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Foliation by Graphs of CR Mappings and
a Nonlinear Riemann—Hilbert Problem
for Smoothly Bounded Domains

MARSHALL A. WHITTLESEY

1. Introduction

Let D be a bounded, smoothly bounded domaitin¢ > 2, and letM be a real
C* submanifold oD x C™, m > 1. We here address the question of when there
exists a mapping such that

(RH) f: D — C™is continuous orD and analytic onD such that the graph of
f overdD is contained inV.

A problem where one is required to find ghsatisfying (RH) is often called
a Riemann—Hilbertproblem; Riemann proposed such a questiornéferm =1
in 1851. We shall refer to the problem of finding gnsatisfying (RH) as the
Riemann—Hilbert problem fa¥. If an f exists satisfying (RH) then we shall say
that the Riemann—Hilbert problem faf is solvableand thatf is asolution. For
zedD, letM, = {w e C™ : (z,w) € M}. We will say here that the Riemann—
Hilbert problem (RH) idinear if, for everyz € D, M, is a real affine subspace
of C™. We shall say that the Riemann—Hilbert problem (RHydmlinearif it is
not linear.

For the casé¢ = 1 we mention the references [B1; B2; Fo; HMa; S; Shl; Sh2;
V; Wel-Web5]. See [We5] for a useful survey and reference list.¢Far2, see
[B2; B3; BD; D1, D2].

We will first address the following more general question. Sdte aC* CR
manifold inC* (e.g., a real hypersurface @) and letM be a realC* submani-
fold of § x C™, m > 1. Letz® e S andU a neighborhood 0f° in S. Does there
exista CR mapf: U — C™ whose graph irU x C™ is contained inM? We
shall establish conditions under which the answer to this question is “yes”. For
the case wher§ is a complex manifold, this question is addressed by theorems
in [F1-F3; Kr; Sol; So2]. We consider the case of more gerferApplying our
result to the case whetis the boundary of an open set@f with C* bound-
ary (soS is a real hypersurface ii‘), we shall establish conditions where the
Riemann—Hilbert problem fa¥/ is solvable.

For the more general question of the previous paragraph, assumptions we shall
make will imply that the sebs is a CR manifold. Under conditions outlined in
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Theorem 1, we will prove the existence of a special involutive subbundle of the real
tangent bundle ta/ that possesses certain null properties relative to the Levi form
of M. The Frobenius theorem will guarantee the existence of integral submani-
folds of this bundle. Locally, these integral submanifolds will turn out to be graphs
of CR maps from open subsets®fo C™. In Theorem 2 and Theorem 3 we estab-
lish conditions guaranteeing the existence of graphs of CR maps, contaim&d in
that are defined on all &f. In Theorem 4 we show that (under some conditions)
these graphs possess a particular extremal property. In Corollary 1 and Corollary 2,
we will assume thas is the boundary of a bounded®-bounded open set i@*

and establish conditions where the CR maps found in Theorem 2 and Theorem 3
extend to be analytic oP. These maps are solutions to the Riemann—Hilbert prob-
lem for M. The conditions we establish for the solvability of (RH) are not always
necessary; when they are satisfied, we obtain graphs with strong properties that
we shall describe.

We are grateful to Professors Salah Baouendi, Linda Rothschild, and Peter Eben-
felt for useful conversations on this topic, to the referee for helpful suggestions,
and to the Department of Mathematics at the University of California, San Diego,
where most of this paper was written.

2. Definitions and Notation

For the reader’s reference, a list of commonly used notation is provided in Sec-
tion 8.

In studying subsets of ¢ x C™, we shall generally label points i@ ¢ with
z = (21,22, ..., 2¢) and those inC™ with w = (wy, wo, ..., wy). If P(z,w)
is a function on an open subset 6f x C™, then letdP denote the 1-form
S_(8P/dz))dz; + Y., (0P/dw;)dw; and letd,, P denote the 1-form

m BP

dp P = ; awidw,. 1)
Let [X, Y] denote the Lie bracket of two vector field§ Y, and let(A, B) de-
note the canonical action of on B where, for some:: A is ann-cotangent
(i.e., an element of theth exterior algebra of the cotangent space) at a point
on a manifold andB is ann-tangent at that point; see [Bo, p. 10]. For=
12, ...,n,if ¢; is a cotangent at a point and is a tangent at the same point then
(PINP2 A ANp, Y1 A2 A -+ AYr,) IS the determinant of the matrix whose
(i, j) component ig¢;, ¥;). We use the same notation to denote the actioA of
on B, whereA is ann-form on a manifold and is a section of theth exterior
algebra of the tangent bundle, the action being defined pointwigeislf vector
bundle on an open subsétof a C > manifold, then

I'(A, B) will denote the set o> sections ofB over A. (2)

We shall also make use of the notiong#gnericCR manifold (see [BER, p. 9])
and CR manifold of (Bloom—Graham—Kohiiite typer (see [BER, pp. 17-18]).
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If M isaC* generic CR submanifold ¢t”, then letT M denote the real tan-
gent bundle toV, CTM the complexified tangent bundle tal, CT, M the fiber
of CTM overx e M, CT+°M the (1, 0)-subbundle ofCTM, andCT>OM the
fiber of CT1%M overx. (We use similar notation for the®, 1)-subbundle.) We
shall make use of the Levi map #ff, and we follow the definition in [BER]: Let
P.: CT,M — CT, M/(CT}°M & CT M) be projection and let the Levi map
atx e M be

L,:CT*°M x CT*°M — CT, M/(CT*°M @ CT>* M)

1 i (3
Lo(Xe, Yy) = Z—iPx([X, Y](x)),

whereX,Y areC® (1, 0)-vector fields onM nearx such thatX(x) = X, and

Y(x) = Y,. Asis well known, the Levi map at does not depend on these smooth
extensionsX, Y; it depends only orX, andY,, so we get a smooth bundle map
L:CT*°M x CTYOM — CTM/(CTYOM @ CT %I M). Suppose tham has
defining functionsp;, i = 1,2,...,d. Note that,(X,,Y,) = 0 if and only if

(8¢, [X,Y])(x) = 0fori = 1tod and forX,Y as before. By Cartan’s iden-

tity (see [Bo, p. 14, Lemma 3]), these equations are equivalent to the equations
(03¢;, X AY)(x) =0fori =1tod.

We follow the definition of CR function given in [Bo]: A CR function on a
M is aC* functionu such that, for every sectiaki € I'(M, CT %1 M), we have
Xu =0.

We assume that satisfies the following properties.

(4) Let S be a generiaC® CR manifold inC¢ (¢ > 2) of CR codimension
¢ < L. Specifically, we assume th&thasC* real-valued defining functions
p1. D2, ..., pe defined in a neighborhoolt of S (i.e., fori = 1toc, p;: N —
RisC®, S ={zeN :pi(z) =0foralli =12, ...,c}, and the 1-forms
{0pi(2)}5_, are linearly independent 1-forms ov@rfor all z € S). Let HS =
CT*S be the(l, 0)-tangent bundle tS with fibers H'; that is,

12
i)
HS = {Zaia—eCTzS:aieC, i :1,2,...,c}.
‘ ; Z
i=1

i
We assume/ satisfies the following properties.

(5) Letd be aninteger, k¥ d < m, and letM be aC* CR submanifold of x C"
of CR codimensiomr + d in C**™ such that giverM, = {w e C" : (z,w) €
M} we have, for alk € S, thatM, is a nonempty, generic, Levi nondegenerate
CR submanifold of CR codimensiahin C”. Specifically, let/ c C“™ be
an open set meetingyx C" andlety;: Y — RbeC>fori =1,2,...,d such
that, for any(z%, w®) € U, the 1-forms{d,,¢;(z°, w®)} (i =1 2,...,d) are
linearly independent ovel. Let M = {(z,w) eUN (S x C™) | q1(z, w) =
go(z,w) = - - = qq(z, w) = 0} and let HY = CT 1M be the(l, 0)-tangent
bundle toM with fibers H? ' for (z, w) € M.

Now observe that, sinc#f, is generic, we must hawé < m. The following
correspondence is convenient:
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14 m
0 0
M ~ S 10r~m
H(z w) = {z :ai 3z; + z :bi dw; GH EB(CTw C

i=1
4
Za,—(z, )+Zb w)=0,k=1,2,...,d}.

i=1

Note that{ p;}¢_, U {¢:}"_, is a set of defining functions fav/. Let
n: CTCY™ - Ccrct (6)

be either projection or the restriction to the corresponding mapping frém H
to HS. We will user, ,, to denote projection on the individual fibersy, ,:
(CT(Z w)(C”’" g (CT~(C£ andﬂ(z w) - H(Z w) — HS

We shall investigate when there exist€ & CR mapf: S — C™ such that
qi(z, f(z)) =0forze S andi =1tod.

Before we state our main results, we need some further definitions. Let

V(z,w) = {vaw €HY ) 0w (V) = O @)
thatis, ifv,, € V(z, w) thenv,,, has no terms involving/dz; fori =1,2,...,¢

(This is the space of “vertical’l, 0)-tangents ta/ at(z, w).) By (5), V(z, w) has
dimensionn — d for all (z, w) € M. For any(z%, w®) e M,

V(ZO, wo) = {v,0,0 € CT(ZQwO)Ceer DI040y (V,0,0) =0
and
(80qi(2% w®),v,0,0) =0, i =1,2,....d}.

ThusV(z, w) is calculated by solving a system of linear equations whose coeffi-
cients areC*® functions of(z, w) and whose rank is constant far, w) € M near

(z° w®). We may thus calculate — d C* vector fields’ i =1,2,...,m —d)

near any pointz®, w®) € M such that, neaiz°, w°), {v'(z, w)}"5" forms a basis

for V(z, w). Thus we obtain a complein — d)-dimensionalC* (1, 0)-vector
bundleV over M. Let V denote the bundle whose fiber(at w) is V(z, w), and
let LM denote the Levi map fa¥. Next, let

N(z,w) = {nw) € H( w) (Z w)(n'un Vo) = 0 Vv, € V(z, w)}. (8)

Becausé’/ isabundle, any.,, isthe value atz, w) of some elementdf (M, V), so

in (8) itis equivalent to demand thﬁ(‘g,w)(nzw, v(z,w)) =0forallve (M, V).
Under reasonable conditions, th&z, w) will have dimension independent of

(z, w) and hence form a vector bundie The conjugate oN(z, w), N(z, w), will

also form a bundlev.

3. Main Results

Our most general theorem is a local statement.

THEOREM 1. Suppose thaf and M satisfy(4) and (5), respectively; suppose
also that, at every point of, S is of (Bloom—Graham—KoRnfinite typer. Then
the following four conditions are equivalent.
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(1) The dimension oN(z, w) is ¢ — ¢ for all (z,w) € M, and for everyk =
1tod we have that

(0p1 A B2 NP3 A -+ ANdpe NG, FINF2 ANF3 A -+ AN Feyg) =0 (9)

for all vector fieldsFi, F», ..., F.41 that are commutators of length ranging from
2to v + 1 of vector fields inC(M, N) and I'(M, N). (Note that the lengths of
Fi, F>, ..., F..1 may be differenj.

(1) The dimension oN(z, w) is £ — ¢ for all (z, w) € M, and there exists a
unique self-conjugate involutive> bundle7 with fiber 7(z, w) for (z, w) e M
suchthatN @ N ¢ T ¢ CTM and (. ,: T(z, w) — CT,S is an isomorphism
for all (z, w) € M (and so the complex dimension ®1z, w) is 2¢ — ¢).

(111) For every(z°, w®) e M, there exists some neighborhotid’ of (z°, w?)
in M such thatU" is foliated by graphs o€ * CR maps defined in a neighbor-
hoodU of z%in S; for such a mapf, f: U — C™ andg,(z, f(z)) = 0 for all
ze U and allk = 1tod. Furthermore, fori = 1tod let ¢; be thel-formd,,q; =
Zle(aq,»/awj)dwj and let¢ be thed-form ¢y A g2 A 3 A -+ - A ¢4, Which we
Wt @S 1 i\ i ciserciy<m Pivsia,...ia (2 W)dwiy A dwi, A dwig A -+ A dwi,.
Then there exists a nonze®> functionC: U — C such that thed-form
C(2)¢(z, f(2)) has coefficients that are CR functions@n

(IV) The dimension oN(z, w) is £ — ¢ for all (z, w) € M, and for everyk =
1tod we have that

(dp1 A Bp2 ANOp3 A - ANOpe N3G, FLIAFa AF3A--- A Fepn) =0 (10)

for all vector fieldsFy, F», ..., F.,1 that are commutators oérbitrarylength of
vector fields i (M, N) andI'(M, N). (Note: the lengths ofy, F», ..., F..1 may
be different)

If the preceding conditions hold, then the graph§lit) are integral manifolds
of Re7 and the(1, 0)-tangent space to the graph @fat (z, f(z)) is N(z, f(z)).
Supposg: U — C™ is a CR map such that,(z, g(z)) = Ofor all z € U and
all k = 1to d and such thatVv (restricted to the graph of) is the(1, 0)-tangent
bundle to the graph of. Then we must havg = g for some sucly.

In the case wher§ is the boundary of a domain, we obtain solutions to (RH) as
follows.

CoroLLARY 1. Suppose thaf and M satisfy(4) and (5), respectively, and sup-
pose thatS is connected, simply connected, and of finite typs every point.
Suppose also that, for every compa&ttc S, Mg = {(z,w) e M : z € K} is
compact. Suppose that any of properiiBs-(1V) of Theorem 1 hold and that, in
addition, S is the boundary of a bounded domdinin C¢, ¢ > 2. ThenM is the
disjoint union of graphs of CR maps that all extend to be continuou® @md
analytic onD; these extensions are solutiong BRH).

Other results specifying the significance of the special graphs arising in Corol-
lary 1 will be discussed later. We now prove these theorems.
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4. Proof of Theorem 1: Local Results

We begin with a study of properties of the spat&s, w) andN(z, w). Suppose
we have fixed;® € S and choos& * vector fieldss; (i =1, 2, ..., £ — ¢) defined
on an open sef containingz® such that, for € G,

(i@ (1)
is a basis for H. Let
GM=MnN(G xC™). (12)

ProrosiTioN 1. Assume thaf and M satisfy(4) and (5), respectively. For any
(z,w) € M and any value of, the projectionr ., of N(z, w) to H? is injec-
tive. Thus, for everyz, w) € M, the complex dimension &f(z, w) is less than or
equal tof — c. If the complex dimension of(z, w) equalst — ¢ for every(z, w) €
GY, then N is a complexC> vector bundle of dimensiof— ¢ over G and
Tzw) - N(z,w) = H§ is an isomorphism. The complex dimensioWNot, w) is
exactly? — c in three cases(i) whend = 1; (ii) whend = m; and (iii) when the
zero sets of;; (i = 2,3,...,d) are Levi flat inC**™ near M (i.e., the Levi form
of those surfaces is totally degenerate.

Proof. If n_, € N(z, w) satisfies the property that; ,,(n.,) = O, thenn_, €
V(z, w). It follows that

(58%’(2» w), Ny N ﬁzw> =0 (13)

for all v,, € V(z,w) andi = 1tod. Note thatV(z, w) may be regarded as
the (1, 0)-tangent space at to M., which is Levi nondegenerate by (5). Then
(13) implies thatn,, is in the null space of the Levi form a#f,, son,, =
0. This proves thatr. ,,: N(z,w) — H? is injective and that the complex
dimension of N(z, w) is less than or equal to the dimension of,HNhich is

¢ — ¢. Now fix an arbitrary(z%, w®) € M and fixa® = (@,49,...,a9) € C*
such thaty"¢_; a%dp;/9z;)(z°) =0 for j = 1toc. Fori = 1to¢, leta;
be aC> complex function defined o nearz® such thata;(z°) = a? and
Zleai(z)(apj/azi)(z) =0forj = 1toc andz nearz® € S (i.e., A(z) =
S ai(2)(8/8z)) € H?). For (z,w) € M near(z% w?), the necessary and suf-
ficient conditions for the existence of@&"-valued mapping = (by, by, ..., b,)
on M such thatB(z,w) = Y.\_, ai(2)(8/dz;) + Y., bi(z, w)(3/dw;) belongs
to N(z, w) (and sarr(,, ) (B(z, w)) = A(z)) are:

m

¢
g dar
;a[(Z)a_Zi(Z’w)+;bi(z’w)8_w,~(z’w) _0 w0

fork =1tod; and

£ m m
_ 9 9 0
a9p;, i bi— | A v — |)(z,w) =0 15
< p; (;a 81i+; Bw,-) (;”awi»(z w) (15)

and
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13

<aaqk, (;a£+; ) (Zvl _l>>(z w)=0  (16)
for j = 1toc, k = 1tod, and for all vertical1, 0)-vector fields) ., v;(3/0w;) €

I'(M, V). Condition (15) is vacuousidp; contains only terms involvindz, A dz;,

but )", ;(3d/0w;) contains no terms with/dz; or 9/dz;, so the left side of (15)

is automatically zero.

Thus conditions (14) and (16) impose the requirementih@at w), b,(z, w),

., b(z, w) must satisfy a nonhomogeneous system of linear equations. By (5),
the dimension o¥(z, w) ism —d for all (z, w) € M. Forasmall open sé&t c G
containing(z% w®), we may choose elements = Y, v,.f(a/aw,-) eI(U,V),
j=12....m—d, suchthafvi(z,w)}” " is a basis foV/ (z,w) for all (z,w) €
U. For equations (14) and (16) to hold far, w) € U, it is equivalent for the fol-
lowing system of equations to hold fof, w) € U:

m

Za (z)—(z w)+ Y bi(z. w)—(z w) =0 @)

i=1
fork =1tod; and

<88qk, (Za +Zb —) (Z >>(z w) = (18)

fork =1todandj =1tom —d.

Our system hag equations from (17) and(m — d) equations from (18) (not
necessarily independent), so it is onelef d(m — d) equations inn unknowns
bi(z,w), ..., bu(z,w). (Note thatifd =1 ord = mthend + d(m —d) = m.)

Suppose tha¥(z, w) has complex dimensiofh— ¢ for all (z, w) € GY. Since
7w N(z,w) = HY is an injection and Kl also has complex dimensidn- c,
it follows thatm; ) : N(z, w) — HS is an isomorphism. Thus, given any element
A €T(G, H%), there exists a unique € I'(G™, HY) such thatr(, ,,,(B(z, w)) =
A(z). That means that, fofz, w) € G¥, the system (17), (18) has precisely one
solution forb(z, w) given a fixedA(z), so there exists a subsystemsmoflinear
equations in the;(z, w) whose solution is the same as for (17), (18) forw)
near some pointz, w!) € GM. This implies that theb; are allC> functions
near(z%, w?), since they are the unique solution to a systeruafquations inn
unknowns with coefficients that a@> in (z, w). This holds near an arbitrary
(zL wh) € GY, soB is C*® (and we writeB € I'(GY, HM)). Letn; be the unique
C> (1, 0)-vector field defined o™ such thatr;(z, w) € N(z, w) for (z,w) €
GM and

7T (zw)(ni(Z, w)) = 5i(2). 19)

Then {n;(z,w)} is a basis forN(z,w) for all (z,w) € G™ becauser, ,):
N(z,w) — Hf is an isomorphism. We conclude that tNéz, w) form aC>
bundle overG*; since sets such a&™ cover M, we have a bundle on all gi#
that we callN.
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The system of equations associated to (17), (18) that is homogeneous in the
bi(z,w) (i.e.,A(z) =0) is

m

Z}maw@ﬁ@wozo 17)
) 311),‘

fork =1tod and

m

- 9 LA
99qy, ( bi_) A < 17{—_)>(z, w) =0 (18)
(o (L) (5

fork =1tod andj = 1tom — d. As noted previoushi(z, w) = 0 is the unique
solution to the homogeneous system becadsds Levi nondegenerate for all
z€ S. If d =1ord = mthen the number of equations in theisd +d(m —d) =
m, S0 then the nonhomogeneous system (17), (18) has exactly one solution for the
bi(z,w), j =1,2,...,m. Then what we have just shown is that, tbe=1 orm
and(z,w) € M, every elementA(z) in HS is the image under, ,,) of exactly
one elemenB(z, w) in N(z, w); thatis, the projectiotr; ,,): N(z, w) — HZS is
bijective and the complex dimension M{(z, w) is equal to¢ — c. That proves (i)
and (ii).

In order to prove (iii), we must determine the number of independent equations
in theb; arising from (17) and (18). From (17) we obtairof them (one for each
g;). From (18) we obtaim — d equations arising from the second-order equations
involving ¢;, since the rank oV is m — d; all other second-order equations are
vacuous by the Levi flathess associated with the athérhus we have a total af
equations inby, by, ..., b,); since (as before) the associated homogeneous sys-
tem (17), (18) has exactly one solution (by the Levi nondegenerady pégain),
the nonhomogeneous system (17), (18) does also. Reasoning as in the end of the
argument for (i) and (ii), we conclude that the dimensiomvgt, w) is ¢ — ¢ for
all (z,w) e M. O

If Bis a vector bundle over a manifoldl, then we say that a set of vector fields
{L;}ics is alocal basisfor B near a point inA if, for all x in A near that point,
{L;(x)};cs is a basis for the fibeB, of B overx.

Proposition 2 will establish conditions where the spa€ées w) together com-
pose an involutive bundle ovéd. However, we first need the following lemma.
We say that a vector field is a commutator of lengthe> 2 if it has the form
[Y1,[Y2,[Y3, ..., [Ys—1, Y5]1] ...] fOr vector fieldsY;, i =1,2,3, ..., 0.

LeEmMMA 1. LetT be any commutator of the vector fields no, ..., n,_., n1, np,
..., fiy_c. Then, for allvy, v, e T(GM, V),

[T,v1+ 0] e GM, V@ V). (20)

(Furthermore(20)holdsifT is a linear combination of commutators of the7; .)

Proof. The parenthetical sentence of Lemma 1 follows from the second sentence
because (20) s linear if. We prove the second sentence by induction on the length
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of T. If the length ofT is1thenT = n; orT = i; forsomei =1,2,...,¢ —c.
If T = n,; then

[ni,v1+ V2] = [n, v1] + [, v2]. (21)

The first term on the right-hand side of (21) belong&ta™, HY) by involutiv-
ity of H. By (19), the coefficients of, in 3/3z; depend only orx € S for j =
1to ¢, sov; annihilates these coefficients. Thus,[v;] has no terms involving
/092, SOT(z, wy([n:, v1](z, w)) = 0 and f;, v1] € I(GM, V) by definition of V.
The second term on the right-hand side of (21) belong(®", H” @& HY) by
definition of N. Write [n;, 12] = h'+ h? for b/ € T(GM, HM), j = 1,2. For
the same reason as with the first term of (24),,,,([n;, v2](z, w)) = O; that is,
Ty (hH(z, w) 4+ h2(z, w)) = 0. ThuST(;, 1) (hY(z, w)) aNd 7, w)(h?(z, w)) are
negatives of each other, but the former belongs fcard the latter ta43. Since
these two spaces meet only{B}, we haver, ,,(h'(z, w)) = 0fori =1, 2. Thus
h(z, w) andh?(z, w) belong toV(z, w), o [n;, v2] € I(GY,V & V) as desired.
We conclude that the right-hand side of (21) belongs6™, V@ V). If T = i,
then [T, vi+ v2] = [i1;, vi+ 02] = [n:, v1 + v2], which belongs ta (G”, Ve V)
by what we just showed in the ca%e= n;. This proves the lemma if the length
of Tisl

For the remainder of the proof, the commutators referred ) @$ 7" will be
commutators of vector fieldsinthe det, n; : i =1, 2, ..., £ —c}. Now suppose
that Lemma 1 is true for all commutatdrsof length less than or equal o0 Then
we must show that if” is a commutator of length + 1, it satisfies (20). Then
T =[n;,T')or T = [n;, T'] for some commutatof’ of lengthi. We claim that
it suffices to prove (20) for all" of the form [z;, T'], whereT’ is a commuta-
tor of length; once this is done, if we writ&” = [n;, T'], then [['”, vy + ¥5]
= [[1;, T'],v1 + 02] = [[n:, T'], 1+ v2]. The expression {f;, T'], v1 + v2]
belongs toI'(GM,V @ V) becauseT’ is a commutator of length.. Thus
[T",v1+ 02] = [[ni, T'], v1+ v2] also belongs ta" (GY, V@ V).

Now assume thal' = [n;, T’] for some commutatof’’ of lengthA. Then,
using Jacobi’s identity,

[T, v+ 02] = [[n, T'], v1+ ¥2]
= —[[T",v1+ v2], ;] = [[v1+ V2, m;], T']
= [n;, [T",v1+ 02]] = [T, [ni, v1+ v2]]. (22)

The vector fieldsT’, v1 + v2] and [n;, v1 + v2] both belong td™(GM, V @ V) by

the induction hypothesis. Hence (22) does as well, again by applying the induction

hypothesis to each term of (22). This implies tHAt; + 72] € T(GM,V & V)

also, sdrl satisfies (20). By induction, the second sentence of Lemma1is proven.
O

ProrosiTioN 2.  Assume thaf and M satisfy(4) and(5), respectively. IN(z, w)

has dimensiord — ¢ for all (z, w) € M, thenN is an involutiveC* subbundle

of HM.



622 MARSHALL A. WHITTLESEY

Proof. By Proposition 1N is aC* bundle. To see tha¥ is involutive, it suffices
to verify this in a neighborhood of each point®, w®) € M. Furthermore, it suf-
fices to check the condition of involutivity on the local bggig from (19): we must
show that b, n;](z, w) € N(z, w) for all (z, w) near(z°, w®) in M. Letv .o ,0, €
V(z% w?) andv e I'(M, V) be such that(z° w®) = v.0 ,0y. Then, by Lemmal,
[[n:,n;], 0] e T(GM, V@ V) C T(GM, HM @ HM). We already know that M is
involutive, so ;. ;] (z, w) e HYL . ThusCY | ([ni, n;](z, w), vz w)) = Oforall
Vie,w) € V(z, w) and so, by the definition ¥, we have fi;, n;](z, w) € N(z, w).
ThusN is involutive. O

Note that Proposition 1 implie®(z, w) N N(z,w) = {0}. If the dimension of
N(z,w) is € — c, it also implies thatV (z, w) ® N(z, w) = (Z v We know that
the dimension o¥/ (z, w) ism —d and the dimension of [Yj is(+m)—(c+d).
Thus the dimension of Pj » 1S the sum of the dimensions Utz w) andN(z w);
sinceV(z, w) N N(z,w) = {0}, we must have/(z, w) + N(z,w) = (z ) also.

Our intention is to construct a map: S — C™ whose graph lies i/ and
passes through a poitg®, w°®) € M such that the&l, 0)-tangent space to the graph
of f at(z, f(z))is N(z, f(z)). This willimply that f is a CR mapping of; see
the proof of Theorem 1. We say that a réaP manifold H of real dimensior
is foliated by a class of submanifold% of real dimensiorb near a pointy € H if
there exists & *° diffeomorphism fromQ = {(x1, x2, ..., x,) €R*: 0 < x; <1,
i =12,...,a}onto a neighborhood of in H such that, for any constantsbe-
tweenOandl = b+1,b+2, ..., a), theimage of the sdtxy, x2, ..., x,) € Q0 :
xi=c,i=b+1,b+2,...,a}isan open subset of some membef oWe shall
say thatH is foliated by the manifolds i@ if H is foliated byC near each of its
points.

Lemma 2 will be needed in part of the proof of Theorem 1.

LEMMA 2. Suppose thapq, ¢o, ..., ¢, ¢.+1 are elements of the cotangent space
CT§(R¢ x C*) and that(¢;, T) = 0 for all tangent vectord” € CTo({0} x C*).
Thenpi A2 Apg A -+ Ader1=0.

Proof. Assume thafR¢ has coordinatesy, x», ..., x. and Ck has coordinates
1, C2y -+, Lk Then we may writep; = > 5 lozjdxl + % Blde; +Z, 1V dg,
Since(qb,-, T) = 0 for all tangent vectorg e CTy({0} x C¥), we haquJ'_ vl =
Oforalli =12,...,kandj =12,...,c+1 Thus thep; = Y ;_; a/dx; may
be regarded as elements@©@IjR¢ for j = 1toc + 1 taking the wedge product
of all ¢ + 1 of them is identically zero, sinae+ 1 > ¢. (The wedge product of
linearly dependent vectors is zero, and any1 vectors in a-dimensional space
are linearly dependent.) O

Before proving Theorem 1, we make a simple observation.

Note. Since from (5)thé, ¢;(-, -) are linearly independent ov€rat every point
of M, we have that the form (z, w) is never zero. lfin = d then¢(z, w) is of
the forme12.3 .. m(z, w)dwi A dwa A --- A dw,,. In this case, the property that
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¢(z, w) satisfies is always automatic: I€{z) = 1/¢12.3 ... m(z, f(z)). Thus, in
the casel = m, condition(l11) is merely a statement thaf is locally foliated by
graphs of CR mappings.

Proof of Theorem 1lt is obvious that (IV) implies (1). We shall prove (I3
(1) = (1) = (1V). Before proving any of these implications, we note that in
each of them we shall obtain the fact that, for everyw) € M, the complex di-
mension ofN(z, w) is £ — c and sor(; ) : N(z,w) — Hf is a (complex) linear
isomorphism. We have this fact as an assumption in the first two implications, and
in the third we shall prove it. (We already know this mapping is injective from
Proposition 1; if the dimension a¥(z, w) is £ — ¢, thenx(, )1 N(z, w) — Hf
is also surjective since the complex dimension dfisl ¢ — c.) In the proof of
each implication, we shall make use of the fact that the dimensioW ofw) is
¢ — c in order to construct a set of vector fields as follows. Tékav) € M and
let 7(z, w) be the complex vector space generated by the set of vélugs),
whereT is a commutator of vector fields in(M, N) andI'(M, N) of length less
than or equal ta. (Recall thatr is the type ofS; see the definitions early in Sec-
tion 2.) We have thaf (z, w) is the same as the complex vector space generated
by the set of value%(z, w), whereT is instead a commutator of vector fields in
(UM, N)andI'(UM, N) of length less than or equal toand wherd/" is some
open neighborhood af;, w) in M. Given a pointz;o € S, choose a neighborhood
G of z%in S with sq, s, ..., se—. € ['(G, H®) such that{sj(z)}f;g forms a basis
for HS for z € G. Becauses is of finite typer atz%, we may choose vector fields
f1, t2, ..., 1., Which are linear combinations of commutators of the; such that
the length of each term of eachis less than or equal toand such that
{51, 52,83, ..., 8} U{51, 52,53, ..., 85—} U{t1, t2, ..., 1.} (23)
constitutes a local basis f67S nearz®. Furthermore, by appropriate change of
basis we may assume that eacis a real tangent t§; we assume by shrinking
that they constitute a local basisGh Let G¥ be asin (12) and lety, n, ..., ny_.
be theC* vector fields in['(GY, HM) determined by (19). Then defirfe (i =
1,2, ...,c) in the following manner. Recall thatis a linear combination of Lie
brackets of vector fields in the sgt; }§;§ U {5; }ﬁ.;j. For every appearance of an
element; (j =12, ..., {—c) inthatexpression, replace it withto form7;. (For
example, i, = [S]_, Ez]—i—[S2, [S3, §4]] +sothenT; = [nj_, ﬁ2]+[n2, [n3, 1714]] +ns.)
Thus we have definefi € I'(GY, CTM) and now claim that
T[(z,w)(Ti(Za w)) = t;(2). (24)
Suppose we seleat, r2, ... in the set{s;}'_{ U {§;}°_{, and suppose that
R1, Ry, ... are the corresponding elementditG™, N) andI'(G™, N) such that
T w(Ri(z,w)) = ri(z) forall (z,w) e GM andj = 1,2,3, ... (see (19)). To
prove (24), it will suffice to prove that
ﬂ(zyw)([Rj, [Rj_]_, [ .. [Rz, Rl]] .. ]] (Z, U))) = [I"j, [rj_]_, [ .. [Vg, I‘]_]] .. ]] (Z) (25)

for j > 1 and(z,w) € G¥, since theT; are linear combinations of elements of
the form [R;, [Rj—1, [...[R2, R4]] ...]]. We do this by induction ory. If j =1
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then (25) follows from the definition of the; in (19). Now assume (25) is true
for commutatorsR = [Ry, [Ri_1, [...[R2, R1]] ...]] of length equal tok. Then
7., w)(R(z, w)) depends only og by the induction hypothesis, so we lat) =
T w)(R(z, w)). LetR’ = [Ry41, R]. By the induction hypothesis, the coefficients
of RyrandR in 8/9z, (0 =1,2, ..., £) depend only o € C*. Thus, when cal-
culating the Lie bracket oR,,; and R, the 3/0w; terms of each annihilate the
d/0dz, coefficients of the other. Thus ,,)([Ri+1, R](z, w)) = [rk+1, r](z), @s
desired, which implies that (25) holds fpe= k + 1. By induction, (25) holds for
all j =12,3,... and so (24) holds as well. Sine, ,,(n;(z, w)) = s;(z) and
T(zw) (@i (z, w)) = §;(z) fori = 1tof — c and sincer(, ,(T;(z, w)) = t;,(z, w) for

i =1toc, we find thatr(, ,,: T(z,w) — CT.S is surjective. Moreover, since
(23) is a local basis foETS in G, the set of vectors

{ni(z w'E U {2, w)lf U Tz, )iy (26)

is linearly independent i€ 7. ,, M for all (z,w) € GM as the inverse image un-
derm. ., of the basigs;(2)}'Zf U {5:(2)}'2f U {t:(2))¢_, for CT.S.

Now we assume (). There we simply assume that the dimensidi{afw) is
¢ — ¢, so the vector field$n,}'_; and{7;}¢_, can be constructed. We shall show
that the quotient off (z, w) by N(z,w) @ N(z, w) has complex dimension,
which we recall is the CR codimension §in C*¢. We will show that the quotient
T(z,w)/(N(z,w) ® N(z,w)) is, in fact, generated by the image in the quotient
of {T;(z, w)}{_;; this will show that the quotient has dimensiaras desired. The
(surjective) mapping ., : 7(z, w) — CT,S can be composed with the (surjec-
tive) quotient mapping front7,S — CT,S/(HS & HY) to form another surjec-
tive mapping7 ..y : 7(z,w) — CT.S/(HS & HS). Sincewt, ) (ni(z, w)) =
si(z) +HS ®@HS = 0+ HS @ H$ and since (for similar reasong), (7 (z, w)) is
zero, we find thaf, ,, factors through the quotiefi(z, w)/(N(z, w) ® N(z, w))
to form a surjective mapping fromi (z, w)/(N(z, w) & N(z,w)) to CT.S/
HS & Hf). Because the complex dimension of the latter spaeeisd the map-
ping is surjective, the dimension @f(z, w)/(N(z, w) @ N(z, w)) is greater than
or equal toc. We proceed to show it does not exceed

LeEMMA 3. Assume that the conditions of Theorem 1 hold and ¢hatolds. Let
T(z,w) be a commutator of vector fields in the ng:‘f{ni, n;}. We claim that
there existC > functionsa;: G — C (i =1, 2, ..., ¢) such that

T+Za;TieF(GM,N$Z\_/). (27)
i=1

(Note that, by the definition af¥ in (12), we may regard; as a function oG ¥
as well.)

Proof. We first show that, for some functions,

T+Y aT el(G" HY & AM). (28)
i=1
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To do this, recall that the coefficients of in 9/9z, depend only on for all i =
1to?¢ — c andk = 1to¢, so from (25) the same may be said of the coefficients of
T(z, w); thusm(, .\ (T(z, w)) is a well-defined function of, says(z). Because
s(z) € CT. S and owing to the existence of the local basis (23), we may chGése
functionsa;: G — C(i =12, ..., c)suchthas(z)+> (_; ai(2)t;(z) e HS HS

for all z € G. Then consider the vector field + Y "(_; a;,7; € (G, CTM). We
have that, foralj = 1,2, ..., c,

<ap,-, T+ ZaiTi>(z, w) = <apj(z>, () (T(z, w)+ Y ai(D)Tiz, w))>

i=1 i=1

= <3Pj, s+ Zai1i>(2) =0 (29)
i=1
forall (z, w) € G, sincep; depends only opand since(z)+ Y _; a;(2)t;(z) €
HS @ HS forall z e G.
Hence we claim also that

<3qk, T + ZaiTi>(z, w) =0 (30)
i=1
fork=1,2,...,d and(z, w) € GM. We now use the definition of the action of a
(¢ + D-form on an element of the: + 1)th exterior algebra of the tangent space
(see [Bo, p. 10]) to calculate

<3p1/\8p2A3p3/\-~-/\3pCA36]k,T1AT2/\T3A--~/\TC/\ <T+Za,-Ti>>(z,w)
i=1

for (z,w) € GM. Any term involving(dp;, T + Y_;_; a;T;) is zero by (29), so we

have from (9) that

O=<3p1/\8p2/\8p3/\~--/\apc/\aqk,

TiAToATsA - AT, A <T+Zai7})>(z,w)
i=1
= (dp1AOp2 NOp3 A -+ ADpe,

TiNTa AT A - A Tc><84k, T+ ZaiTi>(z, w)
i=1

for (z,w) € GM. We claim that(dp; A dp2 Adp3 A -+~ Adpe, TUAT2 ATz A
- ATz, w) # 0 for (z,w) € GY; this will show that (30) holds, as desired.
To see why the claim holds, note th@p; A dpo Adp3 A -+~ Adp., Tho ATo A

T3 A -+ AT.)(z,w) is equal to the determinant of thex ¢ matrix whose(i, j)
component igdp;, T;)(z, w). If at some(z° w®) e G this determinant is zero,
then the columns are linearly dependent olethence for somg; € C (which
are not all zero) and all = 1toc we havezj.:l;j(z‘ip;, T,)(zo,wo) =0, so
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(8pi, >-5-14T3) (2% w®) = 0 and(p;, 3 J Gt )(zo) = 0fori = 1toc. By def-
inition of Hf we havezjzlgt,(z )€ H( @ H , so for somes;, b; e C (j =
12.....t—c)weobtainy;_, £;1;(z%) = Y1 1ajs,(z°)+Z] 1b;5,(29). Since
the set(s;(z)}'Z5 U {5:(z0)} 5 U {1:(z%)}¢_, is linearly independent, we find that
¢ =0forj= 1tOc This contrad|cts the definition of thig, so the claim holds.

By (29) and (30) we conclude that (28) holds. We proceed to show that (27)
also holds. To see this, we observe that there exists an'(G*, HM) such
thatT + ¢, a,T; + h € T(GM, HM). Then, forv e ['(GY, V), it follows that
[T+ Y ail; + h, 0] = [T +Yi_a;Ti, 0] + [h, 0]. The first of these last
two terms belongs t6(G™, HY @ HM) by Lemma 1, and the second belongs to
I'(GM, HM @ HM) becausdd ¥ is involutive.

Recalling that every element of(z, w) is the value atz, w) of some such €
'(M,V) and recalllng also the definition @&f, we may ertell(Z w)(T(z w) +
Yo ai()Ti(z,w) + h(z,w), vzw) =0forallv,, € V(z,w) and all(z, w) € M.
Thus we may write thaf’' + >";_; a;(2)T; + h=n"eT(GM N). If we solve for
h here then we can use a similar argument to show/that(G¥, N), so (27)
holds and Lemma 3 is proven. O

Lemma 3 shows that the quotient®iz, w) by N(z, w) @& N(z, w) has complex
dimension less than or equald¢oWe already know the dimension is greater than
or equal tae, so itis exactly. The setin (26) is linearly independent fiar, w) €
GY (as observed earlier), and Lemma 3 shows that it s@answ) for (z, w) €
GM. Since theT; are chosen smoothly in the neighborha@dthe set of vector
fields

{ni}iZf U{ndiZf VT
is a local basis foff” over G™. Since the set&* cover M, it follows that the
T(z, w) form aC* bundle onM of complex dimension 2— ¢, which we call7.

Next we show thaf is involutive. Suppose we select an arbitrazy, w®) e
M, an open neighborhoatd™ of (z°, w®) in M, and sectionsky, R», ..., Ra—.
of (UM, T') such that{R;(z, w)}*;° is a basis forT(z, w) for (z,w) € UM.
Then, to show thaf is involutive, it suffices to show that Lie brackets of tRe
belong tol'(UM, T). In fact, we can letU” be theGM defined in (12) and let
the set{R;}27¢ be {n;}'Zf U ()25 U {Ti}5_; in GM. It will be enough to show
that, for (z, w) € GM, we have that#;, n;](z, w), [n;, 1;]1(z, w), [Tk, n:](z, w),
and [T, 7;](z, w) all belong to7 (z, w). These are all consequences of Lemma 3.
ThusT is involutive. We have thaf is self-conjugate because the local basis
{n;i(z, w)}f;{ U {n;(z, w)}f;f U {Ti(z, w)}i_, for T(z, w) is self-conjugate.

We need to show that, ,,: 7(z,w) — CT.S is an isomorphism for every
(z,w) € M. Once again it will suffice to assume that, w) € G, whereG
andG" are as before. We have that, ,(n:(z,w)) = s;(z) (i = 1to¢ — ¢),

T w(@i(z, w)) = §;(z) (( =1t0€ —c), andm(; )(Ti(z, w)) = t;(z) (i =1toc).
Since

{ni(z, w2y U {1z, w)lZf U {Ti(z, w)li_y
and
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{si(D)ZE U S ()2f U (1))

are bases (respectively) f@i(z, w) andCT. S, the mapr(; ) : 7(z,w) - CT.S
is indeed an isomorphism.

Now we prove the uniqueness statemenibf Every involutive bundle7’ on
GM betweenN @ N andCTM must contairll;(z, w) in its fiber over(z, w) (for
i = 1toc), since thef; are linear combinations of commutators of then;. Thus
T'(z, w) must contain7 (z, w). For ;) : T'(z,w) = CT ) S to be an iso-
morphism,7’(z, w) must have have complex dimensiofi-2c and so must be no
bigger thar7 overG¥, since the complex dimension @fis 2¢ — c. This shows
that7'(z, w) = T(z,w) for (z, w) € G™. Because open sets such@¥ cover
M, we must havel '(z, w) = T(z, w) for (z, w) € M; this proves the uniqueness
statement ofll) and concludes the proof that (1) implie{i;l)

Now we show tha(ll) = (Ill). We have thatr(, ,,): N(z,w) — HS is an
|somorph|sm and the complex dimensionfz, w) is £ — c. Fix (z°, wo) eM
and let{s;}/_s, {n;}'=¢, and the set&s and G be as defined in (11), (12), and
(19). Because the dimension df(z, w) is £ — ¢, we may defing#;} as in (23)
and{7T;} as in (24). Because; ): 7(z,w) — CT.S is an isomorphism and
{(s:(VZf U {52} 2 U {1i(2))e_, is a basis foICT, S, the set{n;(z, w)}'—{ U
{71 (2, w)ZE U {Ti(z, w))e_, is a basis fofT (z, w) for (z, w) € GM andG suffi-
ciently small. Let us define RE(z, w) to be the vector spad®.,, + R, | R.. €
T(z,w)}. We check that R constitutes a real involutive vector bundle owér
of real dimension 2 — c. It will suffice to check that R constitutes a real in-
volutive vector bundle oveG of real dimension 2 — ¢ for everyG¥ defined
previously, since suckz¥ cover M. Since{n;(z,w) : j = 12,....,£ —c} U
{nj(z,w): j=212,....,8 —c}U{Ti(z,w) : j=12,...,c} is a complex basis
for T(z, w) for (z,w) € G (recalling that theT; are real vector fields), it fol-
lows that{n;(z, w) + 7j(z,w) : j =12,...,£ — c} Ul{inj(z,w) + in;j(z,w) :
i=12, ..., 0—c}U{Ti(z,w): j=12,...,c}isareal basis for R&(z, w), SO
the (real) dimension of R&(z, w) is 2¢ — ¢ and ReT is a bundle. Also, RE is
involutive as the real part of an involutive bundle. By the Frobenius theorem (see
[War]) M is foliated nearz°, w®) € M by C* integral manifolds for R". The
complexified tangent space to such a manifoltkatv) € M must equal/ (z, w).

We know thatz . ., is injective on7(z, w); hence it is injective on R&(z, w)
also. By the inverse function theorem, néaf, w®) the integral manifolds of
Re7T are graphs over a fixed open subseSpfo we write that a neighborhood
of (z% w?) is foliated by graphs of mappings on an open sulisetf S where
7% € U. The complexified tangent bundles to these manifolds must &fudle
use the following notation.

(31) Let f be the function on an open subgétof S such that® € U and such
that the graph off is the integral manifold of R& through(z°, w®). Use
M/ to denote the graph of.

The (1, 0)-tangent space t&/ at(z, f(z)) includesN(z, f(z)) (since the whole
complexified tangent space 4/ at(z, f(z)) is T(z, f(z))). Any (1, 0)-tangent
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to M7 at(z, f(z)) projects to H; since projection is injective off (z, f(z)) =
CT(Z_f(Z))Mf, that tangent must belong 1(z, f(z)). This shows that thél, 0)-
tangent space tb/ at(z, f(z)) is N(z, f(z)).

Then the differential of the mapping: U — M/ such thatF(z) = (z, f(z))
from U to M/ carries H to N: for s/ € HS, if d.F(s)) is notinN(z, f(z)) then
(2, f2)(d; F(s])) = s/ isnotin H (contradiction), since . s, mapsV(z, f(z))
onto Hf and is injective o7 (z, f(z)). Thus F must be a CR mapping di, so
fisas well.

We now proceed to prove the property tiiHt) asserts for the-form ¢. Let
s e (U, H%). If K is a function ons, we writes.{K} to denote the action afon
K atz € S. (Then we regard, as an element of fiand identifys(z) with s.; we
uses, similarly.) For convenience we note that, sintés CR, it follows that

n(z2) —S(z)+Zs {f,}— (32)

j=1

belongs taV(z, f(z)) as the element of th@, 0)-tangent spac&/(z, f(z)) to the
graph of f at(z, f(z)) that projects ta(z).

We note that the functiog,, ;, . ;,(z, w) (defined in propertylll)) is the de-
terminant of thel x d matrix with (j, k) entry (9g;/9w;,)(z, w). Since at every
(z,w) € M the set{d, q;(z,w) : i =1, 2,...,d} is linearly independent (by (5)),
¢ (z, w) is nonzero for(z, w) € M. Thus, for some integels, io, ...,i; 1 <i; <
ip < --- < ig < m), we have thatp; ;, ,,(z% w® # 0. We claim that in
property(l1) it suffices to takeC(z) = 1/¢i, i,,....i,(z, f(2)) fOr z in a possibly
shrunken neighborhood of z° € §. Assume without loss of generality thatis
defined on all otV (by shrinkingU). Thus we will show that, fof € I'(U, H®)
andintegerg;, 1< ji < jo < ja<--- < jg <m,

PO G fO) R O
dqz( fO) Z’”( FO) "‘”( £O)
9a$7( JE) aau‘fjd( VAC) RS %(.,f(.))
) 33)
adszl( fO) gi,‘fl( £G) - ;51( )
aafz( Q) (;:‘fz( £ e a(:zz( )
d‘“( FO) Gt ) - dqﬂ'( {0))

is identically zero forz; € U. Let A(z) be the matrix whosédo, k) entry is
(09+/9w;,)(z, f(2)), let B(z) be the matrix with(o, k) entry(dq,/dw;, ) (z, f(2)),
and let detA(z), detB(z) be their (respective) determinants. Then (33) is equal to
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detB(z)5.{detA} — detA(z)5,{detB)

et B ()2 (34)

If we note tha®;, j,, js,..., j.(z, f(2)) = detA(z) and tha®,, i, is,...,i, (2, f(2)) =
detB(z), then we see what needs to be proved is the following result, which is
stated as a lemma because we will use it later.

LemMma 4. Suppose thatthe conditions of Theorem 1 are satisfi¢tl) holds
UcS; f:U — C™isaCR map whose graph is an integral manifold Re7;
ands € T'(U, HS). Then, for allz € U and for anyd-tuples{i;}¢_;, and {j;}¢_,
suchthatl < iy <iz < - <iy<mandl<ji < jo< - < jg <m,we
have

¢i1,i2,i3,...,id(zv f(Z))Ez{¢j1,j2,j3,...,jd('a f())}
- ¢)j1,j2,j3,...,jd(z’ f(Z))EZ{¢i1,iz,i3,...,id('v f())} = 07 (35)

Wherei, iy is,....ic» Pir. j. js..... ju are the functions defined ).

Proof. We letA, B be the matrices defined previously. Then we must show that

detB(z)s.{detA} — detA(z)s5.{detB} = 0. (36)
We have
An(z)  A(z) -+ Aw(2)
Axn(z) Ax(z) -+ Az(2)
d . . .
SR =D 5 ) SlA) o A 57
Au(z) Ag(z) - Awu(z)

where we calculate

14

@W“—Zaa uﬂmmm+zyw @ﬂmum

Observe that if we let

An(z) A - Aw)

Axn(z) Ax(z) -+ Ax(z)
v7(z) = det L R .:. L
Bwjl Bwjz Bwjd

An@) A - Awu)
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(where the row with thé/dw;,, k = 1tod, is theoth row), then fori = 1tod
with i # o we have

(9gi(z, f(2)),v°(2))

A11(2) A12(2) e A14(2)
A21(Z) A2(2) e A2d(Z)

=0l oo p) @) e G p [0 GO
Aa(2) A(x) o Aw(2)

for all z € U because théth andoth rows of the determinant are the same. For
I =o,

(0gi(z, f(2)),v%(2)) = detA(z). (39)

Write v? = Zzzl v7(3/dw;,). Combining these observations, we find that (37)
guarantees that

5.{detA} = Z ZSZ{A, vl

i=1 k=1
d £

(Z 70w (2 f@)5: (2]

m

+Za_ oy @ f(z))sz{fa})

(L

(z, F(@)5 Az v}

i=1 “k=1o0=1
d
+228_ oy, & S5 {fa}vk)
k=1 o=1
d
=Y (30gi(z, f(2)), n(2) AV (2), (40)

=

i=

wheren(z) was defined in (32). A similar argument shows that

d

5.{detB} = ) (334i(z, f(2)), n(2) A u'(2), (41)

i=1

where
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B1u(z) Bia(z) -+ Buw(2)

B1(z) Ba(z) -+ B2(2)
u(z) =detl 4 I
owiy owi, Swid

By(z) Ba2(z) -+ Bai(2)

and where, once again, the row with #y@w;, is theoth row. As before,

(0g;(z, f(2)),u’(2)) =0 (42)
if j # 0 and
(3q,(z, f(2)), u’(z)) = detB(z) (43)

if j =o. Then (36) is equal to

d

Y (90gi(z, f(2)), n(2) A ((detB(2)v'(z) — (detA(2)u'(z))),  (44)

i=1

where we note that, fof = 1 tod,

(3q;(z, f(2)), (detB(2))v'(z) — (detA(z))u'(2))

= detB(2)(3g;(z, f(2)),v'(2)) — detA(z)(dq;(z, f(2)), u'(2))
=0

by (38), (39), (42), and (43). By definition df(z, f(z)), (detB(z))vi(z) —
(detA(2)u'(z) € V(z, f(2)); this implies that (44) is identically zero fare U,
sincen(z) € N(z, f(z)). Thus (36) holds and hence (35) holds also, as desired.

O
Now that we know Lemma 4 holds, we have that (34) and (33) are also zero for
all z € U, as desired. This proves the last componer(i dj and hence we now
know that(Il) implies(lIl).

Now we assumélll) and prove (IV). Wemust show that the dimension of

N(z,w) is € — ¢ for (z, w) € M. We know there exists a nonzero complex-valued
function C(z) defined onU such that

C(2)¢(z, f(2)
= Z C(Z)¢i1,i2,...,id(z’ f(Z))dwil AN dwiz ANERIAN dwid

1<ii<ip<iz<--<ig<m

is ad-form with coefficients that are CR functions foe U. If s € (U, H®) then
5 {C()@(, f(-))} = 0forallz e U. Then, using the product rule for the differen-
tiation of wedge products, we have
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0=ys5{C}lo(z, f(2))

)
+ cm&{(Z a%( f(~)>dw,-) A (Z =20 ))dw,)

j=1 J j=1

A (Z —L (S ))dw,)}

j=1

=5:{C}o(z, f(2)

d m 9
+C)Y ((Z %(z, f(z))dwj) A (Z —2(z, f(z))dwj)
i=1 \\j=1 "/ j=1

m

0g;_
A (Z e f(z))dwj)

(éz
"2
(fj 9 f(z))dwj>A

=1 J

A (Z a—(z f@)dw )) (45)

j=1

(Z f(Z))Sz{Za}dw]

(Z f(Z))sZ{fU}dwj)

For fixedz € U, we claim that there exist}, v2, ..., v¢ in CTy,)(M,) such that,
fori,j=12,...,d,

(BQi(Z» f(Z))v U = 51]7 (46)

whered;; = 0ifi # jands;; = 1ifi = j. Recall from (5) thad/, is a generic CR
manifold inC™ of CR codimensionl. The 1-formdg;(z, f(z)) induces a linear
functional onCTy (M) in the following manner. Far € CTy,,(M;), mapx —
Li(x) = (3gi(z. f(2)). x). NotethatV (z, £(2)) = CT;5(M.). Sinceforali = 1
tod we haveL;(x) = 0forx e V(z, f(2)) ®V(z, f(2)) C CTy(M.), the map-
ping L; factors through the quotieftT,,(M,)/(V(z, f(2))®V(z, f(z))) to pro-
duce alinear functiondl,. Now CTy,(M;)/(V(z, f(2))®V(z, f(2)))isacom-
plex vector space of dimensiahsinceM, is generic. We claim that the induced
linear functionalsL; are a basis of the dual space®@ly(M;)/(V(z, f(2)) &
V(z, f(2))). If there exist;; € C (not all zero) such thaZle ¢ L; is identically
zero onCTy,(M.)/(V(z, f(2)) ®V(z, f(2))). thenY.?_, ¢, L; is identically zero
as a linear functional o8 7,y (M.); that is,(zleg“iaqi(z, f(2)), x) =0 forall
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x € CTy(M,). Leti be the imaginary unit and let: Ty, C" — Ty, C™ be
the complex structure mapping @) C™. Then, extending' to CTy;,(C™), we

recall thatJ(0/0w;) = i(d/dw;) and J(9/0w;) = —i(d/ow;) for all j. We find
that
d d
<Z§jaqj(z, f(), J(X)> = i<2§j361j(z, f(z)),X> =0
j=1 j=1

forall x e CT)"(Z)(MZ)

because"?_, ¢;dq;(z. £(2)) is a(l, 0)-form. ThusY ¢_, £;0q;(z. f(2)) is zero
as a linear functional o (CTy;)(M.)). BecauseM, is generic,CTy)(M,) +

J(CTy;(M;)) = CTy;)C™ (see [BER, p. 14]), SEle £;9q;(z, f(z)) is zero as
a linear functional oICTy,,C™:

d
Y ¢09;(z. £(2)) = 0.

j=1

This is impossible becaus¥., is generic. Thus the functionals{L;} described
previously are linearly independent in the dual spade®hf,,(M,)/(V(z, f(2))®
V(z, f(2))) and thus are a basis of that dual space (which has dimedsidret
{#7}4_, be a basis oC Ty, (M,)/(V(z, f(z)) ® V(z, f(z))) that is dual to{L,}
and, for every = 1tod, letv' be an element of 7y, (M) whose image in the
quotientC Ty, (M.)/(V(z, f(2)) ®V(z, f(z)))ist'. The{v'} satisfy (46), as de-
sired. Note that this implies th&d,, g;(z, f(z)),v/) = §;;, sincev’/ has no terms
involving d/dz; for anyk.

Let v be an arbitrary element of(z, f(z)). If R is the rightmost side of (45)
then we calculatéR, v AvIAvZA -+ ADFA - Av?), whered* indicates thab*
is notin the wedge product. Sin¢&, g;(z, f(z)),v) = (3g;(z, f(z)),v) = Ofor
all j = 1tod, we have(5.{C}¢p(z, f(2)), vAVIAVZA - ADKA - AVY) =0, as
every term of the expansion contains a factor of the gy (z, f(z)), v). Write
the other termin (45) a8(z) Z;’Zl R; and consider thah termR; of this summa-
tion. If i # kthen(R;, v AvtAvZA---ADFA--- AvY)is zero, because every term
in the expansion contains a factor of the f(J(rE;?’:l(aqk/awj)(z, f(2)dw;, X),
whereX is one ofv, v, v2, v3, ..., v¥ L v¥tL . v and every such factor is zero
by (46) and the definition af. Thus

(RLUAVEAVEA - ADFA - AT
d
= C(z)<ZR,~,v/\vl/\v2/\~~~/\f1k/\~~~/\vd>
i=1

=C(2) (R, v AVEAVZA - ADEA - AT,

Since (46) holds an¢h,, ¢;(z. f(z)),v) = 0for j = 1tod, the only nonzero term
in the expansion of (z) (R, v AVEAVZA - ADFA - AVY) s
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m

(—1)k1C(z)<<Z—(Z f(z))dwj) ><(Z a—(z f(z))dw,> >
<<ié

j=1

<<Zl—<z f(z))dw,), >;

by (46), this equals

(Z f(Z))SZ{Zg}dw]

(& FDE fa}dw,>, > y

(=D~ 1C(z)<223 ™ (z [(2))5:Az0)dw;

j=1o0=1

Z‘Ik _ =
+NZ=1 T (z, f(2)5:A fo}dw;, v>

_ ¢ 3 " 3
- (_1)k1c<z><aaqk<z, f(2), (Z s:Azilo—+ Zsz{fj}a—) A v>.
Zj = wj

j=1 J

By (45) this quantity is zero, and this holds for= 1 tod. SinceC(z) is never
zero, we find for alk = 1 tod that

£ m

<53qk(z, f(2)), (Zsz{zj + Zsz{ff ) > =0.

j=1

Itis also true that, for = 1toc,

_ ‘ R 3
<pzfz ;sz,azj ;sf,awj »

sincep; depends only og and sincev has no terms involving any/dz;. By defi-
nition of V(z, f(z)) and sincey was chosen arbitrarily i% (z, f(z)), this implies
that

Zsz{z, +Zsz{f, o €N f@).

Thisistrue foralk, € HS, sonr(., 4., mapsN(z, f(z)) onto H. We already know
from Proposition 1 that this mapping is injective, 8Q, /() : N(z, f(z)) — H?
is an isomorphism ani¥(z, f(z)) must have the same complex dimension és H
which is¢ — ¢. The foregoing argument holds for an arbitrarg U. Since any
point (z, w) in M is on the graph of arf defined on some sudti c S, we find
that the complex dimension &f(z, w) is ¢ — ¢ for all (z, w) € M, as desired.
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Now we must prove (10). Once again we (&, w®) € M through which there
exists the graph of a CR maf: U — C™ with the properties irfl11) for some
neighborhood/ of z° in S. We note that every element of(z, f(z)) for z €
U has the forms, + "7, s.{fi}(3/0w;) for somes, € HS: if n, € N(z, f(2)),
thenrr(z,f(z))(nz) € H‘Zg Lets, = ﬂ(zyf(z))(l’lz). Thensz + Z;’;lsz{f,}(é)/awl) €
N(z, f(2))andm(;, r)(n2) = 7z, 1)) (Sz+Z§":1 Sz{fi}(a/awi)) = s.. By Propo-
sition 1,7, 2y N(z, f(z)) — H? is injective, so

n; =s;+ 12; Sz{fl}a_,
as claimed.

It suffices to prove (10) at points on the graph of a particular sticdince the
graphs of suchy foliate M locally. The dimension oiN(z, w) is £ — ¢ for all
(z,w) in M. For allz € U we haveN(z, f(z)) C CT{, ;) M/, so the restriction
of N @ N to M/ is a subbundle o€ TM/. For a shrunkert/, we may construct
the local basis fo€TS nearz° as in (23); we writeG = U. Then we may con-
struct the vector field; near(z°, w®) (see (24)) as at the beginning of the proof.
Since theT; are commutators of vector fields whose valuesiphare tangent to
M/, the values of th&; are also tangent tt/”. In fact, any commutator of vector
fields in['(GM, N) andI'(G¥, N) has values o/ that are tangent td//.

We conclude that, to prove (10) for the vector fielgsindicated there, it suf-
fices to prove that if € G then

(0p1(z, f(2)) Adpa(z, f(2)) A -+ Adpe(z, f(2))
Adqi(z, f(2), FFAFZA - AF =0 (47)

forall F/ € CT;, piy M” withi =1,2, ..., c+1 Nowfix z € G so that(z, f(z))
is in the graph off. There is a complex linear isomorphism

I: CTo(R¢ x C“¢) — CT.. jop M’

that mapsC7,-°({0} x C*) onto (CTé}Z))M = N(z, f(z)) and also maps

CTy({0} x C4=¢) ontoCT, . MY = N(z. f(2)). (Suppose thak has coor-
dinatesy;, i = 1,2, ..., c, and thatC*~° has coordinates, i =1,2,..., ¢ —c;

then simply let/(3/9¢;) = ni(z, £(2)), 1(3/3%) = ni(z, £(2)), andl(a/axi) =
T;(z, f(z)), wheren; andT; are defined as in (19) and (24), respectively.) The
map! induces an isomorphism on the cotangent spaces

I*:CT; f(z))Mf — CT§(R® x C°).

Note that allap;(z, f(z)) and dq;(z, f(z)) may be regarded as elements of
CT} 4., M’ by virtue of the restriction of those forms @T. ;. M/. Let ¢;
be the cotangent i€ 75 (R¢ x C¢¢) given byy; = I*(dpi(z, f(z))) for all
i =1toc; more preasely, we have that#f € CTo(R¢ x Ct=) then(y;, F.) =
(I*(dpi(z. f(2))), F2) = (3pi(z, f(2)), I(F.)). Also write§; = 1*(qi(z, f(2)))
foralli =1,2,...,d, so then(&;, F.) = (3gi(z, f(2)), I(F.)). We know that if
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F, e CTy ({0} x C=) then (¥, F.) = (3pi(z, f(2)), I(F.)) = O foralli =

1toc, sincel(F.) is a(l, 0)-tangent toM” at (z, f(2)). Slmllarly, (&, F)=0

foralli =1tod. We also have thaty;, F.) = 0 and(&;, F.) = 0O for all ¥;, &

and for F. € CT'({0} x C¢°), since thenI(F,) is a (0, 1)-tangent toM/ at

(z, f(2)). By Lemma 2YiAY2 AY3A - A A& = 0 as ac + 1)-cotangent
in CT§(R¢ x C'~¢); hence, for allF?, 13"12, ey EHL e CTo(RC x €40,

(YLAV2 AV A - AYe A&, FAAFZA - A FSTY = 0. (48)

Temporarily writingy.y1 = &, we find from (48) that

c+1

0= ngr(a) l_[ v, F2O)

=Y SgNo)(dgi(z, f(2)), IES ) [ [(0picz, (), IETD)),  (49)

i=1

whereo ranges over all permutations {df 2, 3, ..., ¢ + 1} and sgrio) is the sign
of such a permutatios. Then (49) implies that

(0pa(z, f(2)) AOp2a(z, f(2)) A+ Adpe(z, f(2)) A dqi(z, f(2)),
IFHY NI(EH A - ANFST™H) =0 (50)

forall FL F2, ..., F* e CTo(RCxC¢). Becausd is anisomorphismitfollows
that, as the”/ range oveCTo(R® x C'=¢), I(F!) ranges ove€ T, ;.)M’. Thus
we conclude from (50) that (47) holds for &ll € CT; .,M’,i =12,...,c+L
As observed earlier, this implies (10). The proof thiat) implies (1V) is there-
fore now complete.

Now we must prove that ifl)—(1V) hold then the last statements of the the-
orem hold. While proving thatll) implies (l11), we provedthat the graphs in
(111) arise as integral manifolds of Reand that thel, 0)-tangent space to such
agraphf at(z, f(z))is N(z, f(z)). Finally, suppose a CR mapexists as stated
in the theorem, and le¥Z¢ denote its graph. Then the complexified tangent space
CT;, 42y M? to the graph of containsV(z, g(z)) (as assumed); hence it contains
N(z, g(2)) ® N(z, g(2)) (since the graph of is a real manifoldCTM? is self-
conjugate) and so it contaif(z, g(z)) (sinceCTM? is involutive, CTM{, .
must contairT;(z, g(z)) for i = 1toc, whereT; is defined in (24)). In fact, for
all z in the domain ofg, CT ,(,)) M*# equalsT (z, g(z)) because each has com-
plex dimension 2 — ¢. Thus the graph of is an integral manifold for R and
so, by the Frobenius theorem, it must be one of the graphs(fridin O

5. Global Results

The next theorem is a statement about the existence of CR maps whose graphs lie
in M and whose domains are all 8f
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THEOREM 2. Suppose thaf and M satisfy(4) and (5) (respectivelyand thatS

is connected, simply connected, and of finite tya every point. Suppose also
that My = {(z,w) € M : z € K} is compact for every compa&t C S. Suppose
that any of propertiegl)—(1V) of Theorem 1 hold. Then for evety®, w®) e M
there exists a unique CR magpy S — C™ whose graph is an integral manifold
of Re7T and which passes through®, w°). Let¢;, ;, ..., (z, w) be the function
defined in(l11) of Theorem 1. If there exist CR functions;, ... ;,(z) defined for

z € § such that

0= > huipif@Piin gz [ #EO (5D

1<ij<ip<-—-<ig<m

forall z € S, then
Fllae C(Z)¢i1,i2

whereC(z) = 1/Q(z) and1l < i; < i < --- < iy < m. If d = m then such
Riyis,....i, Will eXist.

AAAAA

(2, f(2)) is a CR function ors for integersi;, (52)

.....

Note. Theorems 3 and 4 give natural circumstances where fundtions. ;,
exist such that property (51) holds.

Proof of Theorem 2By Theorem 1, properties (IJ]1), (I11), and (V) are all
equivalent. Hence there exists an involutive subbundl§ Ré& the real tangent
bundle toM whose integral manifolds are locally graphs of CR maps on open
subsets of. Pick (z°, w®) € M and letL be the maximal connected integral man-
ifold of Re 7 that passes through®, w®). (For existence of such a manifold, see
[War, Thm. 1.64].) We claim that is the graph ofa CR map: S — C™. (Note
that L is the union of submanifolds that are graphs over open subsetsthg
topology we use fol. is that generated by the topologies of these graphs taken
together.) First we claim that the projection mappidgrom L to S is a cover-
ing map (we use the definition from [M, p. 118]). We show that it is surjective and
toward this end we show thadt(L) is open inS. Fix z € S in P(L); then there
exist (z, w) € L and an integral manifold of RE passing througliz, w) that is
the graph of a CR function in a neighborhadaf z. This graph is contained ih
because the maximal integral manifdldof Re7 contains any integral manifold
of Re7 passing through a point @f (see [War, Thm. 1.64]). ThuB(L) contains
U. This shows that the projection @f to S is open inS. If P(L) is not all of S
then, sinces is connected an@ (L) is open, there exists@° pathy : [0,1] — S
such thaty ([0, 1)) ¢ P(L) andy (0) = z° buty (1) ¢ P(L). We claim that there
exists a continuoug’: [0, 1] — L such that/’(0) = (z°, w® andP oy’ = y.
Before proving this, suppose that we have two continuous paths’ such
thaty’: [0,¢'] = L, y”:[0,¢"] — L, y'(0) = y"(0) = (z°% w?), ¢’ < ¢”, and
Poy =Poy” =yon[0¢]. Then, infact,y’ = y” on [0, ¢']. To see this,
note thaty’(0) = y”(0), so the domain of coincidence of, y” is nonempty. The
setwhere/’ = y” is closed in [Q¢’] because/’ andy” are continuous. It is also
open: ifz; is a point where/'(t1) = y”(t1) then, in a neighborhood of that point
in L, it follows thatL is a graph over an open neighborhood?gf/'(#1)) in S and
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so P maps a neighborhood ¢f(#;) in L homeomorphically to a neighborhood of
P(y’(t1)) in S. Forz nearr, bothy’(r) andy”(¢) lie in that neighborhood i of
y'(t1) and soy’(t) = y"(¢) for ¢t neart;. Thus the set wherg’ = y” in [0, ¢'] is
open, closed, and nonempty; hence it equals’[p as desired.

Now let y'(0) = (z% w?). Neary’(0) in L, L is a graph over a neighborhood
of y(0); hence, for some > 0 we may define a continuoys: [0, e] — L such
thatP oy’ = y on [0, ¢]. Let g be the supremum of atl [0, 1] such that we
may define a continuous : [0, t] — L such that’(0) = (z%, w®) andP oy’ =
y. Any two such paths coincide on their common domains by the previous para-
graph. Then there exists a continugus [0, tg) — L such thatP oy’ = y. Let
K =y ([0, to]) and let(z, w) be a limit point inMy of the open path/'([0, tg))
of the form lim,_, . ¥'(¢,,), wheret, 1 to. (Recall thatMg is compact.) By The-
orem 1, there exists a neighborhog of (z, w) in M that is foliated by graphs
of CR functions on an open subggétof S, where the graphs are integral mani-
folds of ReT. Fort neart, y (¢) lies inU and, for larger, y'(t,) lies inU on
one of the foliating graphg”: U — C™. Since the image of’ is connected and
sincey (¢) lies in U for ¢ neart, it follows thaty’(z) lies only on the graph of a
particular CR mapping': U — C™ for ¢t nearto. The graph off is an integral
manifold of ReT for some points irl. (the points on the patf'(¢) for ¢ nearzg).
SinceL is maximal,L contains the graph of. Furthermore, we may use this fact
to extendy’ to a neighborhood af, in [0, 1]. If zg < 1, this contradicts the maxi-
mality of ¢, Sozp = 1 and we have the path as desired. However, this implies
that P(L) containsy (1)—a contradiction—so the assumption th4t.) is not all
of S is false: we thus have(L) = S.

We recall again from Theorem 1 that, given aayw) € M, there exist an open
neighborhood’ of z in S and an open neighborhood 6 of (z, w) in M such
that UM is the disjoint union of graphs of CR mags U — C™, where the
graphs are all integral manifolds of Re Fixing z = z/, we find such open sets
U,, UM for everyw € C™ such that(z’, w) € M. SinceM_ is compact, finitely
many of theUM coverM N {(z,w) € M : z = z'}. Take the (finite) intersection
of all associated/,, and letU be the path component of it that contaifisThen
U is open (as a path component of the finite intersection of open sets) and, given
any point of the form(z’, w) € M, there exists a CR map: U — C™ whose
graph containgz’, w) and which is an integral manifold for RE (That is, given
fixed z' € S, there exists a fixed/ for all w € M,/ such that such ayf exists.)
Thus, givenz’ € S, we have found a path-connected neighborhtodf z’ in §
such thatP~1(U) is the union of disjoint CR graphs ovéf, each of which is a
path-connected open subsetlofind each of which projects ontd through P.
This proves thaP : L — S is a covering map.

Next we claim thatP: L — S is injective; this will show that. is a graph.
Suppose it is not injective; then there exiSte S, (z° w°) € L, and(z% w?) €
L with w® # wk SinceL is a connected manifold, it is path connected, so there
exists a path ir. from (z°, w°) to (z°, w') that projects to a path isi from z° to
7. By the path lifting lemma (see [M, Lemma 3.3]), singés simply connected
and sinceL is a covering space of, we have(z°, w®) = (z°, w') as desired.
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ThusP: L — Sisinjective (as desired) andis the graph of a mapping: S —
C™. Then f is CR becausé is the union of graphs of CR mappings defined on
open subsets d. If another mapping’: S — C™ exists with the properties that
f has in Theorem 2, then its graph is an integral manifold offRbat passes
through(z°, w®). Since the graph of is L (i.e., the maximal connected integral
manifold of ReT that passes through®, w®)), it follows that the graph off is
contained in the graph of and sof = f, as desired.

We need to show that— C(2)¢j,, ».....j.(z, f(2)) is CR; if 5, € HS then, for
all integersjy, jo, ..., jn Suchthatl< j; < j» < --- < j; < m, we have

EZC(')‘pjl,jz,.“,jd('v f())
= C(Z)2< Z hil,iz ..... id(z)(bil,iz,...,id(Z’ f(z))

1<it<ip<-<ig<m

X Ef{¢]1,]2 ,,,,, jd('v f())} - d)jl,jz ,,,,, jd(za f(z))
x S g (D5:AGini s f(-))}>

1<ii<ip<--<ig<m

= C(Z)Z Z hil,iz ..... id(Z)

1<ij<ip<-—-<ig<m

X (5:A0j, jor oo ja o FONPins i, ia (25 f(2))

- Ez{¢i1,i2 ..... id('s f('))}¢j1,j2,..4,jd(z» f(Z)))
=0
from Lemma 4. (Note that,{A;, i, ... it = 0 forall z € S, sinceh;, i, .. i,
is CR.) This being true for alf, € HS and allz € S, we find thatz —
C()Pjr, j»,....ja(z, f(2)) is CR as desired.
If d = m then the note before the proof of Theorem 1 applies: there is only

oned; i, ....i, = $1,2,3....» and we may simply le€(z) = 1/¢123 ... .m(z, f(2)),
which is never zero fog € S. OJ

If the conditions of Theorem 2 hold, then:

(53) F is the set of CR mappingg whose graphs lie il and are maximal
integral manifolds of R§".

CoroLLARY 1. Suppose thaf and M satisfy(4) and (5) (respectivelyand that

S is connected, simply connected, and of finite typeevery point. Suppose also
that My = {(z,w) € M : z € K} is compact for every compaét C S. Suppose
that any of propertie¢l)—(IV) of Theorem 1 hold and that, in additiof,is the
boundary of a bounded domain in C¢, ¢ > 2. ThenM is the disjoint union of
graphs of CR mapén ), all of which extend to be continuous énand analytic
on D; these extensions are solutiong RH).

Proof. The CR maps that arise from Theorem 2 &r& on S; they extend to be
analytic onD by the global CR extension theorem. (This is the theorem commonly
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known as Bochner’s extension theorem; we choose not to use this attribution be-
cause of the conclusions stated in [Ra].) O

Corollary 1 provides circumstances where the Riemann—Hilbert problem (RH) for
M is solvable. Iff € F then we letf = (fi, f, ..., f) denote the analytic ex-
tension off to D (if the extension exists).

THEOREM 3. Suppose thaf and M satisfy(4) and (5) (respectivelyand thatS

is connected, simply connected, and of finite tya every point. Suppose also
that My is compact for every compadt in S and that, for allz € S, M, is a
convex hypersurface that encloses the origit€ith Finally, suppose that any of
properties(l)—(1V) of Theorem 1 hold. TheM is the disjoint union of CR maps
f: S — C™ such that there exists a nonzero complex-valued funefian de-
fined forz € S for which

0
2 CR) 5 (2 f(2) (54)
wi
isa CR functionor§ fori =1, 2,3, ..., m.

Proof. From Theorem 2 we may conclude that, for any pointinthere exists a
CR mappingf: S — C™ whose graph is contained M and passes through that
point. As (54) is nothing more than condition (52) in the case 1, we need only
show the existence d¢f; (i =1, 2, ..., m) such that (51) holds in the cage= 1.
That is, we must show that

m

d
Y (D)5 (2 f(2) # 0 (55)
i=1 Wi

forallz € S, whereh = (hy, ho, ..., hy). If f = (f1, fo, ..., fw) thenit will suf-
fice to leth; = f; fori = 1tom. The reason for this is that, by convexity of the
surfacesM, for all z € S, the complex tangent plane 3, in C™ at f(z) does not
pass into the region enclosed b and so does not pass through the origif&f
This complex tangent plane has the form

"9
{v = (v1,v2,V3, ..., V) €C™: ; 8%1[(& f@)vi = Z}
for some complex constagt. We cannot have, = 0 because the plane does
not pass through the origin. ThYs!_;(dq1/dw;)(z, f(2)) fi(z) = ¢, # 0 for all
z € S, sincef(z) belongs to the tangent planef, at f(z). Thus (55) holds and
Theorem 3 holds. O

Note. Since all thatis required in Corollary 2 is that t@mplextangent planes
to M, not pass into the interior of the region enclosedMsy, the theorem need
only require thatM, enclose a region that Iseally convexor hypoconvex(See
[K], [Wh], or [H6, p. 290].)

CoroLLARY 2. SupposeS and M satisfy all the conditions of Theorem 3 and
that, in addition,S is the boundary of a bounded domainin C*, ¢ > 2. Then
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the CR maps itF that arise from Theorem 3 all extend to be continuougmnd
analytic onD; these extensions are solutiong BRH).

Proof. This is again an application of the global CR extension theorem. [

6. Further Global Results. Extremal Properties
If Y is any compact subset &f" then thepolynomial hullof Y is the set

Yy = [z eC” | |P(z)| < sup|P(w)| for all polynomialsP on (C"}.
weY

We say that is polynomially conveif ¥ = Y. Theorem 4 shows that, under some

circumstances, the properties thfgpossesses ifill) of Theorem 1 guarantee that

f possesses an extremal property.

THEOREM 4. Suppose that and M satisfy(4) and (5) and thats is a hypersur-
face bounding a bounded strictly pseudoconvex ope®saich thatD is poly-
nomially convex. Moreover, l&t be connected and simply connected. Suppose
that, in(5), the defining functiog, (z, w) satisfies the property that, for alle S,

q4(z, w) is strictly convex as a function af in a neighborhood of,. Suppose
that, fori =1, 2,3, ...,d — 1, the defining functiog; has the form

qi(z,w) = Re(z a}(z)wj)

for some matri>(ai)m ._, of functions analytic in a neighborhood B, where the

determinant of(a ') is never zero oD. LetM = {zw)e D xC": gi(z,w) =
0,i=12,. — 1} and M. = {w : (z, w) € M}. Assume thal! is compact
and that, for aIIz € S, the origin of C™ is in the boundedconve} component of
M., \ M.. Suppose that any of the properti@3—(IV) of Theorem 1 hold. Then
the setF is well-defined and, for alf € F, the graph off in D x C™ lies in the
boundary ofi as a subset off. In particular, g|venf e Fandsome® e D, we
havek = f as the only continuous mappittg D — C™ such thatk is analytic
in D, k(z°) = £(z°), andk(z) belongs to the convex hull 81, for all z € S.

Note. By Proposition 1(iii), in order to verify that (1) of Theorem 1 holds we
need only check that (9) holds.

Proof of Theorem 4SinceD is strictly pseudoconveX is of type 2 Hence the
conditions of Theorem 2 and Corollary 1 are satisfiedFsexists. By an analytic
change of variable that is linear in, we may assume without loss of generality
thatg;(z,w) = 2Rew; fori =1,2,3,...,d — 1. Fix f € F. Then Refi(z) =0
fori =1,2,...,d —1landforz € § = dD, so Refi(z) = 0 forz € D and the
graph of  over D is contained inM. Then, lettingy denote thel-form defined

in Theorem 1, we have
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¢(z,w) = Z aﬂ(z, w)dwi A dwa Adws A -+ Adwg—1 A dwj,
i—d awj

where¢1o3 . a-1;(z,w) = (9g4/0w;)(z,w) for j = d to m. Furthermore,
> imq(39a/3w))(z, f(2)) fj(2) is nonzero for allz € S becauseM. is a con-
vex hypersurface ifw € C" : Rew; = 0,i = 1,2, 3,...,d — 1} such that
M, encloses the origin. (The reasoning is similar to that used in Theorem 3.)
This means that (51) holds, whetg, 3 . 4-1; = fj for j =d tom, soC(z) =
1/Z;f’=dﬁ(z)(8qd/8wj)(z, f(2)). Therefore, conclusion (52) of Theorem 2
holds. Letg;(z) = C(z)(dq4/0w;)(z, f(z))forze Sandforj =d,d+1,...,m.
Forj = 1tod -1, letg; be the zero function oD. Then, by (52)g; is CRonsS. Let
g: S — C™ be given byg = (g1, g2, ..., gm) = (0,0, 50,84, 8a+15 -5 &m)-
Then, by the global CR extension theoregnextends continuously tb and analyt-
ically to D to produce a mapping = (g1, 82, --., &m)- Sinced_1~, fi(z)gi(z) =1
for all z € S and sincef andg both extend analytically t®, neitherf nor g can
be zero anywhere of. Let B,,(R) be the open ball of radiug about the origin
in C™. SinceD is polynomially convex, so i® x B,,(R) for anyR > 0. Choose
R > 0solarge that! c D x B,(R). Sinceg is never zero o, the set

W(z,t) = {w eC™: Zg,-(z)w,- = t}

i=1

is a complex hyperplane i@i” for anyz € D andr > 0. For anyz € D andr > 1,
this hyperplane comes no closer th#@k to the origin, wherek is the maximum
modulus ofg on D. Fix tg so large thaty/K is greater tharR, and let

W) = {(Z,W) eDxC": Z&;i(z)wi — t}.

i=1

Then, ift = rg, W(to) does not mee. Let 11 be the infimum of alk such that
W(t) does not meeM, and suppose that > 1. Then the functionF,(z, w) =
1/(—t + (X741 8(2)w;)) is defined in a neighborhood M inDxCmforey <

t < to. SinceD is strictly pseudoconvex; is uniformly approximable by func-
tions analytic in a neighborhood &f. (This theorem comes from [Li; He].) Since
D is polynomially convex, the Oka-Weil theorem in turn guarantees ghit
uniformly approximable by polynomials ob fori = 1,2,...,m, SO F, is the
uniform limit on M of functions analytic in a neighborhood f in C* x C”™ for

nh <t < tg. Again by the Oka—\Weil theorem, for < ¢t < 1o we have thatF; is
uniformly approximable by polynomials oM, so the supremum of; on M is
less than or equal to the supremum#pfon M (by the definition of polynomial
hull). For the same, we can see thak¥, is uniformly bounded or: for every

z €S, M. is a strictly convex hypersurface M. = {w € C™ : (z,w) € M} and
W(z,1) N M. is tangent toVl in M. at f(z). Thus, foralls > 1, W(z, ¢) is a dila-
tion of W(z, 1) away from the origin o™ (which is contained in the convex hull
of M,), soW(z, t) is disjoint fromM,. Fort > t; > 1, the distance fronW(z, 1)
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to M, is then bounded below ine 3D, so F; is uniformly bounded o/ for ¢ >
t > 1. We conclude, from the observation that theare uniformly approximable
by polynomials on! for r, < ¢ < to, that theF, are uniformly bounded ot/
forn, <t < to. This is impossible because, fonearr,, the singularity set(r)
of F, approacheM by definition oft;. Thus we must havg = 1 and that¥(z) is
external toM for ¢ > 1. Note that the graph of — £ (z) lies in M and also lies
in W(r), sinced_", 8:(z) fi(z) = 1 for all z € D. Thus the graph off lies exter-
nal to M but insideM. This being true for alt > 1, we find that the graph of is
in the boundary o/ as a subset aff, since every pointz, f(z)) on the graph
of f over D is the limit point of a set of point§(z, tf(z)) it > 1} in M that is
external toM.

Finally, supposé exists as indicated in the theorem. Then the function
Y ", 8i(2)ki(z) — t is nonzero for > 1 andz € dD because, as we have shown,
W(z, t) is disjoint from M, (and so disjoint also from the convex hull &f;) for
allz € 9D andr > 1 Thusz — Y ", 8(2)ki(z) — t is nonzero forz € D as
well. If we take a limit ag — 1+, we find from Hurwitz’s theorem that —
Y "1 8i(2)ki(z) — 1is either identically zero o or nonzero for € D. The lat-
ter cannot be the case becadsé ; §:(z%)ki(z%) —1= 37, 8:(z%) fi(z®) —1=
0. SinceW(z,1) N M. is a tangent plane td/. in M. at f(z) for all z € aD,
the only pointw on bothW(z, 1) and the convex hull oM, is f(z). But since
S 8i(2)ki(z) —1=0forallz € aD, it follows thatk(z) is in W(z, 1); itis in
the convex hull of\Z, by assumption. Thuks(z) = f(z) for all z € 3D and hence
for all z € D, as desired. O

WhenM has fibersM, that are real hypersurfaces@t’ (i.e.,d = 1), the follow-
ing re-statement of Theorem 4 is of interest.

CoroLLARY 3. Suppose thaf and M satisfy(4) and (5) and thatS is a hyper-
surface bounding a bounded strictly pseudoconvex opeh sath thatD is poly-
nomially convex. Lef be connected and simply connected. SupposeMhat
compact and that, for everye S, M, is a hypersurface enclosing a strictly con-
vex open set ilt” such that the origin ofC™ lies in that open set. Suppose that
any of the propertie¢l)—(IV) of Theorem 1 hold. Then the sgtis well-defined
and, for all f € F, the graph off in D x C™ lies in the boundary ofZ. In partlc—
ular, givenf € F and some? € D, we havek = f as the only mapping: D —
C™ such that is analytic inD, k(zo) = f(z%), andk(z) belongs to the convex
hull of M, for all z € S.

Proof. This is simply the casé = 1 of Theorem 4. O

In Corollary 4, we consider the case where the functiﬁ}ware defined only for
i=1tod — 1

CoroLLARY 4. Suppose that and M satisfy(4) and (5) and that$ is a hyper-
surface bounding a strictly pseudoconvex bounded opeh sath thatD is poly-
nomially convex. Lef be connected and simply connected. Suppose théi),in



644 MARSHALL A. WHITTLESEY

the defining functiog, (z, w) satisfies the property that, for ale S, ¢,(z, w) is
strictly convex as a function af in a neighborhood oM, . Suppose further that,
fori =123, ...,d — 1, the defining functiog; has the form

qi(z,w) = Re( Za}(z)w,-)

for some matrix(e; )’" 197} of functions analytic in a neighborhood 6. Let M
be as before, and assume thidtis compact and that the origin of” is in the
bounded(convey component off, \ M. for all z € S. Suppose that any of the
properties()—(IV) of Theorem 1 hold, that > 2¢, and thatd — 1 < ¢. Then
the setF is well-defined and, for alf € F, the graph off in D x C" lies in the
boundary of as a subset off. In particular, givenf € F and some® € D, we
havek = f as the only continuous mappittg D — C™ such thatk is analytic
in D, k(z°) = £(z°), andk(z) belongs to the convex hull 81, for all z € S.

Proof. The assumptions are different from Theorem 4 in that the man;'ix is
defined only fori = 1tod — 1 and we requird — 1 < ¢ andm > 2¢. Since (by
(5)) thed,, ¢; are pointwise linearly independent 8h (i = 1tod — 1), the matrix
(o '(z)) has maximal rank for af € S and so for alk: € D. By [SW, Thm. 2.2],
the matnx(a ') can be extended to be defined foe 1 tom as in Theorem 4, so
that the determlnant (ﬁx ') is nonzero onD. Corollary 4 then follows immedi-
ately from Theorem 4. O

7. Examples
We now present some examples. [Bgtbe the open unit ball i©”.

ExampLE 1. Letg = (g1, g2,...,8gn) andk = (kq, ko, ..., k,,) be C"-valued
mappings analytic in a neighborhood of the closed unitBailh C*. Suppose that,
foreachi =1,2,...,m, g; is never zero omB,. In (4), let us suppose thatis the
unit sphere irC¢ soc = 1 andpi(z) = ||z||? — 1, where| - ||, denotes Euclidean
length inC”, n > 1. In (5), letd = 1andgi(z, w) = Y7 |gi(2)w; — ki(z)|? —
SOM = {(z,w) €S x C" : Y31 ||gi(z)w; — ki(z)|> — 1= O}. We claim that the
mappings determined by Corollary 1 are all mappings of the form

Bg—)(cm,
i f(2) = (kl(z)—i-al ko(z2) + a2 km(z)—l-am)
T\ s 7 g2 T g2

wherea = (ay, a,...,a,) € C™ is a constant of modulus T'he graphs of
these maps inS x C™ clearly foliate M. Furthermore,(dg1/0w;)(z,w) =
gi(2)(gi(Dw; —ki(z)) fori =1,2,...,m, s0(3dq1/0w;)(z, f(2)) = a;gi(z) for
all suchi. Sincea; is constant, it is CR off and, if we letC(z) = 1, then(l1l) of
Theorem 1 is satisfied.

Now suppose that = m, g =1, andh; = 0fori =1,2,...,m. LetT =
(Ty, T>, ..., T;) be an automorphism aB,. Then the graph of over 8B, in
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dB; x By lies in M. However, such a graph is not in the boundary of the polyno-
mial hull of M (which is B, x B;) and hence, by Corollary 3, these graphs do not
arise from elements of. Also, (3g1/dw;)(z, T(z)) = T;(z). Given anyz° € 8B,
there is no nonzer@'(z) defined ondB, such that, for ali, C(z)T;(z) is CR in

z nearz? if there were, thery_ 7, C(2)Ti(2)Ti(z) = .11, C(2)|Ti(2)|? = C(2)
would be CR neaz®. Thus, for alli, T;(z) would be CR irg nearz®, which is im-
possible since this would imply that the derivativelobn the sphere is degenerate
nearz®.

ExAMPLE 2. Letg = (g1, g2) be aC2-valued analytic mapping defined in a
neighborhood oB,. We suppose that = 3B, with p1(z) = ||z]|? — 1 As for M,
we letd = 2 in (5), so thatV is defined inS x C? by two real-valued functions
g1, g2 defined as follows. Let = (h1, o) be aC?-valued mapping analytic in a
neighborhood o, that is never zero oB,. For (z,w) € § x C?, letgi(z, w) =

lw— g(z)||§ — ||h(2) ||§ andgz(z, w) =2 Re(ZiZ:1 hi(z2)(w; — g,»(z))). Consider
the class of functions

S —- C™
7> g(2) + e (—ha(2), hi(2)),

where6 ranges over the real numbers. Then we claim that the graphs of these
functions foliateM and in fact satisfyll1) of Theorem 1. We led be an arbitrary
real number and lef(z) = g(z) + e(—ha(z), h1(z)). Then we calculate

q1(z, £(2)) = llg(2) + e"(=ha(2), h1(2)) — (D13 — (2113

= [[(—h2(2), hi(2) 13 — IIA(2)]IZ = O
forall z € S and

2
q2(z. f(2)) =2 Re(Z hi(2)(fi(2) — gi<z>>)
i=1

= 2Re[e")(—h1(2)h2(2) + h2(2)h1(2))] =0,

as desired. Furthermore, we also calculate(z, w) = (w1 — g1(z))dwy +
(W2 — g2(2))dwz andd, q2(z, w) = h1(z)dwi + ha(z)dwz. Then

0wq1(z, f(2)) Adywqa(z, f(2)
= (h2(2)(f2(2) — 81(2)) — h1(2)(f2(2) — 82(2)))dwy A dws
= —e (|ha(2)* + [h2(2) [P dwy A dwy
= —e ||h(2)|3dw1 A dws.

Letting C(z) = 1/||h(z)||3 in (111) of Theorem 1, we find that the properties of
(1) are satisfied forf andC. (The key fact is thakt is never zero on the closed
ball.)

These examples lack certain features that more general examples would possess. In
each case, there are affine maygsM,, — M_, such thatA(f(z1)) = A(f(z2)),
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wheref is any one of the CR mappings whose graph is containéfl iWe do not
expect this kind of structure in general; indeed, we could pemtfinbear a point
but not elsewhere. We would then lose CR graph&inear that point but would

still have other CR graphs i because our graphs arose principally from local
properties ofM.

8. Notation Used Frequently

Where Where Where
Notation defined Notation  defined Notation defined
c (4) HS, H? (4) pi (4)
C(2) Thm. 1(111) £ 4) qi (5)
d (5) LM 81, (3) sz, 8(2) near (32)
D Cor.1 m (5) S (11)
0w P @ M, M, (5) S 4
b, b Thm. 1 My Cor.1 t (23)
f (31) M Thm. 4 T; (24)
(53) M/ (31) T Thm. 1
G,GM near(11),(12) N,N,N(z,w) (8) T Thm. 1 (proof)
['(A, B) 2 n; (19) U Thm. 1(111)
HY HY () T Tew  (6) V.V, V(2 w) 7
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