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On Geometric Properties of Smooth Maps
That Preserve H 2(Bn)

Warren R. Wogen

Introduction

Suppose that � is a domain in C
n and that φ : � → � is analytic on �. If X is a

Banach space of analytic functions on �, let Cφf = f � φ for f ∈X; here Cφ is
the composition operator on X with symbol φ. A great deal of research has been
done (see e.g. [CoM; S] and their extensive references) on composition operators
for many choices of � and X. In particular, when � is the unit disk in C and X is
the Hardy space Hp (p ≥ 1), it is classical that every Cφ is bounded on Hp.

The situation is different for � ⊂ C
n with n > 1. We restrict our attention to

� = Bn = B, the open unit ball in C
n. Write Sn = S for the unit sphere in C

n.

Several authors [CSW; CW; M1] have constructed examples of analytic self-maps
φ of B such that Cφ is unbounded on Hp(B). Versions of most of these examples
appear in [CoM, Chap. 6]. In particular, one can even take φ to be a univalent
polynomial map (see [CW] and [CoM, Chap. 6.3]).

In [W1] the author proved a necessary and sufficient condition for boundedness
of Cφ on H 2(B) for the case when φ is a C 3 map on B ∪ S = B̄; this paper is
a sequel to [W1]. We first describe the main result of [W1] in Theorem 1. Then
we establish an analytic consequence (Theorem 2) and a geometric consequence
(Theorem 3). We also produce some new examples of symbols that induce un-
bounded composition operators.

Results

We begin by setting some notation. Suppose that ψ : B → C is a C1-map and that
ξ ∈ S. Then Dξ(z) denotes the (complex) directional derivative of ψ at z in the ξ
direction.

Suppose that φ : B̄ → C
n is analytic on B and is C1 on B̄. For z ∈ B̄, Dφ(z) is

the (complex) Jacobian matrix. Also, if η ∈ S then φη(z) = 〈φ(z), η〉 will denote
the coordinate of φ in the η direction.

We state the result of [W1]. See also [CoM, Chap. 6.2] for a discussion of this
theorem.

Theorem 1. Suppose that φ : B̄ → B̄ is analytic on B and is C 3 on B̄. Then the
following statements are equivalent.
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(i) Cφ is unbounded on H 2(B).

(ii) There exist points ξ1, ξ2 , and η in S such that ξ1 and ξ2 are orthogonal,
φ(ξ1) = η, and

Dξ1φη(ξ1) = |Dξ2 ξ2φη(ξ1)|. (1)

Thus, to test Cφ for boundedness, find all ξ1 ∈ S such that φ(ξ1)∈ S. Then, letting
η = φ(ξ1), compare Dξ1φη(ξ1) with |Dξ2 ξ2φη(ξ1)|.

The proof of Theorem 1 uses Carleson measures. Equality (1) yields a collapse
of the surface measure on S near ξ1 under the mapping φ that violates the Carleson
measure condition [M2] for boundedness of Cφ.

Remark 1. Let {ek}nk=1 be the standard basis for C
n. By pre- and post-composing

φ by unitary maps of C
n, we may assume the following normalization: ξ1 = η =

e1 and ξ2 = e2. Then write Dek = Dk and φk = φek , 1 ≤ k ≤ n. Replacing e2 by
λe2 for an appropriate λ (|λ| = 1), we can also assume that D22φ1(e1) ≥ 0 (cf.
[CoM, pp. 231, 232]). Given this normalization, equality (1) becomes

D1φ1(e1) = D22φ1(e1). (2)

Finally we note that one always has Dkφ1(e1) = 0 and |Dkkφ1(e1)| ≤ D1φ1(e1)

for k ≥ 2; see [CoM, Lemma 6.6].

Theorem 2. Suppose φ satisfies the hypotheses of Theorem 1 and that Cφ is un-
bounded on H 2(B). If (1) holds at ξ1 ∈ S, then Dφ(ξ1) is singular.

Proof. We assume the normalization as in Remark 1. We will analyze the second-
order Taylor expansions about e1 for the coordinate functions of φ.

Let Aj = Djφ1(e1) and Aij = Dij φ1(e1), 1 ≤ i, j ≤ n. Also, let g(t) =
(cos t)e1 + (sin t)e2 = (cos t, sin t, 0, . . . , 0). Here g parameterizes a smooth unit
speed complex tangential curve in S, with g(0) = e1. Suppose that φ(g(t)) =
h(t) = (h1(t), . . . ,hn(t)). Recall thatA2 = D2φ1(e1) = 0 and that φ is aC 3-map.
From the Taylor expansion of φ1 about e1, we have

h1(t) = 1 + A1(cos t − 1)

+ 1
2 [A11(cos t − 1)2 + 2A12(cos t − 1) sin t + A22 sin2 t] +O(t 3). (3)

Substitute the Maclaurin series for sin t and cos t into (3). Then

h1(t) = 1 + (− 1
2A1 + 1

2A22
)
t 2 +O(t 3) = 1 +O(t 3), (4)

since (2) gives A1 = A22.

Next let Bk = D2φk(e1) for k ≥ 2. Using the second Taylor polynomial for φk
about e1, we see that

hk(t) = φk(g(t)) = Bk sin t +O(t 2) = Bk t +O(t 2). (5)

From (4) and (5) it follows that

‖h(t)‖2 ≥ |h1(t)|2 + |hk(t)|2 = 1 + |Bk|2 t 2 +O(t 3),
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so if Bk �= 0 then ‖h(t)‖2 > 1 for small t, a contradiction. We have shown that all
entries in the second column of Dφ(e1) are zero, so that Dφ(e1) is singular.

Remark 2. Condition (2) is key for the Carleson measure estimates that prove
(ii) implies (i) in Theorem 1.

Theorem 2 may significantly simplify the use of Theorem 1 in testing a specificCφ
for boundedness. Namely, given a smooth φ, one need only check condition (1) at
those ξ ∈ S such that φ(ξ)∈ S and such thatDφ(ξ) is singular. This may be most
useful in case φ is univalent on B or at least locally univalent. ThenDφ(z)will be
invertible for all z∈ B, and invertibility ofDφ(z)may well persist at points z∈ S.

Next we analyze the geometry of the smooth mapping φ forCφ unbounded. We
continue to assume the normalization of Remark 1. Thus, in the terminology of
the proof of Theorem 2, we have A1 = A22.

Fix λ with |λ| = 1 and λ �= ±1, and let gλ(t) = (cos t)e1 + λ(sin t)e2. Let
hλ(t) = φ(gλ(t)). The same computation that led to (4) gives us

(hλ)1(t) = 1 + 1
2 (−A1 + λ2A22)t

2 +O(t 3). (6)

Let T1 = 1
2 (−A1 + λ2A22), and note that T1 �= 0. For k ≥ 2, we saw in Theo-

rem 2 that Bk = D2φk(e1) = 0 and so (hλ)k(t) = Tk t
2 + O(t 3), where Tk =

1
2 (−D1φk(e2)+ λ2D22φk(e1)). Thus we have shown that

hλ(t)− hλ(0) = T t 2 +O(t 3), (7)

where T = (T1, . . . , Tn). This means that hλ, the image of gλ under φ, has a cusp
at φ(e1) = e1. The “tangent” vector of this cusp is T. Note that T1 �= 0 (in fact
Re T1 �= 0), so T is transverse to the tangent plane to S at e1.

Now let’s suppose in addition that φ is univalent on B̄. We have seen that the
smooth curves gλ (λ2 �= 1) are “pinched” by φ into cusps hλ. This pinching can
be quantified in another way. For t > 0 and t small, ‖gλ(t) − gλ(−t)‖ ≈ 2t. By
(7) we have

‖φ(gλ(t))− φ(gλ(t))‖ = ‖hλ(t)− hλ(−t)‖ = O(t 3).

It follows that, if ψ = φ−1, then ψ : φ(B̄) → B̄ cannot be in the class Lipα for
any α > 1

3 .

Now we apply the work of Mercer (see [Me, Prop. 2.6] and also [FSte, Prop.
12.2]) to deduce that φ(B) cannot be convex. In fact, the results of [Me] show
that, for any proper map ψ of a convex domain � in C

n onto Bn, we must have
that ψ is in Lip 1

2 . As Mercer has pointed out to the author, the proof requires tak-
ing α = 1 and m = 2 in the proof of Proposition 2.6 of [Me]. We omit further
details.

The preceding discussion proves the following conjecture of J. A. Cima.

Theorem 3. If φ is a biholomorphic map of B into B that extends to be C 3 on
B̄ and if φ(B) is convex, then Cφ is bounded on H 2(B).
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Examples

We begin by constructing a simple example that we then use to construct new un-
bounded operators Cφ with univalent symbols.

For n ≥ 2, define f : B̄n → C by f(z) = z1 + 1
2z

2
2. For z ∈ Bn, let r = |z1|

and note that |f(z)| ≤ r + 1
2 (1 − r 2). Elementary arguments show that |f(z)| <

1 unless r = 1. So we see that f(Bn) ⊂ B1 and |f(λe1)| = 1 if |λ| = 1. Also,
D1f(e1) = 1 = D22f(e1). In fact, if ξ1 = λe1 and ξ2 = µe2 where |λ| = |µ| =
1, then Dξ1f(ξ1) = |Dξ2 ξ2f(ξ1)|.
Example 1. Let φ = (f , 0, . . . , 0) : Bn → Bn. Then Cφ is unbounded on
H 2(Bn). This is immediate from Theorem 1 and our preceding discussion of
f. This φ qualifies as the simplest possible example such that Cφ is unbounded.

Next we construct a new univalent example that illustrates Theorem 2.

Example 2. For n ≥ 2, define φ on B̄n by

φ(z) = 1
2 (1 + f(z), z2(1 − f(z)), . . . , zn(1 − f(z))).

If |z| < 1, then

|φ(z)|2 = 1

4

{
|1 + f(z)|2 + |1 − f(z)|2

n∑
2

|zk|2
}

≤ 1
4 {|1 + f(z)|2 + |1 − f(z)|2} = 1

2 (1 + |f(z)|2) < 1.

Thus φ(Bn) ⊂ Bn. Next we show that φ is univalent on B̄n. Suppose that z,w ∈
B̄n and that φ(z) = φ(w). Then φ1(z) = φ1(w), so f(z) = f(w). Also φk(z) =
φk(w) for 2 ≤ k ≤ n implies that f(z) = f(w) = 1 or zk = wk. But f(z) =
f(w) = 1 yields z = w = e1. If zk = wk for 2 ≤ k ≤ n, then from f(z) = f(w)

we see that z1 = w1 also.
Finally, observe that φ(e1) = e1 and that D1φ1(e1) = D22φ1(e1) = 1

2 . Thus φ
is a univalent polynomial map such thatCφ is unbounded. More complicated such
maps may be found in [CW] and in [CoM, Chap. 6.3]. One can check that the sin-
gular matrixDφ(e1) is 1

2P, where P is the orthogonal projection of C
n onto Ce1.

Thus rankDφ(e1) = 1. We show in the next example how to modify this φ so that
if 2 ≤ k ≤ n− 1 then rankDφ(e1) = k.
Example 3. We outline an example for the case k = n− 1. Let

φ(z) = 1
2 (1 + f(z), z2(1 − f(z)), z3, . . . , zn)

for z∈ B̄n. By modifying the arguments of Example 2, we see that φ is univalent
on B̄n, φ(e1) = e1, and D1φ(e1) = D22φ(e1) = 1

2 . We show that φ(Bn) ⊂ Bn.

For z∈ Bn write z = (z ′, z ′′), where z ′ = (z1, z2). Then

|φ1(z)|2 + |φ2(z)|2 ≤ 1
4 {|1 + f(z)|2 + |1 − f(z)|2}

= 1
2 (1 + |f(z)|2) ≤ 1

2 (1 + |z ′|2).
Thus |φ(z)|2 ≤ 1

2 (1 + |z ′|2)+ 1
4 |z ′′|2 < 1.
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It follows that Cφ is unbounded on H 2(Bn). Note thatDφ(e) = 1
2Q, whereQ

is the orthogonal projection of C
n onto {e2}⊥. ThusDφ(e) has rank n−1. It should

be clear that we can interpolate Examples 2 and 3 to achieve rankDφ(e1) = k for
any k with 1 ≤ k ≤ n− 1.

We also point out that the previous constructions can be modified to produce
families of symbols φ that induce unboundedCφ. To illustrate, refer to Example 2.
Given 0 < r < 1, if we define φ by

φ(z) = (
r + (1 − r)f(z), √r(1 − r)z2(1 − f(z)), . . . , √r(1 − r)zn(1 − f(z)))

then one can show thatφ satisfies the same conditions as the mapping of Example 2.
See also [CoM, Chap. 6.3].

Example 4. In the discussion preceding Theorem 3 we saw that, with the nor-
malization of Remark 1, if Cφ is unbounded then φ maps the family of complex
tangential curves gλ (λ �= ±1) into cusps. This might be expected since the tangent
vectors to gλ at e1 lie in the kernel of Dφ(e1) and since the affine approximation
L(z) = φ(e1) +Dφ(e1)(z − e1) carries S into a complex plane of dimension <
n. But the following example shows that the special curve g1 need not be mapped
to a cusp.

Define φ : C
2 → C

2 by φ(z) = 1
2

(
1+f(z), 1

2z
3
2

)
. We first verify that φ(B2) ⊂

B2. If |z| < 1 and |z1| = r, then

|φ(z)|2 ≤ 1
4

{
(1 + |f(z)|)2 + 1

4 (1 − r 2)3
}

≤ 1
4

{(
1 + r + 1

2 (1 − r 2)
)2 + 1

4 (1 − r 2)2
}

= 1
4

{
(1 + r)2 + (1 + r)(1 − r 2)+ 1

2 (1 − r 2)2
} = g(r).

Check that g increases on [0,1] and that g(1) = 1, so φ(B2) ⊂ B2. Theorem 1
then shows that Cφ is unbounded, since D1φ1(e1) = D22φ1(e1).

Let h1(t) = φ(g1(t)) = 1
2

(
1 + cos t + 1

2 sin2 t, 1
2 sin3 t

)
. Using Maclaurin ex-

pansions for sin and cos, we obtain h1(t)− h1(0) = (
7

24 t
4, 1

2 t
3
) +O(t 5), so that

h1(t)− h1(0)

t 3
→ 1

2
e2 as t → 0.

Thus the approach of h1 to e1 as t → 0 is complex tangential to S2.

The map φ is not univalent on B2 (it is 3-to-1). It is an open question whether
the phenomenon just described is possible for a univalent map.

References

[CSW] J. A. Cima, C. S. Stanton, and W. R. Wogen, On boundedness of composition
operators on H 2(B2 ), Proc. Amer. Math. Soc. 91 (1984), 217–222.

[CW] J. A. Cima and W. R. Wogen, Unbounded composition operators on H 2(B2 ),
Proc. Amer. Math. Soc. 99 (1987), 477–483.

[CoM] C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic
functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995.



306 Warren R. Wogen

[FSte] J. E. Fornæss and B. Stensones, Lectures on counterexamples in several complex
variables, Math. Notes, 33, Princeton Univ. Press, Princeton, NJ, 1987.

[M1] B. D. MacCluer, Spectra of compact composition operators on H 2(BN), Analysis
4 (1984), 87–103.

[M2] , Compact composition operators onH 2(Bn), Michigan Math. J. 32 (1985),
237–248.

[Me] P. R. Mercer, A general Hopf lemma and proper holomorphic mappings between
convex domains in C

n, Proc. Amer. Math. Soc. 119 (1993), 573–578.
[R] W. Rudin, Function theory in the unit ball of C

n, Grundlehern Math. Wiss., 241,
Springer-Verlag, New York, 1980.

[S] J. H. Shapiro, Composition operators and classical function theory, Springer-
Verlag, New York, 1993.

[W1] W. R. Wogen, The smooth mappings which preserve the Hardy space H 2(Bn),
Oper. Theory Adv. Appl., 35, pp. 249–267, Birkhäuser, Basel, 1988.

[W2] , Composition operators acting on spaces of holomorphic functions on
domains in C

n, Proc. Sympos. Pure Math., 51 (part 2), pp. 361–366, Amer. Math.
Sci., Providence, RI, 1991.

Department of Mathematics
University of North Carolina
Chapel Hill, NC 27599-3250

wrw@email.unc.edu


