1)th root of unity. There are analogous group-invariant polyno-
mials of even degree, but these have a single negative coefficient and will not be
discussed in this paper.

The proof of the inequality d < 2N — 3 in Theorem 0 is quite complicated. It
relies on an analysis of certain directed graphs arising from the Newton diagram
of the polynomial Q(p) and their interaction with Proposition 1.

We close this section by indicating how one can use Theorem 0 to study the
higher-dimensional case. Let ¢: R> — R” be a polynomial mapping, and sup-
pose that ¢ maps the line defined by # + v = 1 to the hyperplane H. If p € J(n),
then the composite map ¢*(p) is in J(2). To see this, observe that foru + v =1
we have

P*(p)(u,v) = p(Pu,v)) =1 ©))
because p = 1on H.

We will apply this idea of pulling back to two dimensions for various functions
¢. We give some examples. Assume n > 3. Set x; = u and x; = v for some i, j
with i # j. Otherwise, set x; = 0. Another possibility is to set k of the variables
equal to u/k, set [ of the other variables equal to v/l, and set the remaining vari-
ables equal to zero; in these cases, ¢ is linear. In the proof of Proposition 4 we let
¢ be a Veronese mapping, where ¢ is homogeneous of degree > 1. One can also
gain information by pulling back via more complicated mappings (see Sections
IV and V for details).

ITI. General Information

We begin with several formal algebraic observations. Suppose that p € 7 and that
u is an arbitrary polynomial. We define a polynomial X, (p) by
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Xu(p)=p—u+su. (10)

When p € J we can always write p = (1 — Q) + sQ with Q as in (6), so p =
Xo(1). In general we will drop the dependence on u from the notation and write
X(p) for X,,(p). The following simple but crucial result suggests decomposing
elements in A using the operation in (10).

LEmMA 1. Suppose that p € J and that u is an arbitrary polynomial. Define
X(p) by (10). Then X(p) € J. Suppose p € H and also that both u and p — u are
inP. Then X(p) e H.

Proof. Tt is immediate from (10) that X(p) = p —u +u = ponthesets = 1;
hence X(p) € J. Suppose that both # and p — u are in P and that s € P. Since
P is closed under addition and multiplication, it follows that X(p) € P. Since we
have also shown that X(p) € 7, it follows that X(p) € H. O

Our concern with nonnegative coefficients leads us to make the following defi-
nition.

DEFINITION 1. Suppose that p, g € P(n). We say that g C pif p — g € P(n).
In other words, g C p holds if and only if both g and p — g have nonnegative
coefficients. We call g a subpolynomial of p.

When u is a subpolynomial of p, Lemma 1 tells us that the operation X maps H to
itself (though of course it need not preserve degree). The operation defined by re-
placing p with X(p) is a simple special case of a tensor product operation defined
in [D1].

DEFINITION 2. An element p of H(n,d) is called a generalized Whitney map-
ping if there exist elements go, ..., g4 of H(n) such that:

(1) go=1and g; = p;

(2) for each j, the degree of g; is j;

(3) foreach j > 0, we have g; = X(g;_1).

We say that g, ..., g4 defines a Whitney chain from 1 to p.

At each step along the way of a Whitney chain, we replace g; with g; — u + su,
where u has degree j and hence g; has degree k for all k.

EXAMPLE 1. The polynomial x + xy + xy? + y* is a generalized Whitney map-
ping with d = 3. We have

go=lgi=x+y—>x+yx+y) =g =x+xy+y’
> x4xy+y(x+y) =g =p=x+xy+xy’+y>. (D)
We can rewrite (11) using the operation X:

x+xy+xy’ 4+ = X(x +xy + yH) = X(X(x + y)) = X(X(X(D))).

LEmMMA 2. Suppose that p € H(n,d) is a generalized Whitney mapping. Then
N(p)=dn—-1)+1.
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Proof. We induct on d. When d = 0 we have p = 1 and the conclusion holds.
Suppose that we know the result in degree d — 1. Then p = X(g) = g — u + su,
where g is of degree d — 1. By the induction hypothesis, N(g) > (d —1)(n—1)+1.
Suppose first that u consists of a single monomial 7. Then m is eliminated in pass-
ing from g to g — u, but m gets replaced with the » new monomials xm, ..., x,m.
Therefore,

N(X(g)=>N@g+n—-1>d-1n-1)+14+n—-1=dn-1)+1. (12)

If u consists of several monomials then, because the coefficients are nonnegative,
(12) remains true. U

We make a few simple remarks. First, the operation in (10) can be generalized
by replacing s with any element of J. Next, we will show that not all elements
of H(n) are generalized Whitney maps. On the other hand, if we allow negative
coefficients along the way then all such maps can be built up in this fashion. We
provide a simple example.

ExAaMPLE2. Consider p(x,y) = x3+3xy+y>. Then p € H(2,3). We can write
p = X3(X2(X;(1))) as follows:

Il s s> =3xy+s>—3xy

> 3xy 4+ (5% — 3xy)s = 3xy + x>+ y° = p(x, y).

In the notation of (10), we have g = s? and u = s> — 3xy. In using s> — 3xy we
have introduced a negative coefficient that was eliminated by the final multiplica-
tion by s. One can easily show that we cannot construct p by iterating this process
while keeping all coefficients nonnegative. As stated previously, if we allow neg-
ative coefficients then all elements of H(n) are obtained via iterations analogous
to those in Example 2. We now prove this assertion.

Proposition 1 describes all elements of H(n) via undoing the operation in (10).
Proposition 2 uses only the operation (10) but requires negative coefficients at in-
termediate steps. In proving these results it is convenient to expand polynomials
in terms of their homogeneous parts. When p is of degree d we write

d
pP=_pi (13)

j=0
where each p; ishomogeneous of degree j and we allow the possibility that p; = 0.

PROPOSITION 1. Suppose p € H(n,d). Then there is an integer k such that
d
st=X4py =) ps (14)
j=0

Proof. Write p = ) p; as in (13). Suppose first that p is not already homoge-
neous. Itis evident for each j that p; C p. Let v be the smallest index for which
py # 0. Then p, is a subpolynomial of p and we may consider X(p) defined as
in (10) by
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X(p)=(p—pv) +spy.

Then X(p) also lies in H(n,d), and X(p) vanishes to higher order than p does.
We iterate Lemma 1 in this way until we obtain the polynomial

d
h= st—fp,-, (15)

which lies in H(n,d). Now h is homogeneous of degree d. The only homoge-
neous polynomial of degree d that is identically equal to unity on the hyperplane
{x : s(x) = 1} is s%. Therefore, (14) holds. O

Formula (14) holds even when p € 7, and we obtain the following version where
negative coefficients are allowed.

PrOPOSITION 2.  Suppose p € J(n,d). Then there is a finite list of maps X, . .., X;
from J to itself of the form

Xiw)=@—r)+sr (16)

such that
p:XtOthlo"'oXI(l)‘ (17)

Proof. We induct on the degree. When the degree is zero, the only example is p =
1. Suppose that the result holds for all elements of J(n,k) fork <d —1. Let p e
J(n,d). We expand p into its homogeneous parts as before and then use (14) to
rewrite the highest-order part p;. We obtain for a homogeneous polynomial » of
degree d — 1 that

p= pitri=, Zp]

ol

pj+sr=(p— pa) +sr. (18)
j=0
Note that p — p; +r € J(n,d — 1) and hence, by the induction hypothesis, can
be factored as in (17). Since

p=((p—p)+sr=X(p—pa+r), 19)

the induction step is complete. O

We repeat one subtle point regarding Proposition 2. Given p € H(n,d), it follows
from (19) that there exists an r of degree d — 1 such that p = u + sr. In general,
neither  nor # must have nonnegative coefficients. The next mapping provides an
example where negative coefficients arise and where the sharp bound from Theo-
rem ( arises without group invariance.
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ExampLE 3. Put p(x,y) = x7 +y" + x5y 4+ 1xy5 + Zxy. Then p € H(2,7).
Following the proof of Proposition 2, we obtain

p(x,y) = p2(x,y) + ps(x,y) + p7(x,y)
= pa(x,¥) + pe(x, ) + (x + )’

— (x +3)°pa(x,y) — (x + ¥)pe(x, y)
and hence

p=p2+ pe+s(s®— pas* —pe) =p—p7+sr, (20)
where r = s® — prs* — pg. Expanding r yields
r(x,y) =x — %y +xty? — 1y 412yt —xy’ S, @21

which has negative coefficients. Furthermore, (p — p7) + r has a negative coef-
ficient.

The operation X replaces u with u — r + sr. When we want to remind the reader
that we want both r and u — r to have nonnegative coefficients, we write W instead
of X. To repeat, one cannot realize all elements of (7) by successive application
of W. Let W denote the subset of H that can be obtained by repeated application
of the operation W beginning with the constant function 1. We give one more sim-
ple example. Let n = 3 with variables (x, y, z). Applying W always to the “last”
monomial, we obtain

W3 D) =W (x+y+2) =Wk +y+xz+yz+2%)
=x+y+xy+xz+xz®+y?+27 (22)

We next give, without proof, another example of an element of #(n) that is not
in W:
x4 3xy 4 3xz + y® 4 3y%z + 3yz> 4+ 27 (23)

The polynomial defined by (23) occurs also in the discussion after Proposition 4.
It plays an important role because it satisfies the sharp estimate from Problem 1,
yet it is not in W. In some sense it can exist because the dimension 3 is too small
for stabilization to have taken place. Observe that both (22) and (23) are of de-
gree 3, and each has seven monomials.

It is easy to see that polynomials formed by the process in (22) have N =
d(n — 1) + 1 terms. The first author has conjectured, for n > 3, that the inequality

N>dn—-1)+1 (24)

always holds. Theorem 2 yields this inequality for all n that are large enough rel-
ative to d. Given d, for such sufficiently large n we prove a stronger result by
identifying all polynomials for which equality holds in (24); these are precisely
the generalized Whitney polynomials. The stronger assertion fails in dimension 3,
but we believe that (24) still holds.

We next observe that there are always at least n terms of degree d.
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LeEmMA 3. Suppose f € R[xy,...,x,] and f is not identically 0. Then the poly-
nomial sf has at least n monomials.

Proof. We claim first it suffices to assume that f is homogeneous. Assuming that
the homogeneous case is known, we then write f = f’ + f;, where f; consists
of the highest-degree terms. Then sf = sf’ + sf,;, where sf,; has at least n terms.
All the terms in sf” are of lower degree and hence cannot cannot cancel the terms
in sf,;. Thus the claim holds.

To prove the homogeneous case we proceed by induction on n. When n = 1the
result is trivial. Suppose n > 2 and suppose the result is known in n — 1 variables.
Given a homogeneous f in n variables, we write

X
F0 = xd (e PENT) = 6O v D, (25)
Xn
It follows that
s Fx) =1+ + Y1 + DX Y, D). (26)

The number of terms in sf is the same as the number of terms in the right-hand
side (RHS) of (26) after dividing by x¢*!. Hence the number of terms in sf is the
number of terms in

Xn—1

n

i+t y-D SOty D+ FO1 - Yu-1, D (27)
The first expression in (27) has at least n — 1 terms (by the induction hypothesis),
and the second expression has at least one additional term. UJ

COROLLARY 1. Ifd > Oand p € J(n) has degree d, then p has at least n terms
of degree d.

Proof. From (19) it follows that p = p’ 4+ p;, = p’ + srs—1. By Lemma 3, sry_4
has at least n terms of degree d. UJ

We will close this section by proving Proposition 4. First we introduce a Veronese
mapping ¢,_;: R> — R" defined by

Gn1(u,v) = (u”_l,..., (n ]_ l)ujv”‘l‘j, ...,v"‘l). (28)

The binomial theorem shows that the sum of the components of ¢,,_ is (u +v)" .
Therefore, ¢,,_; maps the line given by u + v = 1 to the hyperplane H.

Let p: R" — Rbe a function. The pullback ¢;_,(p) is the composite function
defined on R? by (u,v) — p(¢,_1(u,v)). We easily obtain the following sim-
ple facts.

ProrosITION 3. If p € H(n,d), then ¢)_,(p) € H(2,d(n — 1)). Furthermore,
N(é,_1(p)) < N(p).

Proof. That ¢} _,(p) has degree (n — 1)d follows since ¢,_; is homogeneous and
since the positivity of all coefficients prevents cancellation. By the comment after
(28), we have
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¢ (), v) = s(pp_1(u,v)) = (u +v)""!

and thus ¢,_; maps the line given by u + v = 1 to the hyperplane H. Since p =
1on H, we see that ¢;_,(p) = 1onu 4+ v = 1. Since all the coefficients are non-
negative, it follows that ¢”_,(p) € H(2,d(n —1)). Finally, we cannot increase the
number of terms by a monomial substitution and so N(¢;_,(p)) < N(p). O

The proof of Proposition 3 uses the nonnegativity of the coefficients. For exam-
ple, the pullback of the polynomial x7 — 4x;x3 to (u?, 2uv, v?) vanishes. Without
assuming nonnegativity of the coefficients we cannot therefore conclude that the
degree of ¢;_,(p) is (n — 1)d. The same example shows that pulling back via
¢n—1 can decrease the number of terms.

PROPOSITION 4. Suppose p € H(n,d). Then
2N(p) —3

d(p) < a1 (29)

Proof. By Proposition 3 and Theorem 0, we obtain the chain of inequalities
d@,_1(p) _2N@,_(p)) =3 _2N(p) -3
-1 - n—1 - n-—1

which gives the desired conclusion. U

d(p) =

)

The inequality in Proposition 4 is not sharp unless » = 2. When n > 3 the
bound (5) obtained in Theorem 1 is smaller than the RHS of (29). For a given
polynomial we can sometimes obtain a better bound by pulling back via a map-
ping other than the Veronese. We illustrate with a simple example. Define the
mapping p € H(3,7) by

p(x,y,2) =x>+3x(y+2)+(y+2)>

Then d(p) = 3 and N(p) = 7. Pulling back via the Veronese mapping ¢ given
by ¢ (u,v) = (u? 2uv,v?) gives an element of H(2,6) with seven terms. The
inequality

d(¢*(p)) =6 <11 =2N(¢"(p)) -3

is not sharp. Pulling back via the mapping given by ¥ (u,v) = (i, V3uv, v3)
yields an element of H(2,9) with six terms; we therefore obtain the sharp result

d*(p) =9=2N¥"(p)) — 3.

This discussion motivates the technique used to prove Theorem 1.

IV. Optimal Polynomials

We call an element p of H(n,d) optimal if, for every f € H(n,d), we have
N(f) = N(p). By Theorem 0 we know that, for d odd, p € H(2,d) is optimal
if and only if d = 2N(p) — 3. The polynomials in (7) are optimal. We hope to
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prove when n > 3 that p € H(n) is optimal if N(p) = (n — )d(p) + 1. We can
easily exhibit polynomials in H(n,d) for n > 3 satisfying this equality.

ExaMPLE 4. Lets'(x) = Y i~ x;. We define g4 by
d—1
ga(x) = xg +5'(x) Y x\. (30)
k=0
It is evident from (30) and the finite geometric series that g; € YW and N(g,) =
(n—-1d+1.

REMARK. For a given n and d there are only finitely many optimal examples, but
typically there is more than one. When n = 2, for example, the first author has
shown the following: There are infinitely many d for which there exist optimal ex-
amples other than those given in (7) and those obtained by interchanging the roles
of x and y. We omit the proof here. Example 3 gives such an optimal polynomial
of degree 7.

As mentioned before, it is possible to improve Proposition 4 by pulling back to the
optimal examples in two dimensions. We illustrate by establishing the next two
lemmas.

LeEmMA 4. Supposen > 2 and p € H(n,d). If p contains a monomial in one or
two variables of degree d, then

2N -3
2n—3"

d =<

(3D

Proof. After renumbering we may assume that p contains either x{’ or xf’xé’ , where
a+b =d. Set D =2n — 3. We pull back using the optimal map ¢ induced by
pp as defined in (7). Order the variables such that x; = u” and x, = v?; in either
case, we are guaranteed a term in ¢*(p) of degree Dd. Following reasoning sim-
ilar to the proof of Proposition 4 we obtain

d(p) = d(¢*(p)) < 2N(9*(p)) =3 < IN(p) =3 _ 2N - 37
D D D 2n —3
which gives (31). O

(32)

By assuming that the highest-degree part of p contains monomials involving few
of the variables, we can generalize the preceding proof. We give two of several
possible versions.

LEMMA 5. Suppose n > 2 and p € H(n,d). If p contains the monomial m =
xi' e x(* of degree d, where k > 2, then the following inequalities hold:

dipy < N2k o)
P = k1

2N =3+ 3% (= 2)a
d(p) < 2=l =D, (34)

2n —3
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Proof. First we prove (33). We set x; = ﬁ for 2 < j < k. In doing so we re-
place k — 1 terms with one term, thus killing kK — 2 terms. We also decrease the
number of variables by k — 2. We now pull back as in the proof of Lemma 4 (or
use Lemma 4 directly) to see that

XN —(k—2))—3 2N —2k+1
AP = 2y =3 ~ m—2kt1

Thus we have proved (33).

The proof of (34) also involves pulling back to the optimal polynomials in two
dimensions. We first set D = 2n — 3 and then consider the mapping ¢ induced
by pp as defined in (7), where the coordinates are ordered such that

(x1, %2, X3, X4, ...) = @202, cuP v, cou® % ) = ¢ (u,v).

Pulling back the monomial m then guarantees a term of degree
k k
a\D+a,D+a3(D—1)+---+ap(D—k+2)= Dzaj —Z(j —2)a;
j=1 j=3

in ¢*(p). Since the sum of the a; is d, we obtain

k
dD = (j —2)a; <d(¢*(p)) <2N(@"(p)) —3 <2N(p) -3 (35)

j=3
and hence
AN(p) =3+ Y455 —Da;  2N(p) =3+ X550 - g
d(p)=d < = .
D 2n —3
(36)
This proves (34) and hence the lemma. O

The proof of (34) when k = 2 is essentially the same as the proof of Lemma 4.
The proof of (34) gives the strongest result by taking D as large as possible; D =
2n — 3 is the largest number for which ¢ takes values in n-space, as required if
the proof is to make sense. Thus the choice of D itself relies on Theorem 0.

Letus write £ = 25;3 (J —2)a;. Our next result provides a general bound for
d(p) in terms of N(p) in all cases. We do so by estimating the excess E in terms
of d and n. From Theorem | we obtain the weaker asymptotic bound

42N(p) -3
d(p) < -222P) 2
(P)=3773,3

asn — oo. Our main result, Theorem 2, provides the sharp asymptotic result d <
fl’f’ll when n is large relative to d. On the other hand, Theorem 1 holds for all n;
its proof is much simpler, but the result is sharp in two dimensions only.

THEOREM 1.  Suppose p € H(n,d). Then

2n(2N(p) =3) _42N(p) =3

d <
(P)= 3 53,2 =3 2n 3

(37
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Proof. We begin with the estimate

AN(p) =3+ * . (j —2)a;
d(py < ) , 2= =2 (38)
n—3

from Lemma 5. For notational ease we rewrite (36) as

E
d <F+ —, 39
(p) = F+ D (39)
where F = 222]__2 We may assume k > 2 and that a; > ap > --- > ay. Then
k . k
E 2i=x(G—-2a 4 d (k-1
D D < pr = Dk( 2 ) (40)

j=3
Since k < n, we obtain from (40) the upper estimate

E d /m—1

s=-—("5 ) =cma. 4D
where the expression c(n) is defined by

("2")

==’ 42
= a3 2

One easily shows that c¢(n) < 1. Therefore, (39) yields

E
ﬂm§F+5§F+dMﬂm
and hence
2N -3 1 2n(2N(p) —3)

d(p) < = = 43)

F = = .
1—c(n) 2n —31—c(n) 3n2 —-3n-2

We have bounded d in terms of N and n. It is elementary to verify for n > 2 that

2n - 4 )
3n2—3n—2 " 32n-3)’
as a result, the inequality on the far RHS of (37) holds. U

We pause to give the following explicit optimal example:
p(x,y,2)=x+y+22+xz+y 2+ vy +xyz(x +y +2). (44)

The polynomial in (44) is of degree 4, but each term of degree 4 involves all three
of the variables and thus Lemma 4 is not useful. Note that N(p) = 9. By Propo-
sition 5, nine is the smallest possible number of terms for an element in (3, 4).

Before turning to Proposition 5, which verifies conjecture (3) of Problem 1 for
degree up to 4, we briefly discuss one-parameter families of mappings. The fol-
lowing proposition will be proved and developed in [L]. A one-parameter family
of polynomials is defined by

pa(x) =) ca(M)x, (45)
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where each map A — c¢,(A) is a continuous function of a real parameter A. One
simple example of a one-parameter family is given by the convex combination
fir = Ap + (1 — A)q of elements p and g of H(n,d). We observed earlier that
fr€H(n,d) as well.

PROPOSITION L. Let p, denote a one-parameter family of elements of H(n,d).
Suppose that N(p;) is constant for t in an open interval. Then p; is optimal for
not.

We next include some information that supports the conjectured sharp bound. The
proofs of the four statements in the following result become increasingly elabo-
rate as the codimension increases. Hence we provide detailed proofs of statements
(0), (1), and (2) but only an outline of the proof of (3). The proofs of (0) and (1) are
easy; the proofs of (2) and (3) first use combinatorial reasoning to make Lemma 4
applicable and then use additional combinatorial reasoning to improve the bound
from Lemma 4 in these special cases. The bounds in this result are interesting in
the context of CR mappings between spheres.

PROPOSITION 5. Suppose p € H(n,d) for n > 3. Then the following state-
ments hold.

©) If N(p) <n,thend = 0.

(D) If N(p) <2n—1,thend < 1.
2) If N(p) <3n—2,thend < 2.
3) If N(p) <4n — 3, thend < 3.

Proof. The contrapositive of (0) is easy. If d > 1 then, by Corollary 1, there must
be at least n distinct monomials of degree d.

We call terms of the form x* pure terms, and we call monomials depending on
at least 2 variables mixed terms. Pulling back to the one-dimensional case in n
ways (by setting n — 1 of the variables equal to zero), we note that there must be
at least n distinct pure terms. If d = 1 then all the terms are pure terms and p =
s. We may therefore assume that d > 2 while proving the rest of the statements.

The proof of (1) proceeds as follows. If no pure term is of degree at least 2 then,
as before, p = 5. We may thus assume that the monomial x| occurs for some a >
2. By setting all variables except x; and x; equal to 0, we see that a mixed mono-
mial x; x must occur for 2 < j < n. Hence we have at least n — 1 mixed terms.
Countlng also the n pure terms shows that N(p) > (n —1) 4+ n, and this yields (1).

If d = 2 then (2) holds; we therefore assume d > 3 when proving (2). We
must show that N > 3n — 2. There are two cases as follows. First, if x{’ is the
only pure term of degree > 1 then p must be equal to x;7(x) + s — x; for some
r(x) € H(n,d). The polynomial r has n — 1 fewer terms than p does, and it must
have degree > 2. Applying (1) shows that N(r) > 2n — I and hence N(p) >
2n —1)+ (n —1) = 3n — 2. Thus (2) holds in this case.

The second case is when at least two pure terms of degree > 2 occur. Hence
we assume that xf occurs as well with b > 2. We then have at least 2(n — 2) + 1
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mixed terms and n pure terms for a total of 3n — 3. We want N > 3n — 2, so as-
sume (by way of contradiction) that there are no other terms. For d > 3 the only
element of (2, d) that has at most three distinct monomials is u® + 3uv + v3.
Hence all pure terms must be of degree 3, and we obtain

P =) "x+3) xxi. (46)
Jj=1 i#]

We claim that the polynomial in (46) is not in H(n, 3) unless n = 2. To verify the

claim we note that p(%, e, %) > 1 when n > 3. Thus (2) holds in this case and

hence it holds in general.

To prove (3) we assume that N < 4n — 4. If Lemma 4 does not apply, then
there is no term of degree d involving at most two of the variables. Hence we
must have at least n terms of top degree, n additional pure terms, and (as before)
at least 2n — 3 additional mixed terms involving two variables. The total is 4n — 3
and thus N > 4n — 3. We may therefore assume Lemma 4 applies; in particular,
d <4

We proceed by contradiction. Assume d = 4. We consider the cases N < 4n—5
and N = 4n — 4 separately. If N < 4n — 5, we obtain a contradiction as follows.
By Lemma 4,

d(2n —3)+3 <2N.

Including the information on N and d yields
42n —-3)+3<d@2n—-3)+3 <2N <2(4n -)5),

from which we obtain the contradiction —9 < —10. Thus, for N < 4n — 5 we
have d < 3.

The remaining case is when N(p) = 4n — 4 and d = 4. There are two sub-
cases. First suppose that n > 4. As argued previously, we can assume that there
exist pure monomials in x; and x, of degree > 1. Setting in turn x; = 0 and x, =
0 yields polynomials in n — 1 variables with at least n fewer terms. Hence these
polynomials must have degree < 3. The top-degree terms must be divisible by
x1x2 and so ps = s(x)x1x29(x), where g is homogeneous of degree 1. We can
easily check that ¢ must have all positive coefficients, and we can undo an opera-
tion X to reduce to a previous case.

The other subcase is whenn = 3, N(p) = 4n — 4 = §, and d = 4. We claim
that no polynomial in (3, 4) has exactly eight distinct monomials. There are only
finitely many possibilities that need to be checked, and we outline how to do this
by hand.

If all terms of degree 4 depend on three variables, then we undo and reduce to
a previous case to obtain a contradiction. After renaming variables, we consider
the polynomials p(x;,x2,0), p(x1,0,x2), and p(0, x2,x3). A counting argument
shows that the first two of these must have exactly four terms and be of degree 4,
whereas the third must have three terms and be of degree < 3. By a study of the
two-dimensional case we see that xf must appear. One can then check by hand
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that the only possible configuration of degree-4 terms is xf (x1+x2 + x3), and re-
ducing to a previous case then produces a contradiction. UJ

The following corollary supports the conjectured sharp bound for degree < 4. We
believe that these bounds are sharp for all degrees when n > 3. In the next section
we establish this result when » is large enough compared with d.

COROLLARY 2. Supposen > 3 and p € H(n,d). Ifd < 4 or N(p) < 4n — 3,
then the following two estimates hold.:
N(p) =dn—-1)+1;
— 47
- N(p) 1. 47)

d
n—1

V. Whitney Mappings and the Proof of Theorem 2

In this section we give conditions under which a polynomial p € H(n,d) lies in
W. By Lemma 2, if p € WNH(n,d) then the desired bound N(p) > d(n—1)+1
holds.

The following theorem is the main result of this paper. It solves Problem 1 when
the domain dimension is large enough.

THEOREM 2. Fix d and assume that n > 2d* + 2d. If pe H(n,d) then N(p) >
(n — 1)d + 1. Furthermore, if equality holds then p € W.

Before proving Theorem 2 we give a simple condition guaranteeing that p € W.
Letx = (x,x,) € R"! x R and define s'(x') := Z_?;llxj. We will say that p is
affine in x, if we can write p(x’,x,) = a(x’) + x,b(x") for some polynomials a

and b.
LEMMA 6. Suppose p € H(n,d) and that p is affine in x,. Then p € W.

Proof. We induct on the degree d. When d = 1 the result is obvious. Suppose
d > 2 and that the result is known for such affine polynomials of degree d — 1.
Assume p(x’,x,) = a(x’)+x,b(x"). By (18) we may write p = (p— pg) +5¥a_1.
Equating the highest part of these expressions for p gives
n—1
ag(x") + x,ba_1(x") = (Z Xj + xn>rd—1(x/)

j=1

= 5" (x)rg_1(x") + xprg_1(x”). (48)

Hence ry_1 = by_; and ay; = s'ry_1. Therefore,
pP=p—pa+sbg_1=X(p— ps+bi1). (49)
Note that p — p; 4+ by_1 € H(n,d — 1). Itis also affine in x,, and hence lies in
W by the induction hypothesis. Thus p € W as well. O

We now prove two simple results that we use in the proof of Theorem 2. The
reader may wish to refer to Examples 1 and 4.
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LEMMA 7. Let p € H(2,d) and suppose that p(x,y) = a(x) 4+ yb(x). Then
N(p) = d + 1. The monomial x? must appear and x’y must appear for each j
with 0 < j < d — 1. Furthermore, p has exactly d + 1 distinct monomials if and
only if

px,y) =x’ 4y 4+ x4 1)

Proof. By Lemma 6 we know that p € WV, and the statement follows by induction
ond. UJ

We define the distance between two monomials m; = xf‘ L.,

xf] - xPr oy

o [
xgm and my, =

S(mimy) =Y |aj — Bjl.
j

For monomials of the same degree, §(m 1, m,) must be even.

LEmMA 8. Let p € H(3,d) and suppose that p(x1,x3,x3) = a(x;,x2) +
x3b(x1,x2). If two monomials mi(xy,x,) and my(xy,x2) of degree d occur in
p(x) with§(my,my) > 4, then p has at least d + 1 distinct monomials that depend
on xs3.

Proof. 1t follows from Lemma 6 that p € VW and from Lemma 7 that p must have
at least one monomial of every degree that depends on x3. Since 6(m,m;) > 4,
there must be at least two monomials of maximal degree that depend on x3, which
gives at least d + 1 monomials. UJ

For the rest of this section we assume that n > 2d? + 2d; in particular, n > 3.
Let p e H(n,d) and N = N(p). We assume both that N < d(n — 1) 4+ 1 and that
p is optimal. We will show that p must be a generalized Whitney mapping and
thereby prove Theorem 2.

Let m; and m, be distinct monomials that occur in p. The main idea of the
proof is to show that §(m, m,) must be equal to 2. Let k be the number of dis-
tinct variables that occur in either m;| or m,. Then 2 < k < 2d. After renaming
the variables if necessary, we may assume that 7| and m, are independent of x;
forj>k+1.

We define new polynomials in H(2,d) and H(3,d):

§ §
Pj(é,xj) = p(E,...,E,O,...,O,XJ’,O,..);
— —
k times
¢ ¢ (50)
P,-j(E,x,-,xj) = p(z,...,z,o, .,O,)C,',O,...,O,XJ‘,O,...>.
—_——
k times

CLAM.  The polynomial P; is affine in x; for each j € {k +1,...,n}.

Proof. Seeking a contradiction, we assume thatk +1 </ < n, that P; is not affine
fork +1 < j </, and that P; is affine for/ +1 < j < n.
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If P; is affine in x; then by Lemma 6 we have
Pi(&,x) = ciE + 2697 % + -+ cabxj + canixj + q(8),

where g is a possibly zero polynomial in & of degree d — 1 or less. If P; is not
affine in x; then by Theorem 0 there must be at least [ ;2] terms.

We will proceed to find a lower estimate for the number of monomials of p, tak-
ing care not to count the same monomial twice. We first count the monomial m.
For each P; with k + 1 < j < we have at least f%} — 1 extra monomials, and
for each P; with 1 < j we have at least d extra monomials.

For P;j withk +1 <i < j <, we know that there must be at least one mono-
mial that depends on x; as well as x; (keep & constant to see this); hence we have
at least (I — k)(I — k — 1)/2 more monomials that we have not already counted.
For the same reason we can count one extra monomial depending on both x; and
x;j for each possible choice k +1 <i <! < j < n, and this yields (/ — k)(n —1I)
more monomials.

When we add the number of all these monomials, the result is

N21+U—MGE%EW—Hl;%:l+M—D)+M—Dd (51)

By assumption, [ > k + 1. If

d+3 I—k—1
(z—k)qu —1+T+(n—l)> > (I —1)d, (52)

then p cannot be optimal; this happens when
(I—-k)d—-1—-k+2n)—-2(—-1)d > 0. (53)

Once we fix k,d, n, the expression in (53) is concave down in [/ and therefore
must achieve a minimum if / = k + 1 or/ = n. We know that 2 < k < 2d and so
obtain two bounds for n:

4d* +3d +1
"= 2 (54)
n > 5d.

Our assumption that n > 2d? + 2d implies both bounds (noting that d > 2). We
have thus proved the Claim. UJ

Proof of Theorem 2. Now suppose by way of contradiction that §(m,m,) is at
least 4. Write m; = []_, x/" and m, = []*_, x;. Renaming the variables again
if necessary, we may assume there exists an integer ¢ such that r; > s; fori =
I,...,tandr; <s; fori =t +1,...,k. It follows from the Claim that, for j =
k+1,...,n, the polynomial P; (as defined in (50)) must be affine in x;.

Let

P( X Xn) (y Y < ‘ X x)
sToXhg e Xp) =Pl S T T T Xkt e X )
Y + n =P t k—t k—rt "

t times k—t times
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It follows that P has two terms of highest degree y"'z"? and y*®'z*? with r; >
s1+ 1and r, < s, — 1. Hence, for every j € {k 4+ 1,...,n}, the polynomial
P(y,z,0,...,0,x;,0,...,0) is a polynomial in three variables that satisfies the
conditions of Lemma 8 and so has at least d + 1 terms that depend on x;. As a
result, P (and thus also p) has at least (d +1)(n —2d) = dn +n — 2d* — 2d dis-
tinct monomials. We assumed that n > 2d? + 2d and so the polynomial cannot
be optimal, which contradicts our assumption. Therefore, §(m,m,) = 2.

By Corollary 1 there exist at least n terms of highest degree. It follows that the
terms of highest degree must equal cs - m for some constant ¢ and some monomial
m of degree d — 1. (Recall that s denotes the sum of the variables.) Thus we can
undo the operation X to obtain a new polynomial of degree d — 1 with exactly n — 1
terms fewer than p. The reason is that p is optimal; undoing the operation X must
create a new term of degree d — 1 (otherwise, multiplying that term by s would yield
a polynomial with fewer terms than p). This new polynomial of degree d — 1 must
again be optimal, because if there existed a polynomial of degree d — 1 with fewer
terms then we could apply operation X to it and again invalidate the optimality of p.

An inductive argument with respect to the degree shows that p must be obtained
by starting with s and repeatedly multiplying one of the highest-degree terms with
s—in other words, p € W. This completes the proof of Theorem 2. O

VI. CR Mappings between Spheres

The results of this paper are closely related to a basic question in CR geometry.
Let f be a rational mapping from complex Euclidean space C" to C", and sup-
pose that f maps the unit sphere $>"~! in its domain to the unit sphere S?¥~!. Can
we give any estimate for the degree of f in terms of n and N? The degree of a ra-
tional map f = p/q is defined to be the maximum of the degrees of p and ¢ when
f is reduced to lowest terms. It is easy to show in this context (see [D2]) that the
degree of f equals the degree of p.

Many of the results described in this section do not begin by assuming that f is
rational. Instead, they assume that f is a proper mapping between balls and then
make some regularity assumptions at the boundary in the case of positive codimen-
sion. By the work of Forstneric [F1; F2], a proper mapping between balls—with
domain dimension at least 2 and with sufficient differentiability at the boundary—
must be a rational mapping. We therefore assume rationality in this section.

We return to the basic question of estimating the degree. As in this paper, if n =
1 then no estimate is possible. Assume next that n > 2. As in Proposition 5, when
N < n we can conclude by elementary considerations that f must be a constant.
For N = n > 2, Pincuk [P] proved that f must be either a constant or a linear frac-
tional transformation and hence must be of degree < 1. Faran [Fa2] showed that
we can draw the same conclusion whenn < N <2n — 2. Whenn =2and N =
2n — 1 = 3, Faran [Fal] showed that, up to composition with automorphisms of
the ball on both sides, the map must be a monomial mapping of degree < 3. Hence
the rational mapping is of degree < 3 in this case. In particular, Faran discovered
the mapping (1>, v/3uv, v?), which is of maximum degree from the two-ball to the
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three-ball and is also group-invariant. In [D2; D3; D5] the first author studied the
group-invariance aspects of CR mappings, discovered the maps (7), and observed
many connections to other branches of mathematics.

Huang and Ji [H; HJ] have investigated aspects of the basic question. For ex-
ample, they have established that, when 3 < n < N = 2n — 1, the degree of a
rational mapping between spheres is at most 2; they have also discovered various
conditions somewhat analogous to those established here for guaranteeing partial
linearity. One striking aspect of their work is that it does not assume rationality
and the regularity assumptions are minimal. All these papers address low codi-
mension. Meylan’s result [M] gives the bound d < NNV=D 5n any codimension for
which the domain dimension # is assumed to be 2. The paper [HIX] includes the
following result: Let f be a rational proper mapping between balls of degree 2; if
f has geometric degree 1, then f is a generalized Whitney map.

The expository paper [D4] includes the relationship of this complexity issue to
a complex variables analogue of Hilbert’s 17th Problem and includes the follow-
ing result. Given a rational mapping p/q: C* — CV that maps the closed unit
ball into the open unit ball, we can find an integer K and another rational mapping
g/q: C" — CK (with the same denominator) such that the mapping (p/q, g/q)
maps S2"~! to §2V+K)~1 We must be able to choose K large enough, and even
for quadratic mappings and n = 2 we must choose K to be arbitrarily large. Thus,
by placing no restriction on the target dimension, we can create arbitrarily com-
plicated rational mappings between spheres. In future work we will show how the
bounds in this paper, which arise by considering monomial rather than rational
maps, can to some extent be extended to the rational case.

The first author has conjectured that the degree of a rational mapping sending
52— 10 §2N=1 {5 at most 2’_’11 when n > 3 and at most 2N — 3 when n = 2. The
results in this paper show how to obtain sharp results in the special but nontrivial
case where the map is a monomial.
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