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On Spherically Convex Univalent Functions

D. MEJiA & CH. POMMERENKE

1. Introduction

LetD be the unit disk irC, and letT = dD. A domainG on the Riemann sphere
Cis calledspherically convexf, for any pairw;, w, € G, the smaller arc of the
greatest circle (spherical geodesic) betwegrandw, also lies inG.

An analytic univalent functiorg in D is calledconvexif g(D) is a convex do-
main inC. A meromorphic univalent functioyf in D is calledspherically convex
(s-convex) if f(D) is a spherically convex domain in.

Let Rot(C) denote the group of rotations of the Riemann spl@eﬂeat consists
of the Mdbius transformations

0(z) =’z —a)/A+az), acC, ¥eR, 1.1)

together withp(z) = e'%z. Let M6b(DD) denote the group of M&bius transforma-
tions of D onto itself. If f is s-convex, then

f*=gpofoy, @eRot(C), ¥ e Mob(D) (1.2)

is again s-convex and we hayé(D) = ¢(f(ID)).
The spherical and Schwarzian derivatives

“ |f/| (f//)’ 1<f//>2
=—, Sr=|—=])—=z| = 1.3
= =) "2\7 &9
are unchanged if we replagéby ¢ o f, with ¢ € Rot(C). We introduce
o(f) =maxl—|z%) /(). (1.4)

Itis clearthatb(p o f o) =o(f)foree Rot(@) andy € M6b(DD). The quan-
tity o(f) measures the thickness 6{D) and corresponds to the Bloch norm in
the Euclidean case (see e.g. [ACP] and [BMY]).

Replacingf by ¢ o f with a = f(0) and suitable} in (1.1), we mayoften as-
sume that our s-convex functighis normalized

f@) =az+azz®+azz®+---, O<a<l (1.5)

Received May 29, 1999. Revision received September 17, 1999.
The first author was supported in part by ColCiencias. The second author was supported in part by
Deutsche Forschungsgemeinschaft (DFG).

163



164 D. MEJfA & CH. POMMERENKE

see Theorem 3. We will show in Theorem 4 that, replacinigy ¢ o f o ¥, we
can attain thayf is centrally normalized

f@ =az+az®+as*+---, a=o(f). (1.6)

If f is s-convex thenf(ID) contains no paiw, —1/w) of antipodal points.
Univalent functions with this property were studied, for example, by Kiihnau [K]
and Jenkins [J, p. 125]. Under the normalization (1.5), Kiihnau proved tkat
and|a,| < 0.58....

Spherically convex functions have been studied, for example, by Wirths, Kih-
nau, Minda, Ma, and Mejia. Left be s-convex and normalized as in (1.5). We
write 8 = +/1— 2. Then

o|z] o|z]

=1f@I =

< for zeD, .7
1+ Blz| 1-Blz|

(1+W <If'@)| for zeD. (L.8)

(see[K, p.16; MMM, p. 53]). These estimates are sharp, as shown by the example

f(z):%:«zwﬂzzmﬂ?z%m, B=V1-al (L.9)

This function map$) conformally onto a hemisphere.
Wirths [W1] proved the remarkable estimate

2
—+a®<1 (1.10)

which impliesjaz| < af < 1 andlas| < af? = a(1— a?) < 2L2; see [MML,
p. 158]. A more geometric proof ¢f,| < a8 was given in [M2, p. 104].
We shall give a short proof of the Wirths inequality and derive the sharp bound

A—1z15%8; ()| <2 —0(f)® (zeD), (1.11)

whereo (f) is defined by (1.4). Using results about the Nehari class [CO, p. 290],
we obtain the sharp bounds gf(z)| for centrally normalized s-convex functions
that give another proof of the recent result of Ma and Minda (personal communi-
cation) thatf(D) c D.

The hyperbolically convex (h-convex) functions mampnto a h-convex sub-
domain of D. They were studied in [MM2; MP1; MP2]. If O lies in the image
domain, then

spherical convexity= (classical) convexity= hyperbolic convexity.

This indicates that the present case of s-convexity is easier to handle than h-
convexity. The methods and results are rather different.

We want to thank David Minda and Mario Bonk very much for our discussions
and messages, which helped us a great deal in understanding spherically convex
functions. We are also grateful to William Ma, Martin Chuaqui, and the referee
for several helpful suggestions.
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2. Reduction to Euclidean Convexity

We shall further develop an idea of Ma, Mejia, and Minda [MMM] on how to
reduce the study of s-convex functions to that of (classically) convex functions.

LemMMA. If the domainG is s-convex and if € G, thenG is convex.

Proof. Let a, b € G\{0} and letC be the smaller arc of the greatest circle be-
tweena andb. Then the line segments,[8] and [0, »] are arcs of a greatest circle
(through 0 anao). Thus [Q «], [0, b] andC form a spherical triangle. Its closed
interior lies inG becausés is s-convex, and its angle sum is greater thaifhe
Euclidean triangle formed by [@], [0, ], and |z, b] has angle sunx. Hence,
[a, b] lies in the closed interior of the spherical triangle and thu€in O

THeorEM 1. Let f be univalent ifiD and let f(0) = 0. Thenf is s-convex if and
only if the functions
f (@)

14+ wf(2) @D

guw(z) =
are convex for every € (D).

The fact thatg,, is convex was used in [MMM] for special values of All our
results will be based on Theorem 1.

Proof. (a) Let f be s-convex and) € f(ID). Then
Jw=(f —w)/A+ wf) (2.2)

is s-convex; see (1.1)furthermore, C= f, (D) so thatf, (D) is convex by the
lemma. Hence,, = (f, +w)/(L+ |w|?) is convex inD for w € f(ID) and hence,
by normality, forw € f(ID).

(b) Let g,, be convex for alw € f(ID). Then f, = 1+ |w|?)g, — w is also
convex; see (2.2). ' € f(D), then 0 andw* = (w’ — w)/(1+ ww’) and thus
also [Q w*] lie in the convex domairy,, (D). The Euclidean segment,[@*] lies
on a greatest circle. Hence the arc of the greatest circle between w’ lies in
the domainf(ID), which is obtained frony,, (D) by a rotation of the sphere.[J

A different analytic characterization was given by Ma and Minda [MM1]—namely,

@) 2zf'(2) f(2)
Re| 1 — 0 fi D. 2.3
e[ ATE R EaTET ] =5 oree (2:3)
If g is convex, then
+z 222'(2)
— 0 fi , D, 2.4
[C—z g(s‘)—g(z)]Z orzee (@4)

as Sheil-Small [SS] and Suffridge [S] have shown; see [P, p. 45] for a proof.

THEOREM 2. If f is s-convex withf'(0) = 0 and ifw € f (D), then

e[§+z_ 2:f'(2) 14+ wf Q)
=z fQO) - f@1+wf(z)

] >0 for z,¢eD. (2.5)
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This is an immediate consequence of (2.4) applied to the convex fungiiaf
Theorem 1. We remark that, as a functiomef the left-hand side assumes its
minimum forw € f(T). Hence (2.5) is not sharp far € f(DD).

THEOREM 3. Let f(z) = az +a»z°+ - -- be s-convex, and let > 0. Theno <

land, withg = +/1— a2,

% —1‘ Blz| < B for zeD, (2.6)
f(2) 1 1
Re|: f(Z)i| = 15 A0 > 175 for zeD. (2.7)

If £(z) = az/(1— Bz) (see (1.9)), then equality holds in (2.6) for ak D and in
(2.7) forz < 0. The inequalities (1.7) follow at once from (2.6), and

f(@)
Re[ = } = 15 A0 for zeD. (2.8)
From (2.7) and (1.7) we deduce that
|f@)/z] o

@)= = ;
PN = T80 2 @ piane
which is (1.8). Of course, our proof is in essence the same as that in [MMM].

Proof. (a) If ¢ € D is fixed, then
t+z  2zf'(2) L+ wf(©) =1+2<} o _[m)“_“_
{—z O - f@1+wf() ¢ f©
asz — 0. Hence it follows [P, p. 41] from (2.4) that
1 o
¢ f©

Let > = min{|f(z)| : z € T}. Choosingw € f(ID) suitably with|w| = b, we
deduce that

—aw

<1 for ¢eD, we f(D). (2.9)

1
2 _Zl<1—ab for ceD.

f@ ¢

For¢ e T with | £(¢)] = b we obtain thatt /b — 1 < 1 — ab, which implies that
a <landb > (1— B)/a and thus - ab < B. This, of course, also follows from

7).
(b) We obtain from (2.5) for = 0 that
2zf'(2)
e—f(z)(l—i— @) > >1 forzeD, we f(D)

Choosingw = bf(z)/| f(z)|, we conclude that 2 Ref’/f] > 1+ b| f|. Hence, it
follows from the minimum principle for harmonic functions that
, /(@) . 2 2
2infR 1+b =14+bh"> ——. O
B e[z f(z)] = gyﬁp( +b[f()) =1+b"= 115
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3. The Central Normalization

Now we show that every s-convex domain has a unique “conformal center”.

related ideas, see [MW; MO; COP].

THEOREM 4. Let f be s-convex. Then

o(f) = maxl—|zI*) f ) (3.1)
is attained at a unique pointy € D. The function
h(z) = J(W(2)) = f(zo) , 3.2)
1+ f(zo) f(¥(2))
wherey(z) = (z + z0)/(1+ Zoz), is S-convex and satisfies
h(0) =0, [K'0)]=0(f), h'(0)=0. (3.3)

Sincehr (D) = ¢(f(D)) with ¢ € Rot(@), we can attain thaf is centrally nor-
malized that is,
f@=az+as®+--- (zeD) (3.4)

with o = o(f). The important additional assumption is thf&1{0) = 0. This nor-

For

malization plays a great role for functions with given bounds for the Schwarzian

derivative (see e.g. [CO; COP]). We have<s(f) < 1 by Theorem 3.
Proof. By the Koebe one-quarter theorem, the spherical distance satisfies
A — 1213 f*2) < 4dist'(f(2), f(T)) — 0 as|z| > 1

Hence, the maximum in (3.1) is attained for somes D. It follows from (3.2)
that

A—1zPh*2) = A= v @ P AW (2) < Q- |z01® f#(z0) = K*(0) (3.5)

for z e D. We have

1-1z1%

h*(z) zh"(0)

=1+R

o e[ w0

asz — 0, so we may deduce that'(0) = 0.

Now 4 is convex by the lemma. Hence

Zh//(z)
h(z)

has positive real part. Consequently, the functipn- 1)/(p + 1) has a double

zero at 0 and is bounded by 1 and thus 4. It follows that, forz € T and 0<

r<1,

}+ 0(z1%)

pz) =1+ =14+ 0% (zeD)

1+ r2
1-r2

)
r=—1og[L = r9) W (o)) = Rep(ro) — <o.

Hence — r2)|h'(r¢)| < |W'(0)|, which implies
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A— zPHh () < h*(0) for 0 < |z] <1

It follows that the maximunz of (3.1) is unique; see (3.5). O

An important example is the s-convex function
A+2)*—1A—2)"
A+2°+ Q-2
which mapsD onto the symmetric lens-shaped domain between the two circular
arcs that meet at-1 under the angle«. This function satisfies

o(hy) =a, Sp,(2) =20—a®A—2z9)"2 (zeD), (3.7)

ha(z) = wz + %(1—052)13+-~-, (3.6)

ho(iy) = itan(@ arctany), A% (iy) = a/(1+ y?) (3.8)
for y > 0. In particular,h, (i) = itan(ra/4). See [M1, p. 133] for a detailed
study of this example.

THEOREM 5. Let the s-convex function be centrally normalized;(@24). Then,
for|z|=r <1,
A+nN*—@A-r"

tanearetam) < |f@ < e g <% (3.9)
o
o=@ (3.10)
_ e2ya—1
A=) < a2 1-pt (3.11)

! <
ol = [+ + 2 —r)]?
It follows from (3.6) and (3.8) that all four bounds are sharp for every valye=of
D. The estimaté f(z)| < 1is due to Ma and Minda (personal communication).
Also, it follows from (3.9) that

{lw] < tan(ra/4)} C f(D); (3.12)

this disk has the spherical radins /4.

Now let f be any s-convex function. We use the transformation (3.2) of Theo-
rem 4 to obtain a centrally normalized function to which Theorem 5 can be applied.
We list three consequences.

(i) Minda [M1, p. 137] proved thaf (D) always contains a disk of spherical ra-
diusmo(f)/4. This also follows from (3.12).
(ii) It follows either from (3.12) by a geometrical argument or from (3.11) by an
analytical argument that all corners 6fT) have interior angles no(f);
we have equality for the functioh, in (3.6).
(iii) We deduce from (3.11) that, if is bounded, then

@) =0(@A-1zD""™Y as|z| - 1,

where the exponent is best possible. Under the normalization (1.5), it is
known [MMM, p. 53] that

1/ @) <a@—Blz)? for |z] <2/(1+/5—48), B=1-a2
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Proof of Theorem 5(a) First we prove the lower estimates. ket f(D) and let
gw be the convex function of Theorem 1. Then

f// 2Zf/11_) . g//
Re[1+ z? 1T fﬁ)} = Re[1+ z?} > 0.
For givenz € T, we choosav = f(¢%z). Then
'@ 2z2f'(2) f(§%2)
f@ 1+ f2)fc%)

p()=1+z eD) (3.13)

is analytic and satisfies
Rep;(z) >0 (zeD), p(0)=1 p/(0) =0

by our normalization (3.4). We easily deduce tfiat. (z) —1)/(p:(z) +1)| < |z|?
for z e D. It follows that Rep;(z) > (1— |z|?)/(1+ |z|?). We conclude that, with
z=r; e,

'@ 2zf'(2) f(2) 1—|z)?
Rel 1 — =R . 14
e[ o 1+|f(z)|2} PO = 1R (314)
Hence we have
o[, A+rIf ol .
’a_r[ 1+ /O }_Re”g(“)_lwz =0

which, by (1.3), implies (3.10) because [] = log for » = 0. Finally, if z e D
andC = 4]0, f(z)]), then by (3.10) we have

[ 1f'(9)llds] alds|
arctanf(z)| = C—1+ )2 > /; 1t > a arctarz|.

(b) The upper estimates are an immediate consequence of Theorem 7 (see Sec-
tion 4) and the following result of Chuaqui and Osgood [CO, p. 290]. O

ProrosiTION. Let f be meromorphic and locally univalent ib. If f(z) =
a1z + azz® +--- nearOand if

A—1z215218:()| <21 —a?) (zeD)
withO < o < 1, then

|l , laa|
[ f()] < —hs(z]), | f (@] <= —h,(z])
o o

for z e D, whereh,, is defined by3.6).

4. The Schwarzian Derivative

Wirths [W1, p. 49] proved an important inequality, which we present in its invari-
ant form [MM1, p. 158] (cf. [W2]). We shall give a much simpler proof.
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THEOREM 6. If f is s-convex, then

1—1z»? _ 1-zP f(2) . [@f@ |?
Al I Y oS g EAIIAYE
5 ISr ()] + |2 > ) + @A -1zl )1+|f(z)|2
+@—z»?f )% < 1 (4.1)

Proof. All three terms in (4.1) remain essentially unchanged if we replads
@ o f oy, with ¢ € Rot(C) andy € MOb(D); see [MM1, p. 154]. Hence, it is
sufficient to prove (4.1) for = 0, f(0) = 0, and f'(0) = « > O, that s, to prove
(1.10).

Let¢ €T, and definep, again by (3.13). We have

pe(z) =14 2p1z + 2pzz2 + -,

where ,
as 3az 2a -
p1=—, p2=———22—a2§2.
o o o
Since Rep,(z) > 0, the analytic function
1px) -1 2
7)) = — — + — z + e
q(z)  p +1 p1t+(p2—pp)
satisfiedq(z)| < 1forz e D. Hence|pz — p?| + |p1l? < 1, so that
2 2
Sas _ 34 _ gepa| g lodl”
o a? a?
(1.10)follows if we choose; € T suitably. O

We deduce the sharp bound for the Schwarzian derivative in terms of the quantity
o(f) defined in (1.4). We remark that, fbrconvex functions, the sharp bound of
the Schwarzian derivative remains unknown.

THEOREM 7. If f is s-convex, then
A - 125218 (2)] < 2L - a(f)?), (4.2)

and equality is possible for every valuezof D.

Proof. (a) Let¢ € T be fixed. First we prove that

_ -2 8f00) 2. ol S O F (D)
I/l{(r) =r — 2 Re f/(ré') + (1— r ) RGW (43)
satisfies
uy(r) = 20— r? fHrg)® for 0<r <1 (4.4)

By rotational invariance, we may assume that 1. We write

RGN <f”(r)>’ ,_ SO .
1) £y 1+ £




On Spherically Convex Univalent Functions 171

By (1.3), the Wirths inequality (4.1) implies
1-r?»?(iRea’ — 1Re(@®) + |r — 31— r®a+ 1 —r?b|?
+ A= rb/f1P <L
Rearranging and dividing by the common facter 12, we obtain
0<-11-r?)Rea’ — 31— r*(Ima)® +1+rRea — 2r Reb
+ @A —rd)Reab) — A—rd|b|> — A—r?)|b/f|? (4.6)
Differentiating (4.3), we see from (4.5) that
uj =1+rRea — 3(1—r?)Rea’ — 2r Reb
+ (L —r®)Re(ab) + A1 —r?)|b/f 1> = L - r?) Re(b?).

Hence, we deduce from (4.6) that

up —2(L—rdb/f 1> = A—r®[3(Ima)® + |b]* — Re(b®) — 2Ima Im b]

= 2(1—r?)(me —imp)® >0,

which is (4.4), by (4.5).

(b) Since both mafd — |z|2)2|Sf(z)| ando (f) are unchanged under the trans-
formation (1.2), we may assume thftis centrally normalized. Thug(0) =
f”(0) = 0 and so, by (4.3).(0) = 0. Hence (4.4) shows tha (r) > 0 for 0 <
r<21

Using (4.3), it is easy to check that

%[ucmz + A= 2 0% = 2uc(u, —2A—r® "), (A7)

Sinceu,(r) > 0, this expression is- 0 by (4.4). Furthermore.[.] = f#(0)? =
o(f)? for r = 0. Using again (4.3), we therefore obtain from the Wirths inequal-
ity (4.1) that

1A= 8,0 < 1—ur(r? — A= rD2 )2 < 1- ()2

(c) For the functioriz,, defined in (3.6), we have equality in (4.2%iE D N R;
see (3.7). Using,(¢z) with suitable¢ € T, we deduce that equality in (4.2) is
possible for every € D. O
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