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Graphs of Holomorphic Functions with
Isolated Singularities Are Complete Pluripolar

JAN WIEGERINCK

1. Introduction

In classical potential theory one encounters the notions of polar set and complete
polar set. AseE C R” is calledpolar if there exists a subharmonicon a neigh-
borhood ofE such thatE C {x : u(x) = —oo}; E is calledcomplete polaif one
actually hast = {x : u(x) = —oo}. (The function identically equal te-cc is
not considered to be subharmonic.) It is well known that we mayiiakebe de-
fined on all ofR” and also thaft is complete polar if and only if is polar and a
G (cf. [5]).

In pluripotential theory the situation is more complicated. ABéh a domain
D c C" is calledpluripolar in D if there exists a plurisubharmonic functian
on D such thatE C {z : u(z) = —oo}; E is calledcomplete pluripolar inD if,
for some plurisubharmonic functianon D, we haveE = {z : u(z) = —oo}.
Although Josefson’s theorem [4] asserts thdieing pluripolar inD implies that
E is pluripolar inC", the corresponding assertion is false in the complete pluri-
polar setting. Also, a pluripola s need not be complete: the open unit diskn
the complex linezz = 0 in C2? is aG; but is not complete itC2. In fact, every
plurisubharmonic function of£? that equals-co on A must equal-oo on the
line z; = 0. Thus, it is reasonable to introduce thi@ripolar hull of a pluripolar
setE C D as

Eg:{zeD:u|E=—oo = u(z):—ooVuePSI—(D)},

where PSHKD) denotes the set of all plurisubharmonic functionsionWe also
have use for theegative pluripolar hull,

EE:{zeD:u’Ez—oo = u(z):—ooVuePSl—(D),ufO}.

If E is complete pluripolar irD then clearlyE is aGs andE}, = E. A partial
converse is Zeriahi's theorem [11].

THEOREM 1. Let E be a pluripolar subset of a pseudoconvex donfaiim C”. If
E}, = E andE is aG; as well as anF,, thenE is complete pluripolar inD.
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Completeness and hulls of various pluripolar sets have been studied in [6; 7; 9;
10].
In [9], Sadullaev posed the following questions. Consider the sets

Er={(x,y)eC?:y=x" xe(0,1},
with « irrational, and
Es={(x,y)eC?:y=eY* x€(0,D).

Sadullaev asked if there exists a plurisubharmonic funétjam a neighborhood
V of E; such that
hi(0) > limsuph;(x, y)

(x.»)—0

(x,y)EE;
(see also Bedford’s survey [1]). In [7], Levenberg and Poletsky gave a positive
answer forEy; in [10], the author gave a positive answer #5. In fact, it was
shown in both cases that the pluripolar hulls, are equal to the graphs of the
maximal analytic extension of = x“ (respectivelyy = e~%*).

In the present paper we generalize the results of [10] as follows.

THEOREM 2. Suppose thab is a domain inC and thatA is a sequence of points
in D without density pointirD. Let f be holomorphic oD \ A, and letE denote
the graph off in (D \ A) x C. ThenE is complete pluripolar inD x C.

Necessary preliminaries are dealt with in Section 2. After some preparations, we
give in Section 3 the proof of the theorem. Surprisingly, it is more elementary than
the special cases that were treated in [10]; part of it resembles proofs in [6] and [9].

ACKNOWLEDGMENT. Part of the work on this paper was completed while | vis-
ited Université Paul Sabatier at Toulouse. | wish to thank this institution for its
hospitality and the members of the Laboratoire Emile Picard for interesting and
stimulating discussions.

2. Preliminaries

2.1. Pluripolar Hulls

We will need some facts about the pluripolar hull§ and E;, which were de-
fined in Section 1. Of course;}, C E,. Moreover, these hulls are related as
follows (see [7]),

TueorREM 3. Let D be pseudoconvex iV and letE c D be pluripolar. Sup-
poseD = Uj D;, where theD; form an increasing sequence of relatively compact
pseudoconvex subdomainsiaf Then

Ep =JEN D),
J
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Moreover, if D is hyperconveXi.e., if D admits a bounded plurisubharmonic ex-
haustion functiohthen
Ey = J(EN D),
J

2.2. Pluriharmonic Measure

The notion of pluriharmonic measure was introduced in [2; 9]. Edte a subset
of a domainD c C”. Thepluriharmonic measuratz € D of E relative toD is
the number

w(z, E, D) = —sup{u(z) : u e PSHD) andu < —xg}. (2.1

Herexr is the characteristic function @f on D.

Notice that we do not regularize the supremum in (2.1). Doing so would yield
0 if E were pluripolar (the case we will consider), and all information would be
lost. Forn =1, E compact inD, andz € D \ E, this notion boils down to the
usual concept of harmonic measure af the boundary of in the domainD \ E.

The relation of pluriharmonic measure with pluripolar hulls is given by the fol-
lowing proposition. The proof may be found in [7].

PropoSITION 4. Let D be a hyperconvex domain@" and letE c D be pluri-
polar. Then
E, ={zeD:w(z E, D) > 0}.

The following observation will be used in the proof of Theorem 2. Edte the
graph of some holomorphic functiofion a domainG c C, and letB be a do-
main inC. Next, letK be a closed disk of positive radiusdhsuch thatf(K) c

B, and letEx denote the graph of over K. Then

(Ex)gupg = (EN(G X B)) Gy ps (Ex)gyg = (EN(G x B))gy 5. (2.2)

One may simply observe that a plurisubharmonic functiorGor B that equals
—o00 0n Eg equals—co on E N (G x B).

3. Proof of Theorem 2

3.1. Construction of a Plurisubharmonic Function

Our isolated singularities will of course be poles or essential singularities. The
principal part at such a singularity will be considered as an infinite Laurent series,
which may consist of only finitely many nonzero terms.

ProrosiTION 5.  Let f be holomorphic on a bounded domdnin C except for
finitely many isolated singularities at, ..., a, € D. Let E denote the graph
of fin D\ {ay,...,a,} x B, whereB is a disk about the origin. Then there
is a negative plurisubharmonic function dn x B that equals—oo precisely at
EUJ/_,{(z, w) € D x B : z = a;} and is continuous outside itsoo locus. In
particular, E U J!_{(z, w) € D x B : z = a;} is complete pluripolar inD x B.
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Proof. We write down the Mittag—Leffler decomposition gfas

f=fo+ it -+ fu,

where fp is holomorphic onD while, for j =1, ..., n, the functionf; is holo-
morphic onC \ {g;}, vanishes ato, and has an isolated singularity gt The
functions f; have the expansion

o0
fi= chm(z —a)™"
m=1

with
|1/m

[Cjm — 0 asm — oo. (3.1

After introducing the new coordinates
w =w-— fo(z) and 7 =z,

we may assume thgp = 0.
Let N be a positive integer, which later will be chosen sufficiently large to suit
our purposes. Let

Py(z, w) = ( Z chm(z a]) m> H(Z - a])N

j=1 m=1
and let

1
hy(z, w) = v log| Py (z, w)l.

Thenhy is a plurisubharmonic function ob x C.

We make some estimates bf. Lete,, = maXi—1 . . r=mlcix|Y*. Thene,
decreases to 0 according to (3.1). Fix 0, and letK be the compact set consist-
ing of thosez € D with distance at leasgtto the boundary ob \ {a, ..., a,}. Let
M be the diameter ob. On (K x B) N E we have, fory < §/2,

f(z) — ZZCJ,,,(Z ap™" +Zlog|z—aj

hy(z, f(z) = |Og

j=1 m=1
1 n [o.¢] n
= 10g 3> cmz—ap™ |+ loglz — a
j=1 m=N+1 j=1
<= Iog(z Z enlz —al m) Zlog|z—a]
j=1 m=N+1

IA

1 1
(1+ ﬁ) logey +log2n — (1+ N) logé + nlogM

<logey + C, (3.2)

whereC depends 04, M, n but not onsy. Next, letA be positive. Fot € K and
lw — f(z)] > A > 0, we have
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n N
w — Z chm(z - aj)im

1
hy(z, w) = — log

n
+Y loglz — a]
j=1

N j=1 m=1
1 n o0 " .
>+ log|lw — f(2)] - > ) enlz—a;I™"|+nlogls|
j=1 m=N+1
1 en N+1
> v Iog(A - 2n<?> ) +nlog|s| > —C’, (3.3)

for some positive constadt’, if N is sufficiently large.
The final estimate is that, for large enoughandC”, the inequality

c
hy(z, w) < WO log(lw| +1) + Co < C” (3.4)

holds onD x B.
Now we introduce the negative plurisubharmonic functions

uy = maxthy — C”, logey).

Choose a sequence of positive integrsaand a sequence of positive numbérs
with the following property:_ d; converges, bu}_ d; logey, diverges to—oo.
This is possible sincey | 0. We form the series

u(z, w) = Zd,-uNi(z, w). (3.5)
i=1

This is, onD x B, a limit of a decreasing sequence of plurisubharmonic func-
tions. OnNE N (K x B) we use (3.2) and find that= —coon E N (K x B) and
hence also oik. By (3.3) we obtain that > —oo if w # f(z). The convergence
properties of (3.5) are independentiofwe conclude that represents a negative
plurisubharmonic function o® x B that satisfies

EC{(zw)uzw) =-0) CEU | J{z=a.
1<j<n
Moreover, the convergence of (3.5) is uniform on compact sets in the complement

of E U ;. ;<,{z = a;}. Henceu is continuous in this complement. Finally, the
function

u(z,w) + »_loglz —a;| — nlog M
i=1
satisfies all our conditions. O

3.2. Estimates for Harmonic Measure

The next one-variable proposition will allow us to estimate pluriharmonic mea-
sure in the proof of the main theorem. The proposition is a small variation on a
classical result concerning the existence of barriers (cf. [3]). We will denote clas-
sical harmonic measure layp.
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ProrosITION 6. Let G be a Dirichlet domain irC, let K be a closed disk con-
tained inG, and leta be a point in the boundary af. Assume that there is an
arc y: [0,1] — C contained in the complement 6f with y(0) = «. Then, for
everye > 0, there exist & > 0 and a negative subharmonic functibron G; =
GU{z:|z—a| < 8}suchthati|x = —1landh(a) > —s.

Proof. Without loss of generality we can take= 0. Applying a Mobius trans-
formation if necessary, we can assume tkat= y (1). For every O< § < 1we let
ys be the component gf \ B(0, §) that containgo. Abusing notation, leys(5)
denote the other endpoint gf, so that|ys(8)| = 6.

LetQo = C*\ y5. Choose an analytic brangh of log(z — ys(8)) on2o. Let Bs
be the disKz : |z — y5(8)| < 1} andC; its boundary. The image @f; N Bs under
fs is contained in the half-plan® = {fw < 0} and X, the intersection of its
boundary with the imaginary axis, has length2z. Setu(z) = —wo(z, X, H).
Thenu o fs is a negative harmonic function @ N B; that equals-1onGs N Cs.
Moreover,u(f5(0)) > 2/logs. Now let h(z) = —wo(z, K, Gs). Thenh(z) >
—lonGsNCsandh(z) = 00ondGs N Bs. Henceh(z) > u(z) ond(Gs N Bs).
Therefore2(0) > u(0) > 2/logé, so thath(0) > —¢ if § is sufficiently small.
Also, & is negative subharmonic a®s andz = —1onK. O

3.3. Proof of Theorem 2

Let D” C D’ be subdomains ab with D” cc D’ cC D. Assume also thab’
is a Dirichlet domain. LeK be a (small) closed disk iP’ that does not meet,
and denote byEx the graph off over K. Let M be the maximum of f| on K
and letB” c B’ be disks about the origin with different radii, each bigger than
M. LetQ' =D’ x B'andQ” = D" x B".We putZ = E U {(z,w) : z€ A}.

By Proposition 5, there exists a negative continuous plurisubharmonic function
u on Q' such that: equals—oo precisely o2’ N Z. It follows that

w((z,w), Ex, Q") =0 for (z,w)eQ"\ Z.

We next estimate ((a, w), Ex, Q") forae AN D”. Lete > 0 and letG denote
the projection off N Q’ on the first coordinate. H is a pole off, thena is an in-
terior point of the complement @f. The function. defined by—1 onG and—¢
on a small neighborhood afis harmonic orG U B(a, §) for sufficiently smalls.

If a is an essential singularity, thens a boundary point of;. Since there exists
a curve ending i along whichf tends tooo, it is clear that the conditions of
Proposition 6 are met. We thus find a smalk- 0 and a negative subharmonic
functionh on G U B(a, 8) with h(a) > —e andh|, = —1.

In either case we view the functioh as a plurisubharmonic function on
(G U B(a, d8)) x B’. ltis plurisubharmonic in a neighborhood fit, w) € Q' :
u(z, w) = —oo}. There exists an > 0 such that this neighborhood contaixis=
{(z, w) € Q" : dist((z, w), Z) = n}. Now the supremum of on X is negative
andu is continuous. Thus, for sufficiently small (positiveve find thathu > h
onX.



Graphs of Holomorphic Functions with Isolated Singularities 197

The functionz can be extended to a negative plurisubharmonic functiof2’on
as follows. Set

- max{(h(z, w), Au(z, w)} if dist((z, w), Z) < n,
h(z, w) = {

Au(z, w) otherwise.

The function competes for the supremum in the definitiomgfa, w), Ex, Q).
We conclude thab ((a, w), Ex, Q") = 0.

It now follows from Proposition 4 thatEy )., = E N Q". Application of (2.2)
and Theorem 3 shows that

BXC = (EK)ZXC =FE.

Finally, observing thak is aG; as well as arF,,, we infer from Theorem 1 that
E is complete pluripolar irD x C. O
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