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1. Introduction

In [12] Defant introduced the local Radon—Nikodym property for duals of locally
convex spaces and used it to understand the duality theory of injective and projec-
tive tensor products of locally convex spaces. This concept generalizes the con-
cept of Radon—Nikodym property for Banach spaces in the sense that a Banach
space has a dual with the local Radon—Nikodym property if and only if its dual
has the Radon—Nikodym property. The class of locally convex spaces having
duals with the local Radon—Nikodym property includes nuclear spaces, Schwartz
spaces, quasi-normable semireflexive spaces, and (gDF)-spacesthat have a separa-
ble strong dual. This class is stable with respect to subspaces, quotients, countable
direct sums, arbitrary products, countable inductive limits, and arbitrary projective
limits.

Let E be a (real or complex) locally convex space anddgdenote its strong
dual. The polarv° of an absolutely convex closed neighbourhdoaf O in E
is equicontinuous and hence is boundedEin For a closed absolutely convex
bounded subse? of E we use] B[ to denote the normed space spannedtand
with closed unit ballB. Given E and F locally convex spaces, we I&t]E; F'|
denote the space of all linear maps fréhinto F’ transforming some neighbour-
hood of zero into an equicontinuous set. Hefice L] E; F'] if and only if there
exists an absolutely convex closed neighbourh@aaf O in F such that” factors
continuously through the Banach spdge|.

Let(R2, X, w) be afinite measure space andXethe a Banach space. An opera-
tor 7: LY(u) — X is said to beepresentabl§l5] if there is a Bochner-integrable
f € LY(u; X) such that

w=/ww

forall ¢ € LY(p).

Given a locally convex spadg, an operatof” € L|L(x); E'] is said to beo-
cally representabléf there is a neighbourhoo® of O in E and a representable
operatorf € L(LXw); E}.) such that the following diagram commutes:
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According to Defant [12], a locally convex spaEéas a dual with local Radon—
Nikodym property if, for every finite measure spa@e, X, n), all operators in
L|LY(w); E’| are locally representable. We rename this property and say tisat
locally Asplund.By [12], alocally convex spack is locally Asplund if and only if,
for every absolutely convex neighbourhoddf 0 in E and every positive Radon
measure on (U°, o(E’, E)), there is an absolutely convex neighbourhdtdf 0
in E, V C U, such that the embeddin@°, o (E’, E)) — [V°| is v-measurable.

In Section 2 we show that theproduct of two locally Asplund locally convex
spaces is locally Asplund. In Section 3, we prove that a continudunear map
defined between locally convex spadgandF is weakly (uniformly) continuous
on bounded sets if and only if each of its associated nfdps € E — T/(x) €
L("E; F), defined byT/(x)(z1, ..., 201 = u(z1, s Tl Xy 2y ey Tn=1)s
maps bounded sets into precompact sets. This generalizes [3, Thm. 2.9]. In Sec-
tion 4 we apply the preceding results to study local Asplundness of (a) the space
P, ("E; F) of continuousz-homogeneous polynomials that are weakly continu-
ous on bounded sets and (b) the spBo@E; F') of approximable:-homogeneous
polynomials. Both spaces are endowed with the topology of uniform convergence
on bounded sets. Specifically, we show that wiggrand F are locally Asplund
thenP,, ("E; F) andP,("E; F) are locally Asplund. In our final section, we ex-
amine local Asplundness of the spa¢es,, (U; F), t,) and(H(U; F), t,).

2. Schwartz Products of Locally Asplund Spaces

Given a locally convex spadé we letE! denote the dual of, E’, endowed with

the topology of uniform convergence on all absolutely convex compact subsets of
E. If E is quasi-complete then this topology coincides with the topology of uni-
form convergence on compact subset&ofror locally convex spacek and F,

the e-product (Schwartz-product) of E and F was introduced by L. Schwartz
[27; 28] and is defined as the locally convex spéed’ = L,.(E/; F) of continu-

ous linear operators frorf, to F endowed with the topology of uniform conver-
gence on equicontinuous subset&aflt is shown in [28] thatEe F coincides with

the space of all wedkweakly continuous linear maps frofT into F that trans-
form equicontinuous subsets Bf into relatively compact subsets #f If both E
and F are complete and if one of them has the approximation property,Eb€n
can be identified withE &, F (see [23]). Ifi4z(0) is the collection of all abso-
lutely convex closed neighbourhoods of GHithen a fundamental system of neigh-
bourhoods of 0 irE<F is given by all sets of the form

NU®, V) :={T € EeF : T(U°) C V},
whereU € Ug(0) andV € Ur(0).
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The space’(K; E) denotes all continuous maps from a compact Hausdorff

spacek into E. If E is the scalar field, we denotdK; E) by C(K). We use
M(K) to denote the space of all finite Radon measure& on

LemMma 1. Let E, F, and G be locally convex spaces withh and F complete.
For eachh € (EcF)eG, the expression(x’)(y’') = h(x' ® y’) for x’ € E’ and
y’ € F' defines an operatdf € Es(FeG).

Note thatE’® F' can be considered a subspacéidF')’ by means of the identity
(x'®y)(g) =y (g(x")) forx'e E', ye F', andg € EcF.

Proof. We start by proving thak (x') € L(F!; G) for a fixedx" € E’. Clearly
h(x') is linear. To prove thak(x’) is continuous, fixV € Us(0). We have to
check that there is a compact subSeadf F such thafz(x’)(C") is contained irv.

By hypothesis there is a compact sub&etof E<F such thath(K°) c V.
The setC = {g(x’) : g € K} is a compact subset df. Let y’ € C°. Since
[(x' ® y)(g)] = |y'(g(x")] < 1forallg € K, we havex’ ® y' € K°. Hence
h(x")(y") = h(x'® y') € V and this prove& (x')(C°) C V.

We now show thak € Es(FeG) = L(E.; FeG). Clearlyh is linear. To prove
that/ is continuous, také’ € Ur(0) and W € U;(0). We must find a compact
subsetX of E suchthati(K°) ¢ N(V°, W); that isfz(x/)(y’) € W for everyx’ €
K°andy e ve.

Sinceh € (EcF)eG = L((EeF).; G), there is a compact subs€tin EcF
such that:(C°) c W. Set

C*={g*: F/— E:geC},

whereg* is the transpose ¢f. ThenC* C FeE = L(F/; E) andK = C*(V°) =
{g*(y") : g" € C* y' € V°} C E is compact (see [23, Prop. 16.2.6]). Lete
C*(V°)° andy’e V°. Since

[(x'®@y) (@l =1y'(gxN =Ix"(g"(yNI <1

forall g € C, it follows thatx’ ® y’ € C°. Hencefz(x/)(y/) =h(x’®y)eW.
This proves thak (C*(V°)°) Cc N(V°, W). OJ

LEMMA 2. Let K be a compact Hausdorff space and fetand F be complete
locally convex spaces. For eacghin C(K; E<F), the expressiol'(y')(x") =
(x’®y’)o fforx’e E'’ andy’ € F’ defines an operatof € Fe(EeC(K)).

Proof. Consider the canonical isomorphisms
a: feC(K; EeF) — a(f) € (EeF)eC(K),
wherea(f)(¢) = ¢ o f for ¢ € (EcF)’, and
B:ge(EcF)eC(K) — B(g) € (FeE)eC(K)

given by B(g)(¢) = g(¢), whereg € (FeE) andp(k) = ¢(k*) for k € EcF.
Note that, forx’ € E’ andy’ € F’, we havex'® y' = y' ® x'. Let
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y:he(FeE)eC(K) — he Fe(EeC(K))

be given asin Lemma 1. Fgi € C(K; EcF) we haveT = (y o Boa)(f), and
this completes the proof. O

THEOREM 3. Let E and F be locally Asplund locally convex spaces. ThgaF
is locally Asplund.

Proof. Without loss of generality, we may assume thaand F' are complete. By
[12, Cor. 5] we must prove that, for any compact Hausdorff sgéand every
¥ in C(K; EeF), there exist a bounded sequence of Radon measurgsin
M(K) as well as an equicontinuous seque(g8; in (EsF)" and(};); in £1 such
that

o) =;x,~/,(yiofdu,-

forall finC(K; E¢F).

SinceF is locally Asplund, by [12, Thm. 5(b)] there exi®te Uc k. £)(0), W e
Up(0), andz = Y, Aix] ® y] € [V°]®, [We] with (A;); € €1, (x;); € W°, and
(y;); € V° such that

(T, 9) =Y hilx, T(y))

forall T in FeC(K; E).
By [12, Thm. 5(a)], for each we can findU € Uz (0) andz] = Y72, yyuj; ®
v); € M(K)®, |U°| with luj; Il = llv; Il = Land]|z;|| = inf Z‘j‘;l|y,-_,-| so that

(TG x}) =Y il Ty (©]))

j=1

foralli. If f e C(K; EeF)andifT € FeC(K; E) is its associated operator given
by Lemma 2, then

(o) = (T.) =YY hvijluly TGH )
i=1 j=1
=S vl @ @ Yo ) = 3 kv f (0} ® y}) o f dul;
ij ij
this proves the theorem. O

Since local Asplundness is inherited by subspaces and &jris@ot Asplund, we
have the following corollaries.

CoroLLARY 4. LetE and F be locally Asplund locally convex spaces. Then the
injective tensor produck ®, F is locally Asplund.

CoroLLARY 5. Let E and F be locally Asplund locally convex spaces. Then
E®, F does not contain a copy @f.
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Corollary 4 was proved for Banach spaces by Ruess and Stegall [25, Thm. 1.9].
Samuel [26] showed that, ¥ is an Asplund Banach space ands a Banach space

not containing copies df, thenX®, Y does not contain copies 6f. Corollary 5

is a weak version of Samuel’s result for locally convex spaces.

3. Weakly Continuous Multilinear Mappings
on Locally Convex Spaces

Given E and F locally convex spaces, l&t("E; F) denote the space of all con-
tinuousn-linear mappings fronE into F. We denoteC("E; C) by L("E). Let
L,("E; F) (resp.L,,("E)) denote the subspace 6f"E; F) (resp.L("E)) con-
sisting of those mappings that are weakly continuous on bounded sets. We use
P("E; F) to denote the space of all continuotstsomogeneous polynomials from
E into F; thatis, P € P("E; F) if P(x) = u(x,...,x) for some symmetric
ue L("E; F). We letP,,("E; F) denote the subspace Bf"E; F) consisting of
those polynomials that are weakly continuous on bounded sets. A polynBraial
P('E; F) is said to beof finite typeif there exist finite subset{sbi}le in E’ and
{y,l}f:1 in F such thatP(x) = ﬁ:lqﬁf(x)y,- for all x € E. An n-homogeneous
polynomial is said to bepproximableif it can be uniformly approximated on
bounded sets by polynomials of finite type. We denotePh§/’'E; F) the space
of all approximable polynomials. We consider all these spaces endowed with the
topology of uniform convergence on bounded set& afr E”.

Givenu € L('E; F), foreachj = 1, ....,nletT/:x € E — Ti(x) €
L("E; F) be defined byl'/(x)(z4, ..., 2,—1) = u(z1, s Tl Xy Ty ey Tn=D)-

The following result is essentially in [20] for locally convex spaces and general-
izes Banach space results in [3, Thm. 2.9] (see[dl&&ec. 2.1] and [30, Cor. 3]).
A similar result for symmetria-linear mappings also holds.

ProrosiTION 6. LetE and F be locally convex spaces, andigbe inL("E; F).
The following statements are equivalent

(a) u is weakly continuous on bounded sets

(b) u is weakly uniformly continuous on bounded sets;

(c) T/ is weakly continuous on bounded sets forjad 1, ..., n;
(d) T/ maps bounded sets into precompact sets foj all 1, ..., n.

Proof. The equivalence between (a) and (b) has been proved in [20, Cor. 1.7].

To prove that (b) implies (c), l€t ;)< p be a bounded net that converges weakly
to x € E. Suppose thatT/(x; — x))4ep does not converge to zero for sone
Then there exists a bounded subBaif E, a continuous seminorm of F, a co-
final subsetDq of D, and angg > 0 such that

SUP p(T/(xg — X) (Y1, Y25 -+ s Yj—1s Yj41r ---» Yn)) > €0 forall d € Do.
Yi€B

Hence, for eacll € Do and eacti # j, there existy; € B such that

p(T/(xa =)L vy vt v = e0/2. 1)
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Since(yj,)(,gel)0 is bounded, by taking subnets if necessary we can assume with-
out loss of generality thaty’)acp, is weakly Cauchy for ali # j. By [20,
Thm. 3],

p(u(y[}, ...,yj_l, Xq — X, yj+1, YD)
= p(T/(xa =) o yd 5yd o vh)
tends to zero a8 — oo, and this contradicts (1).

Statement (c) implies (d) because every bounded geisrweakly precompact
and its image by'/, which is weakly uniformly continuous on bounded sets [20,
Cor. 7], is precompact. Statement (d) implies (c) by argumetft§jhemma 2.3].

To prove that (c) implies (a), lety}) ., ---» (¥7) o p DEN bounded weakly
Cauchy nets irE such that they,),.;, converge weakly to zero for some Let
B be a bounded subset &fwith (y}),., C B forall i.

SinceT"/ is weakly continuous on bounded sets, gigen 0 and a continuous
seminormp of F, there exists @y € D such that

SUPP(Tj(y({)(yL Y2, ooy Vi1, Yj+ls .-, yn)) < & forall d > do.
yi€B
Hence
p(yh, ...y < SUP p(u(Z, ey Tty Vs Zjtds -5 Zn))
Zi€B,i#]
=! IITj(yj)IIBn—l,,, <e.

By [20, Thm. 3], this proves that is weakly continuous on bounded sets. [

The preceding result can be combined with an earlier result due to Aron and Prolla
[4] for Banach spaces to obtain the following proposition (see[dl&drop. 2.6]
and [30, Cor. 4]).

ProrosiTION 7. Let E and F be locally convex spaces and IBte P("E; F).
The following statements are equivalent

(a) P is weakly continuous on bounded sets

(b) P is weakly uniformly continuous on bounded sets

(c) foreachk (0 <k <n), (c?")P/k! is weakly continuous on bounded sets
(d) for eachk (0 < k < n), (d*)P/k! maps bounded sets into precompact sets
(e) (d"YHP/(n —1)! maps bounded sets into precompact sets.

4. Local Asplundness for Spaces of Homogeneous Polynomials

For X andY locally convex space&;”(X; Y) denotes the space of continuous op-
erators fromX into Y that map bounded sets into precompact sets endowed with
the topology of uniform convergence on bounded sets.

THEOREM 8. Let E and F be locally convex spaces with quasi-complete. If
E; and F are locally Asplund, theif,,("E; F) is locally Asplund for allz € N.
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Proof. We proceed by induction ame N. By Proposition 6 and Theorem 3, the
resultis true fom = 1
Assume thatZ,,(""'E; F) is locally Asplund. Consider the mapping

L,CE;F) — T" € L(E; L,(""E; F)) defined byT"(x)(x1, ..., Xp_1) =
u(xy, ..., x,—1, x). Since

sup sup p(T"(X)(x1, ..., x,—1)) = SUP  p(u(xy, ..., xn))

x€B, xj€eB;,1<i<n-1 X;€B;,1<i<n
for every continuous seminorpon F, this mapping is continuous and open. Fur-
thermore, Proposition 6 implies that' e K?(E; £,,("'E; F)). We may there-
fore identifyL,, ("E; F) with a subspace d€”(E; £, ("E; F)). We can identify
KP(E; £,("7E; F)) with a subspace of; L, ("~ E; F), whereL,,(""E; F)
is the completion of,,("*~*E; F). Since a locally convex space is locally As-
plund if and only if its completion is locally Asplund, Theorem 3 shows that
E,eL,("'E; F) is locally Asplund. Since (by [12]) the class of locally convex
spaces that are locally Asplund is stable under the formation of subspaces, we con-
clude that,,("E; F) is locally Asplund. O

CoroLLARY 9. LetE and F be locally convex spaces. H, and F are locally
Asplund, therP,, ("E; F) is locally Asplund for alkz € N.

Corollary 9 generalizes [2, Thm. 5(a)] and [29, Cbi] tolocally convex spaces
(note thatP,,« ("X ") is isometrically isomorphic t®,,("X)).

Let £ andF be locally convex spaces. Aithomogeneous polynomia from
E into F is said to benuclearif there exist(A; )2, € €1, {¢;}2, equicontinuous in
E’, and{y;}?, bounded inf such that

P(x) =) L (x)yi
i=1

for all x € E. The space of-homogeneous nuclear polynomials fréhinto F is
denoted byPy ("E; F).

Given a locally convex spacé and a Banach spadg let P,("E; F) denote
the space of all (algebraic) polynomials franinto F. A locally convex space
E is polynomially bornologicalif, for every locally convex spacg, every P
P.("E, F) that is bounded on compact subsets is continuous.

ProrosiTioN 10. Let E be a polynomially bornological locally convex space
such thatf; is locally Asplund and has the approximation property, andldte

a Banach space. If eithePy("E;) or F, has the approximation property, then
(Py("E; F), )" = Py ("E}; Fy).

Proof. By modifying [9, Thm. 3 and Rem. (1)], we see thiat("E; F) is isomor-
phictoP,, ("E)eF. SinceE} is locally Asplund, Corollary 9 implies th&®,, ("E) is
locally Asplund and, by [7, Prop. 7 and Thm. 3},("E) = Py ("E;). Applying
[12, Thm. 5] and the fact thaPy ("E;) or F; has the approximation property,
we conclude that each element®f ("E; F)' has a representation of the form
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Y el M@} () yi, Where(¢;)2, is equicontinuous iE,), (y;)72, is bounded in
Fy, and(};)?2, € £1. This is the spac®y ("E;; F)). O

Let E be a Banach space. A complex-valuedomogeneous polynomial diis
said to beintegral if there is a finite Borel regular measugeon (B, o(E’, E))
such that
P(x) = i ¢ (x)" dpu ()
-

forallx € E.

The Banach spacé, is (locally) Asplund. SincePy(%ty) = P;(%ly) =
£2®; . L2 contains a copy of, it follows that Py (%¢2) = P;(2¢y) is not lo-
cally Asplund. This shows that Corollary 9 does not extend to spaces of nuclear
or integral homogeneous polynomials.

Alencar [1] and Valdivia [30] show that, if is a Banach space such that
has the Radon—Nikodym property and the approximation property(fAgfiE ),
|- and(P('E"), | - ||) are isomorphic. This was extended to vector-valued
holomorphic functions by Jaramillo and Moraes in [22] (see also [19]). The first
author [7, Prop. 9], in extending Alencar’s result to Fréchet spaces, noted that the
Radon-Nikodym property oB” needed to be replaced by local Asplundness on
E;, and that strong duals needed to be replaced by inductive duals. We have the
following extension to vector-valued polynomials on Fréchet spaces.

THEOREM 11. Let E be a Fréchet space andl a Banach space such thay is
locally Asplund and E});, has the approximation property. Then it follows that
((Pw("E; F), 13)); is isomorphic ta P ("((E}),; (F;)}), T) for each integen.

Proof. Since E; is locally Asplund, Corollary 9 implies th&®, ("E) is locally
Asplund for each integer. By [13, Prop. 4.2(3)],E; has the approximation
property. It now follows from [9, Rem. (2)], [13, Ex. 3.2], and [7, Prop. 2 and
Thm. 3] that(P, ("E; F), 7))’ = (Pw("E), 1)eF) = ((PA("E), 1) ®:F)' is
(algebraically) isomorphic t®; ("E}) ®, F, = Py ("E;) &, F;. By the definition

of the inductive dual, this implies thaP,,("E; F), t); = PN("Eg)(f@”Fb/. Since
(E});, has the approximation property, [14, Thm. 1.4] implies that this space is iso-
morphic to(@s,n,n(El;)/b) ®, F;. By [8, Thm. 3], the inductive dual of this space

is (PC'(E}): (F))}). To). O

5. Locally Asplund Spaces of Weakly Uniformly
Continuous Holomorphic Functions

LetU be an open subset of a locally convex spAcand letF be a Banach space.
We denote byH (U; F) the space of all holomorphic functions froth into F
and byH ., (U, F) the subspace ¢ (U; F) of all functions that are weakly uni-
formly continuous on bounded sets. We @sg/) andH,,,(U) for H(U; C) and
Hu(U; C). The subset o (E, F) of holomorphic functions that map bounded
sets to bounded sets is denotedMy(E; F). Again, we user, to denote the
topology onH,,,(U; F) (resp.H,(E; F)) of uniform convergence on bounded
sets ofU (resp.E).
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In[21, I, pp. 95, 108], Grothendieck (see also [11; 12]) gives a representation the-
orem for continuous linear functionals erproducts of locally convex spaces. In
order to use this result to study local Asplundness of spaces of holomorphic func-
tions, we require a more quantitative analysis of the neighbourhoods involved. We
therefore reproduce Defant’s proof [12, Thm. 5], keeping track of how the neigh-
bourhoods involved are related to each other.

THEOREM 12 [12; 21]. LetE and F be locally convex spaces withlocally As-
plund. If ¥ € (EeF)’ then there exist absolutely convex neighbourhoods, of
Vin EandW in F, and

o.¢]
e= Y hix @y [V]&a W,
i=1

so that N
(T, ) =Y 2lT(x]), ¥))
i=1

forall T € EcF. Furthermore, ifyr € (N(U°, W))° thenV may be chosen so that
the inclusion
i (U°o(E E)) < [V°|
is v-measurable for some positive Radon measue (U°, o (E’, E)).
Proof. Fix ¢ > 0. By scalingU andW we may assume thit/|| vwe,wy> = 1.
LetH = (U° x W°,0(E',E) x o(F’, F)) and letS: M(H) — (E¢F) be de-
fined by
WL~ (T ~> /(T(x’), vy du(x', y/)).
H

It follows as in [12, Thm. 5] thatN(U°, W))° C A := S(ue M(H) : w(H) =
1) and there exists a € M(H) such that

(T, ¥) =/(T(x/),y/)d/x(X’,y/)
H

forall T € EcF. We have||y |l vwe,wye < llitlla. Sincelly|lwwe, wy =1, this
implies
I llvwe, wye = lnlle =1
Letp: H — (U° o(E’, E)) be defined by (x’, y') — x’, and letv = p(u).
Because is locally Asplund, we can choosé C U so that
i: (U%o(E,E)) = |[V°|

is v-measurable. Lef = i o p. SinceV C U, we havef(x’,y") € V° for all
(x’,y") € H and hencd| f|| < L SinceL(u, [V°]) is isometrically isomorphic
to LY () &, | V°], we can writef in the form

f:Z)\i¢i®xi

i=1
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with [|¢;l 12, < 1and|x;lly- < 1foralli and where)_";2,|1;| < 1+ ¢. Define
R: LY(u) — [W°| by letting

¢~ (y ~ /H¢>(X’, YOy, ¥ du(x’, y’)).
Then we have

(T.¥) = /HW’ T'(y") du(x', y")

- /H PGy TN di(xs )

/dn(x YO (xi, T'(y")) di(x', y")

Mg ||

i(T(xi)R($i))

i=1

Since||R|| < 1, this implies that

7= Zkixi ® R(¢i),

i=1

where| x;|ly- <1and||R(¢;)|lw- < 1foralli and where) ;2;|x;| <1+ O

THeoreM 13. Let E be a holomorphically bornological locally convex space.
Then#,,,(E) is locally Asplund if and only iE; is locally Asplund.

Proof. Clearly E; is locally Asplund whenevett,,, (E) is locally Asplund.

Now suppose thak, is locally Asplund. Then the spadé®,("E), t,) is a
complemented subspace of,("E), t,), which in turn is a subspace of
E,Qs(,cw(”‘lE),rb). Furthermore, ifB is bounded inE then it follows that
{P € P,(3E) : |P|z < 1} is identified with the intersection dP,,(2E) and
N(B®, B°) in Ej¢E;. Let B2 = N(B>, B°), and inductively defineB” in
E e(E cE¢ ... ¢E}) by

B" = N(BOO, (énfl)cn).

Then we can identifyP € P, ("E) : || P| g < 1} with the intersection of,("E)
andB" in E/e(Ej¢E e ... €E}).

Let K be a compact Hausdorff set and suppgse C(K; H..(E)). By [23,
Cor. 16.6.30] and [9, Thm. 3],

C(K: Huu(E)) = C(K)eHuwu(E) = Huu(E)eC(K) = Hyu(E; C(K)).

Similarly,
C(K; Pu("E)) = Py ("E; C(K)).

We denote this isomorphism and its inverse py— f*, where f*(x)(k) =
flk)(x) and f4(k)(x) = f(x)(k) forx € E andk € K.
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By using[17, (3.42)], we see th&tP,, ("E; C(K))}, is anS-absolute decompo-
sition for #,,,(E; C(K)). Thus, for eacty € C(K; H,.(E)) we have that

R L?n S0y \*
(f, w>:2<( ];!( )> ,1//>.

n=0

Sincey is continuous and linear a@( K ; H,,,(E)) and since the decomposition
is S-absolute, there exists a boundedBeh E andC > 0 such that

( " f (0))
B

forall f € C(K; Hyu(E)). Forne N, lety, = ¥lp, e ck)- Let A be bounded
in E and letB C A be such that

(BOO,O'(EH, E/)) s [IAOOH

is measurable for the measure associated witbn (B*°, o(E”, E’)) (see [12,
Thm. 5]). Lete > 0. It follows from the above and induction that we can choose
our representations in Theorem 12 so that, for euse\N, there exist a sequence
of measuresu; ,}72, on K with |ju; ,llx < 1foralli, a sequencc{ayl alioq C

(EyeEpe ... eEp) with ||y Il in. < C foralli, and asequeno{e\l,n},_1 so that
Zillki,ﬂ < 1+ ¢ which together satisfy

(50 )5 - (252

forevery f € C(K; Hyu(E)).
Then, for everyf € C(K; Hu(E)), we have

0 d’\n s(0)\*
<w,f>=2<( ’;l()),w>

n=0
ZZZ lllfyll1o(nn(f))dﬂzn,

whererr, is the (continuous) projection 6f,,, (E) ontoP,,("E), g — d"g(0)/n!.
Thus

/ 2y, o ) () diti

n= 0 i= 1
with ||, , ||k < 1foralli and alln. Therefore,

al Z Z|M|<Zi2<1+e><oo

n=0 i=1 n=0

, ( 2d"g(0)
Yin\ n!

and

In2y; , o ma(@)lla =

A
forall g in H,,(E) satisfying
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o0
>
n=0

Since the decomposition &-absolute, it follows that this is a neighbourhood of 0
in H,,(E) and hencenzyi”n o 1, }i.n IS €quicontinuous. By [12, Cor. 5], this im-
plies thatH ,,, (E) is locally Asplund. O

d"g(0)
n!

<1l

A

This result is easily extended to the vector-valued case by ugimgducts, and it
can be used to give an alternative proof of [22, Cor. 2.3].

A locally convex spacé is ak-spaceif continuity on compact subsets @f
implies continuity onE. If E is ak-space then we can identify? € P("E) :
|Pllx <1}, K compact inE, with the intersection oP("E) and the seK" :=
N(K®, (K""%°) (K? = N(K°°, K°)) in E/¢E.¢ ... ¢E.. The preceding proof is
easily modified to yield the next theorem.

THEOREM 14. Let E be a locally Asplund locally convek-spaceE. Then
(H(E), 1,) is locally Asplund if and only iE is locally Asplund.

Motivated by Theorem 12, Defant [12] introduced the following notation. Given
locally convex spaceg and F, we define} (E &, F) to be the dense subspace
of E®, F given by

oo
{ZG E®,F: 7= Zkixi ®yi i (A2 el
i=1
{x;}2, and{y;}2, are equicontinuon}s

For U an open subset of a locally convex spacand for F a Banach space, we
denote byt, the topology orH (U; F) of uniform convergence on compact subsets
of U. A seminormp onH(U; F) is ts-continuous if, for each increasing count-
able open cove{V,}52 ; of U, there is a positive integer, and aC > 0 such that

p(f) < Clflly, forall feHU;F).

Thet; topology onH (U; F) is the topology generated by a}-continuous semi-
norms.

Let U be an open subset of a locally convex spacéujica and Nachbin [24]
show that there is a complete locally convex spac¢¥) and asy € H(U, G(U))
with the following universal property: Given any complete locally convex sgace
and anyf € H(U; F), there exists a unique continuous linear niap G(U) —

F such thatly o §y(x) = f(x) for all x in U. Furthermore, by [24, Prop. 2.3], if
F is a Banach space then
MW, F),5) =~ LGWU)a; F).
aec.s(GU))

We finish with the following application of the concept of local Asplundness.

THeEOREM 15. Let U be a balanced open subset of a Fréchet spaceand
let F be a Banach space such thaj has the approximation property. Then
(H(U; F), t,)): = (H(U; F), 7,);)! is isomorphic todH(U: (F})}). Ts).
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Proof. By [16, Thm. 1.8],(H(U), t,) is a Schwartz space and hence is locally
Asplund. Therefore, [13, Thm. 3] shows that the dual(&(U; F),t,) =
(H(U), 7,)eF is (algebraically) isomorphic ) (H(U), 7,),®x F}). Applying
[23, Cor. 15.5.4], [16, Thm. 1.8], and [5], we obtain

(HU: F),7,); = Y (HW). 1)j&x F)) = Y (HWU). 1,)}, & Fy).

By [13, 1.1], thestrong dual of H(U; F), 1,) also equald®_((H(U), r(,);,éo,, F))
with the topology induced byH(U), 7,),&, F,. Since the completion of
(HW), 1,);, is GU) (see [6, Lemma 8]), the completion 6H(U; F), 7,); is
G(U)®, F. Hence, by [24, Prop. 2.3[(H(U; F), t,)}); = (H(U; F), 1,)})!
is isomorphic ta H(U; (F;)}), Ts). OJ

For a related scalar-valued result, see [18] and [6]; see also [8].
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