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1. Introduction

The point of departure for this paper is the following result, obtained in [10; 11].
Let N 0

n denote the semialgebraic set of all unipotent upper-triangularn × n ma-
tricesx with real entries such that, for everyk = 1, . . . , n−1, the minor ofx with
rows 1, . . . , k and columnsn − k + 1, . . . , n is nonzero. Then the number #n of
connected components ofN 0

n is given as follows: #2 = 2, #3 = 6, #4 = 20, #5 =
52, and #n = 3 · 2n−1 for n ≥ 6.

An interesting feature of this answer is that every case that can be checked by
hand turns out to be exceptional. But the method of the proof seems to be even
more interesting than the answer itself: it is shown that the connected components
ofN 0

n are in a bijection with the orbits of a certain group0n that (a) acts in a vector
space of dimensionn(n−1)/2 over the 2-element fieldF2 and (b) is generated by
symplectic transvections. Such groups appeared earlier in singularity theory (see
e.g. [5] and references therein).

The construction of0n given in [10; 11] uses the combinatorial machinery (de-
veloped in [1]) of pseudo-line arrangements associated with reduced expressions
in the symmetric group. In this paper we present the following far-reaching gener-
alization of this construction. LetW be an arbitrary Coxeter group of simply laced
type (possibly infinite but of finite rank). Letuandv be any two elements inW,and
let i be a reduced word (of lengthm = `(u)+`(v)) for the pair(u, v) in the Coxeter
groupW ×W (see Section 2 for more details). We associate toi a subgroup0i in
GLm(Z) generated by symplectic transvections. We prove (among other things)
that the subgroups corresponding to different reduced words for the same pair
(u, v) are conjugate to each other inside GLm(Z). To recover the group0n from
this general construction, one needs several specializations and reductions: takeW

to be the symmetric groupSn; take(u, v) = (w0, e), wherew0 is the longest per-
mutation inSn ande is the identity permutation; takei to be the lexicographically
minimal reduced word 1,2,1, . . . , n − 1, n − 2, . . . ,1 for w0; and take the group
0i(F2) obtained from0i by reducing the linear transformations fromZ to F2.
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We also generalize the enumeration result of [10; 11] by showing that, under cer-
tain assumptions onu andv, the number of0i(F2)-orbits inFm2 is equal to 3· 2s ,
wheres is the number of simple reflections inW that appear in a reduced decom-
position foru or v. We deduce this from a description of orbits in an even more
general situation that sharpens the results in [5; 11] (see Section 7).

Although the results and methods of this paper are purely algebraic and combi-
natorial, our motivation for the study of the groups0i and their orbits comes from
geometry. In the case whenW is the (finite) Weyl group of a simply laced root
system, we expect (see Conjecture 4.1) that the0i(F2)-orbits inFm2 enumerate con-
nected components of the real part of the reduced double Bruhat cell correspond-
ing to (u, v). Double Bruhat cells were introduced and studied in [4] as a natural
framework for the study of total positivity in semisimple groups; as explained to
us by N. Reshetikhin, they also appear naturally in the study of symplectic leaves
in semisimple groups (see [6]). Let us briefly recall their definition.

LetG be anR-split simply connected semisimple algebraic group with the Weyl
groupW ; thusW = NormG(H )/H, whereH is anR-split maximal torus inG.
Let B andB− be two (opposite) Borel subgroups inG such thatB ∩ B− = H.

Thedouble Bruhat cellsGu,v are defined as the intersections of ordinary Bruhat
cells taken with respect toB andB−:

Gu,v = BuB ∩ B−vB−.
In view of the well-known Bruhat decomposition, the groupG is the disjoint union
of all Gu,v for (u, v)∈W ×W.

The term “cell” might be misleading because the topology ofGu,v can be quite
complicated. The torusH acts freely onGu,v by left (as well as right) translations,
and there is a natural sectionLu,v for this action that we call thereduced double
Bruhat cell.These sections are introduced and studied in a forthcoming paper [3]
(for the definition, see Section 4).

The special case when(u, v) = (e, w) for some elementw ∈W is of particu-
lar geometric interest. In this case,Lu,v is biregularly isomorphic to theopposite
Schubert cell

C 0
w := Cw ∩ w0Cw0,

wherew0 is the longest element ofW and whereCw = (BwB)/B ⊂ G/B is the
Schubert cellcorresponding tow. These opposite cells have appeared in the lit-
erature in various contexts and were studied (in various degrees of generality) in
[1; 2; 8; 9; 10; 11]. In particular, the varietyN 0

n , which was the main object of
study in [10; 11], is naturally identified with the real part of the opposite cellC 0

w0

for G = SLn.
By the informal “complexification principle” of V. I.Arnold, if the group0i(F2)

enumerates connected components of the real part ofLu,v, then the group0i itself
(which acts inZm rather than inFm2 ) should provide information about topology
of the complex varietyLu,v. So far, we have not found a totally satisfactory com-
plexification along these lines.

The paper is organized as follows. Main definitions, notations and conventions
are collected in Section 2. Our main results are formulated in Section 3 and proved
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in Sections 5–7. The geometric connection just outlined is discussed in more de-
tail in Section 4.

2. Definitions

2.1. Simply Laced Coxeter Groups

Let5 be an arbitrary finite graph without loops or multiple edges. Throughout the
paper, we use the following notation: writei ∈5 if i is a vertex of5 and write
{i, j} ∈ 5 if the verticesi andj are adjacent in5. The (simply laced) Coxeter
groupW = W(5) associated with5 is generated by the elementssi for i ∈5,
subject to the relations

s2
i = e; sisj = sj si ({i, j} /∈5); sisj si = sj sisj ({i, j} ∈5). (2.1)

A word i = (i1, . . . , im) in the alphabet5 is a reduced wordfor w ∈W if w =
si1 · · · sim, andm is the smallest length of such a factorization. The lengthm of
any reduced word forw is called thelengthof w and denoted bym = `(w). Let
R(w) denote the set of all reduced words forw.

The “double” groupW ×W is also a Coxeter group; it corresponds to the graph
5̃, which is the union of two disconnected copies of5. We identify the vertex set
of 5̃ with {+1,−1} × 5 and write a vertex(±1, i) ∈ 5̃ simply as±i. For each
±i ∈ 5̃ we setε(±i) = ±1 and|±i| = i ∈5. Thus, two verticesi andj of 5̃
are joined by an edge if and only ifε(i) = ε(j) and{|i|, |j |} ∈ 5. In this nota-
tion, a reduced word for a pair(u, v)∈W ×W is an arbitrary shuffle of a reduced
word for u written in the alphabet−5 and a reduced word forv written in the
alphabet5.

In view of the defining relations (2.1), the set of reduced wordsR(u, v) is
equipped with the following operations.
(a) 2-move: Interchange two consecutive entriesik−1, ik in a reduced wordi =

(i1, . . . , im) provided{ik−1, ik} /∈ 5̃.
(b) 3-move:Replace three consecutive entriesik−2, ik−1, ik in i by ik−1, ik−2, ik−1

if ik = ik−2 and{ik−1, ik} ∈ 5̃.
In each case, we will refer to the indexk ∈ [1, m] as thepositionof the corre-
sponding move. Using these operations, we makeR(u, v) the set of vertices of a
graph whose edges correspond to 2- and 3-moves. It is a well-known result due to
Tits that this graph isconnected—that is, any two reduced words inR(u, v) can
be obtained from each other by a sequence of 2- and 3-moves. We will say that a
2-move interchanging the entriesik−1 andik is trivial if ik 6= −ik−1; the remaining
2-moves and all 3-moves will be referred to asnontrivial.

2.2. Groups Generated by Symplectic Transvections

Let6 be a finite directed graph. As before, we shall writek ∈ 6 if k is a vertex
of 6 and{k, l} ∈6 if the verticesk andl are adjacent in the underlying graph ob-
tained from6 by ignoring the directions of edges. We also write(k → l ) ∈6 if
k→ l is a directed edge of6.
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LetV = Z6 be the lattice with a fixedZ-basis(ek)k∈6 labeled by vertices of6.
Let ξk ∈ V ∗ denote the corresponding coordinate functions; that is, every vector
v ∈V can be written as

v =
∑
k∈6

ξk(v)ek.

We define a skew-symmetric bilinear form� onV by

� = �6 =
∑

(k→l )∈6
ξk ∧ ξl. (2.2)

For eachk ∈6, we define the symplectic transvectionτk = τk,6 : V → V by

τk(v) = v −�(v, ek)ek. (2.3)

(The word “symplectic” might be misleading, since� is allowed to be degener-
ate; still, we prefer to keep this terminology from [5].) In the coordinate form, we
haveξl(τk(v)) = ξl(v) for l 6= k and

ξk(τk(v)) = ξk(v)−
∑

(a→k)∈6
ξa(v)+

∑
(k→b)∈6

ξb(v). (2.4)

For any subsetB of vertices of6, we denote by06,B the group of linear trans-
formations ofV = Z6 generated by the transvectionsτk for k ∈B.

Note that all transformations from06,B are represented by integer matrices in
the standard basisek. Let06,B(F2) denote the group of linear transformations of
theF2-vector spaceV(F2) = F62 obtained from06,B by reduction modulo 2 (re-
call thatF2 is the 2-element field).

3. Main Results

3.1. The Graph6(i )

We now present our main combinatorial construction that brings together simply
laced Coxeter groups and groups generated by symplectic transvections. LetW =
W(5) be the simply laced Coxeter group associated to a graph5 (see Section 2.1).
Fix a pair(u, v)∈W ×W, and letm = `(u)+`(v). Let i = (i1, . . . , im)∈R(u, v)
be any reduced word for(u, v). We shall construct a directed graph6(i ) and a
subsetB(i ) of its vertices, thus giving rise to a group06(i ),B(i ) generated by sym-
plectic transvections.

First of all, the set of vertices of6(i ) is just the set [1, m] = {1,2, . . . , m}. For
l ∈ [1, m], we denote byl− = l−i the maximal indexk such that 1≤ k < l and
|ik| = |il|; if |ik| 6= |il| for 1≤ k < l then we setl− = 0. We defineB(i ) ⊂ [1, m]
as the subset of indicesl ∈ [2, m] such thatl− > 0. The indicesl ∈ B(i ) will be
calledi-bounded.

It remains to define the edges of6(i ).

Definition 3.1. A pair{k, l} ⊂ [1, m] with k < l is an edge of6(i ) if it satisfies
one of the following three conditions:
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(i) k = l−;
(ii) k− < l− < k, {|ik|, |il|} ∈5, andε(il−) = ε(ik);

(iii) l− < k− < k, {|ik|, |il|} ∈5, andε(ik−) = −ε(ik).
The edges of type (i) are calledhorizontal; those of types (ii) and (iii) arein-
clined.A horizontal (resp. inclined) edge{k, l} with k < l is directed fromk to l
if and only if ε(ik) = +1 (resp.ε(ik) = −1).

We will give a few examples in the end of Section 3.2.

3.2. Properties of Graphs6(i )

We start with the following property of6(i ) andB(i ).

Proposition 3.2. For any non-empty subsetS ⊂ B(i ), there exists a vertexa ∈
[1, m] \ S such that{a, b} ∈6(i ) for a uniqueb ∈ S.
For any edge{i, j} ∈5, let6i,j(i ) denote the induced directed subgraph of6(i)
with verticesk ∈ [1, m] such that|ik| = i or |ik| = j. We shall use the follow-
ing planar realization of6i,j(i ), which we call the(i, j)-strip of 6(i ). Consider
the infinite horizontal stripR× [−1,1] ⊂ R2, and identify each vertexk ∈6i,j(i )
with the pointA = Ak = (k, y),wherey = −1 for |ik| = i andy = 1 for |ik| = j.
We represent each (directed) edge(k→ l ) by a straight line segment fromAk to
Al. (This justifies the terms “horizontal” and “inclined” edges in Definition 3.1.)

Note that every edge of6(i ) belongs to some(i, j)-strip, so we can think of
6(i ) as the union of all its strips glued together along horizontal lines.

Theorem 3.3. (a)The(i, j)-strip of 6(i ) is a planar graph; equivalently, no
two inclined edges cross each other inside the strip.

(b) The boundary of any triangle or trapezoid formed by two consecutive in-
clined edges and horizontal segments between them is a directed cycle in6i,j(i ).

Our next goal is to compare the directed graphs6(i ) and6(i ′)when two reduced
words i and i ′ are related by a 2- or 3-move. To do this, we associate toi and i ′

a permutationσi ′,i of [1, m] defined as follows. Ifi and i ′ are related by a triv-
ial 2-move in positionk thenσi ′,i = (k − 1, k), the transposition ofk − 1 andk;
if i andi ′ are related by anontrivial 2-move thenσi ′,i = e, the identity permuta-
tion of [1, m]; finally, if i andi ′ are related by a 3-move in positionk thenσi ′,i =
(k−2, k−1). The following properties ofσi ′,i are immediate from the definitions.

Proposition 3.4. The permutationσi ′,i sendsi-bounded indices toi ′-bounded
ones. If the move that relatesi and i ′ is nontrivial then its positionk is i-bounded
andσi ′,i(k) = k.
The relationship between the graphs6(i ) and6(i ′) is now given as follows.

Theorem 3.5. Suppose that two reduced wordsi and i ′ are related by a2- or 3-
move in positionk, and thatσ = σi ′,i is the corresponding permutation of[1, m].
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Let a and b be two distinct elements of[1, m] such that at least one of them is
i-bounded. Then

(a→ b)∈6(i ) ⇐⇒ (σ(a)→ σ(b))∈6(i ′), (3.1)

with the following two exceptions.

(1) If the move that relatesi and i ′ is nontrivial, then(a→ k)∈6(i ) if and only
if (k→ σ(a))∈6(i ′).

(2) If the move that relatesi and i ′ is nontrivial anda → k → b in 6(i ),
then{a, b} ∈6(i ) if and only if {σ(a), σ(b)} /∈6(i ′); furthermore, the edge
{a, b} ∈6(i ) can only be directed asb→ a.

The following example illustrates these results.

Example 3.6. Let5 be the Dynkin graphA4, that is, the chain formed by ver-
tices 1, 2, 3, and 4. Letu = s4s2s1s2s3s2s4s1 andv = s2s1s3s2s4s1s3s2s1. (In
the standard realization ofW as the symmetric groupS5, with the generatorssi =
(i, i +1) (adjacent transpositions), the permutationsu andv can be written in the
one-line notation asu = 53241 andv = 54312.) The graph6(i ) corresponding
to the reduced wordi = (2,1,−4,−2,−1,3,−2,2,−3,−2,4,1,−4,−1,3,2,1)
of (u, v) is shown in Figure 1. Here white (resp. black) vertices of each horizontal
level i correspond to entries ofi that are equal to−i (resp. toi). Horizontal edges
are shown by solid lines, inclined edges of type (ii) in Definition 3.1 by dashed
lines, and inclined edges of type (iii) by dotted lines.

A

E

C

DB

Figure 1 Graph6(i ) for typeA4

Now let i ′ be obtained fromi by the (nontrivial) 2-move in position 8, that is,
by interchangingi7 = −2 with i8 = 2. The corresponding graph6(i ′) is shown
in Figure 2.

Notice that the edges of6(i ) that fall into the first exceptional case in Theo-
rem 3.5 areA → B, C → A, andA → D; by reversing their orientation, one
obtains the edgesB ′ → A′, A′ → C ′, andD ′ → A′ of 6(i ′). The second excep-
tional case in Theorem 3.5 applies to two edgesB → E andD→ E of 6(i ) and
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B A

G

FC

E

D

Figure 2 Graph transformation under a nontrivial 2-move

two “non-edges”{C,B} and{C,D}; the corresponding edges and non-edges of
6(i ′) areC ′ → B ′, C ′ → D ′, {E ′, B ′ }, and{E ′,D ′ }.

Finally, consider the reduced wordi ′′ obtained fromi ′ by the 3-move in posi-
tion 10, that is, by replacing(i ′8, i

′
9, i
′
10) = (−2,−3,−2) with (−3,−2,−3). The

corresponding graph6(i ′′) is shown in Figure 3.

A G

FDC

Figure 3 Graph transformation under a 3-move

Now the first exceptional case in Theorem 3.5 covers the edgesD ′ → A′,
C ′ → D ′, D ′ → F ′, andG′ → D ′ of 6(i ′) as well as the corresponding edges
A′′ → D ′′, D ′′ → C ′′, F ′′ → D ′′, andD ′′ → G′′ of 6(i ′′). The second ex-
ceptional case covers the edgesF ′ → C ′ andA′ → C ′ as well as non-edges
{G′, F ′ } and{G′, A′ } of 6(i ′′); the corresponding edges and non-edges of6(i ′′)
areG ′′ → F ′′, G′′ → A′′, {C ′′, F ′′ }, and{A′′, C ′′ }.

3.3. The Groups0i and Conjugacy Theorems

As before, leti = (i1, . . . , im) be a reduced word for a pair(u, v) of elements in
a simply laced Coxeter groupW. By the general construction in Section 2.2, the
pair (6(i ), B(i )) gives rise to a skew-symmetric form�6(i ) onZm and to a sub-
group06(i ),B(i ) ⊂ GLm(Z) generated by symplectic transvections. We denote
these symplectic transvections byτk,i, and we also abbreviate� i = �6(i ) and
0i = 06(i ),B(i ).
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Theorem 3.7. For any two reduced wordsi and i ′ for the same pair(u, v) ∈
W ×W, the groups0i and0i ′ are conjugate to each other insideGLm(Z).

Our proof of Theorem 3.7 is constructive. In view of the Tits result quoted in Sec-
tion 2.1, it is enough to prove Theorem 3.7 in the case wheni andi ′ are related by
a 2- or 3-move. We shall construct the corresponding conjugating linear transfor-
mations explicitly. To do this, let us define two linear mapsϕ±i ′,i : Z

m→ Zm. For
v ∈ Zm, the vectorsϕ+i ′,i(v) = v+ andϕ−i ′,i(v) = v− are defined as follows. Ifi
andi ′ are related by a trivial 2-move andl is arbitrary, or ifi andi ′ are related by
a nontrivial move in positionk andl 6= k, then we set

ξl(v
+) = ξl(v−) = ξσi ′,i (l )(v); (3.2)

for l = k in the case of a nontrivial move, we set

ξk(v
+) =

∑
(a→k)∈6(i )

ξa(v)− ξk(v); ξk(v
−) =

∑
(k→b)∈6(i )

ξb(v)− ξk(v). (3.3)

Theorem 3.8. If two reduced wordsi and i ′ for the same pair(u, v) ∈W ×W
are related by a2- or 3-move, then the corresponding linear mapsϕ+i ′,i andϕ−i ′,i
are invertible and

0i ′ = ϕ+i ′,i B 0i B (ϕ+i ′,i)−1 = ϕ−i ′,i B 0i B (ϕ−i ′,i)−1. (3.4)

Our proof of Theorem 3.8 is based on the following properties of the mapsϕ±i ′,i,
which might be of independent interest.

Theorem 3.9. (a)The linear mapsϕ±i ′,i satisfy

ϕ−i,i ′ B ϕ+i ′,i = ϕ+i,i ′ B ϕ−i ′,i = Id. (3.5)

(b) If the move that relatesi and i ′ is nontrivial in positionk, then

ϕ+i,i ′ B ϕ+i ′,i = τk,i . (3.6)

(c) For any i-bounded indexl ∈ [1, m], we have

ϕ+i ′,i B τl,i = τσi ′,i (l ),i ′ B ϕ+i ′,i (3.7)

unless the move that relatesi and i ′ is nontrivial in positionk and (l→ k)∈6 i .

3.4. Enumerating06,B(F2)-Orbits inF62
Let6 andB have the same meaning as in Section 2.2, and let0 = 06,B(F2) be
the corresponding group of linear transformations of the vector spaceF62 .

The following definition is motivated by the results in [5; 10; 11].

Definition 3.10. A finite (nondirected) graph isE6-compatibleif it is connected
and if it contains an induced subgraph with six vertices isomorphic to the Dynkin
graphE6 (see Figure 4).

Theorem 3.11. Suppose that the induced subgraph of6 with the set of vertices
B isE6-compatible. Then the number of0-orbits inF62 is equal to
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Figure 4 Dynkin graphE6

2#(6\B) · (2+ 2dim(FB2 ∩Ker�̄)),

where�̄ denotes theF2-valued bilinear form onF62 obtained by reduction modulo
2 from the form� = �6 in (2.2).

Theorem 3.11 has the following corollary, which generalizes the main enumera-
tion result in [10; 11].

Corollary 3.12. Letu andv be two elements of a simply laced Coxeter group
W(5) and suppose that, for some reduced wordi ∈ R(u, v), the induced sub-
graph of6(i ) with the set of verticesB(i ) isE6-compatible. Then the number of
0i(F2)-orbits inFm2 is equal to3 · 2s , wheres is the number of indicesi ∈5 such
that some(equivalently, any) reduced word for(u, v) has an entry±i.

4. Connected Components of Real Double Bruhat Cells

In this section we give a (conjectural) geometric application of the foregoing con-
structions. We assume that5 is a Dynkin graph of simply laced type—that is,
every connected component of5 is the Dynkin graph of typeAn, Dn, E6, E7,

orE8. LetG be a simply connected semisimple algebraic group with the Dynkin
graph5. We fix a pair of opposite Borel subgroupsB− andB in G; thusH =
B− ∩B is a maximal torus inG. LetN andN− be the unipotent radicals ofB and
B−, respectively. Let{αi : i ∈5} be the system of simple roots for which the cor-
responding root subgroups are contained inN. For everyi ∈5, letϕi : SL2→ G

be the canonical embedding corresponding toαi. The (split) real part ofG is de-
fined as the subgroupG(R) ofG generated by all the subgroupsϕi(SL2(R)). For
any subsetL ⊂ G, we define its real part byL(R) = L ∩G(R).

TheWeyl groupW of G is defined byW = NormG(H )/H. It is canonically
identified with the Coxeter groupW(5) (as defined in Section 2.1) viasi = siH,
where

si = ϕi
(

0 −1
1 0

)
∈NormG(H ).

The representativessi ∈ G satisfy the braid relations inW ; thus, the representa-
tive w̄ can be unambiguously defined for anyw ∈W by requiring thatuv = ū · v̄
whenever̀ (uv) = `(u)+ `(v).
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The groupG has twoBruhat decompositionswith respect toB andB−:

G =
⋃
u∈W

BuB =
⋃
v∈W

B−vB−.

Thedouble Bruhat cellsGu,v are defined byGu,v = BuB ∩ B−vB−.
Following [3], we define thereduced double Bruhat cellLu,v ⊂ Gu,v as fol-

lows:
Lu,v = NūN ∩ B−vB−. (4.1)

The maximal torusH acts freely onGu,v by left (or right) translations, andLu,v is
a section of this action. ThusGu,v is biregularly isomorphic toH × Lu,v, and all
properties ofGu,v can be translated in a straightforward way into the correspond-
ing properties ofLu,v (and vice versa). In particular, Theorem 1.1 in [4] implies
thatLu,v is biregularly isomorphic to a Zariski open subset of an affine space of
dimensioǹ (u)+ `(v).

Conjecture 4.1. For every two elementsu andv inW and every reduced word
i ∈ R(u, v), the connected components ofLu,v(R) are in a natural bijection with
the0i(F2)-orbits inF`(u)+`(v)2 .

The precise form of this conjecture comes from the “calculus of generalized
minors” developed in [4] and in a forthcoming paper [3]. Ifu is the identity ele-
mente ∈W, thenLe,v = N ∩B−vB− is the varietyNv studied in [2]. IfG = SLn
andv = w0 (the longest element inW), then the real partNw0(R) is the semialge-
braic setN 0

n discussed in the introduction; in this case, the conjecture was proved
in [10; 11] (for a special reduced wordi = (1,2,1, . . . , n − 1, n − 2, . . . ,2,1) ∈
R(w0)).

5. Proofs of Results in Section 3.2

5.1. Proof of Proposition 3.2

By the definition ofi-bounded indices, we havek− ∈ [1, m] for any k ∈ S. Now
pick b ∈ S with the smallest value ofb−, and seta = b−. Clearly a /∈ S, and
{a, b} is a horizontal edge in6(i ). We claim thatb is the only vertex inS such that
{a, b} ∈ 6(i ). Indeed, if{a, c} ∈ 6(i ) for somec 6= b thenc− < a, in view of
Definition 3.1. Because of the wayb was chosen, we havec /∈ S, as required.

5.2. Proof of Theorem 3.3

In the course of the proof, we fix a reduced wordi ∈R(u, v) and an edge{i, j} ∈
5; we shall refer to the(i, j)-strip of 6(i ) as simply the strip. For any vertex
A = Ak = (k, y) in the strip, we sety(A) = y andε(A) = ε(ik); we cally(A)
the levelandε(A) thesignof A. We also set

c(A) = y(A)ε(A)
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and callc(A) thechargeof a vertexA. Finally, we linearly order the vertices by
settingAk ≺ Al if k < l, that is, if the vertexAk is to the left ofAl. In these terms,
one can describe inclined edges in the strip as follows.

Lemma 5.1. A vertexB is the left end of an inclined edge in the strip if and only
if it satisfies the following two conditions:

(1) B is not the leftmost vertex in the strip, and the preceding vertexA has oppo-
site chargec(A) = −c(B); and

(2) there is a vertexC of opposite levely(C) = −y(B) that lies to the right ofB.

Under these conditions, an inclined edge with the left endB is unique and its right
end is the leftmost vertexC satisfying condition(2).

This is just a reformulation of conditions (ii) and (iii) in Definition 3.1.

Lemma 5.2. SupposeA ≺ C ≺ C ′ are three vertices in the strip such thatc(A) =
−c(C) andy(C) = −y(C ′). Then there exists a vertexB such thatA ≺ B � C
andB is the left end of an inclined edge in the strip.

Proof. Let B be the leftmost vertex such thatA ≺ B � C andc(B) = −c(A).
Clearly,B satisfies condition (1) in Lemma 5.1. It remains to show thatB also sat-
isfies condition (2); that is, we need to find a vertex of opposite level toB that lies
to the right ofB. Depending on the level ofB, eitherC orC ′ is such a vertex, and
we are done.

Now everything is ready for the proof of Theorem 3.3. To prove part (a), assume
that {B,C} and{B ′, C ′ } are two inclined edges that cross each other inside the
strip. Without loss of generality, assume thatB ≺ C, B ′ ≺ C ′, andC ≺ C ′. Then
we must haveB ′ ≺ C (otherwise, our inclined edges would not cross). Since
{B ′, C ′ } is an inclined edge andB ′ ≺ C ≺ C ′, Lemma 5.1 implies thaty(C) =
y(B ′). Therefore,y(B) = −y(C) = −y(B ′). Again applying Lemma 5.1 to the
inclined edge{B ′, C ′ },we conclude thatB ≺ B ′; that is, we must haveB ≺ B ′ ≺
C ≺ C ′. But then, by the same lemma,{B,C} cannot be an inclined edge, pro-
viding a desired contradiction.

To prove part (b), consider two consecutive inclined edges{B,C} and{B ′, C ′ }.
Again we can assume without loss of generality thatB ≺ C, B ′ ≺ C ′, and
C ≺ C ′. Let P be the boundary of the polygon with verticesB, C, B ′, andC ′.
By Lemma 5.1, the leftmost vertex ofP is B, the rightmost vertex isC ′, andP
does not contain a vertexD such thatB ′ ≺ D ≺ C ′; in particular, we have either
C � B ′ or C = C ′. Now we make the following crucial observation: All the
verticesD on P such thatB ≺ D ≺ B ′ must have the same chargec(D) =
c(B). Indeed, assume thatc(D) = −c(B) for someD with B ≺ D ≺ B ′. Then
Lemma 5.2 implies that someB ′′ with B ≺ B ′′ � D is the left end of an in-
clined edge, but this contradicts our assumption that{B,C} and{B ′, C ′ } are two
consecutiveinclined edges. Hence we see thatc(D) = c(B) for any vertexD ∈
P \ {B ′, C ′ }. Combining this fact with condition (1) in Lemma 5.1 applied to the
inclined edge{B ′, C ′ } with the left endB ′, we conclude thatc(B ′) = −c(B).



542 B. Shapiro, M. Shapiro, A. Vainshtein, & A. Z elevinsky

Remembering the definition of charge, the foregoing statements can be reformu-
lated as follows:B ′ has the same (resp. opposite) sign with all vertices of opposite
(resp. same) level inP \ {C ′ }. Using the definition of directions of edges in Defi-
nition 3.1, we obtain the following.

(1) Horizontal edges on opposite sides ofP are directed in opposite ways, since
their left ends have opposite signs.

(2) SupposeB ′ is the right end of a horizontal edge{A,B ′ } in P. Then exactly
one of the edges{A,B ′ } and{B ′, C ′ } is directed towardB ′, since their left
endsA andB ′ have opposite signs.

(3) The same argument shows that ifC ′ is the right end of a horizontal edge
{A,C ′ } in P then exactly one of the edges{A,C ′ } and{B ′, C ′ } is directed
towardC ′.

(4) Finally, if B is the left end of a horizontal edge{B,D} in P then exactly one
of the edges{B,C} and{B,D} is directed towardB.

These facts imply thatP is a directed cycle, which completes the proof of Theo-
rem 3.3.

5.3. Proof of Theorem 3.5

Let us call a pair of indices{a, b} exceptional(for i andi ′) if it violates (3.1). We
need to show that exceptional pairs are precisely those in two exceptional cases
in Theorem 3.5; to do this, we shall examine the relationship between the corre-
sponding strips in6(i ) and6(i ′). Let us consider the following three cases.

Case 1: Trivial2-Move. Supposeik = i ′k−1 = i0, ik−1 = i ′k = j0, andil = i ′l
for l /∈ {k −1, k}, wherei0, j0 ∈ 5̃ are such that|i0| 6= |j0| and{i0, j0} /∈ 5̃.

If both i andj are different from|i0| and|j0|, then the strip6i,j(i ) is identical
to6i,j(i ′) and so does not contain exceptional pairs.

If (say) i = |i0| but j 6= |j0|, then the only vertex in6i,j(i ) but not in6i,j(i ′)
isAk (in the notation of Section 5.2), while the only vertex in6i,j(i ′) but not in
6i,j(i ) isA′k−1= A′σ(k). The vertexAk has the same level and sign and hence the
same charge as the vertexA′σ(k) in 6i,j(i ′); by Lemma 5.1, there are no excep-
tional pairs in the strip6i,j(i ).

Finally, suppose that{i, j} = {|i0|, |j0|}; in particular, in this case we have
{|i0|, |j0|} ∈5 and soε(i0) = −ε(j0). Now the only vertices in6i,j(i ) but not in
6i,j(i ′) areAk andAk−1, while the only vertices in6i,j(i ′) but not in6i,j(i ) are
A′k−1= A′σ(k) andA′k = A′σ(k−1). SinceAk andAk−1 are of opposite level and op-
posite sign, they have the same charge, which is also equal to the charge ofA′σ(k−1)
andA′σ(k). Again using Lemma 5.1, we see that the strip in question also does not
contain exceptional pairs.

Case 2: Nontrivial2-Move. Supposeik = i ′k−1= i0 ∈ 5̃, ik−1= i ′k = −i0, and
il = i ′l for l /∈ {k − 1, k}. Interchanging if necessaryi andi ′, we can and will as-
sume thati0 ∈ 5. Clearly, an exceptional pair can only belong to an(i, j)-strip
with i = i0. In our case, the location of all vertices in6i,j(i ) and6i,j(i ′) is the
same; the only difference between the two strips is that the verticesAk−1 andAk
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in 6i,j(i ) have opposite signs and hence opposite charges to their counterparts in
6i,j(i ′). It follows that exceptional pairs of vertices of the same level are precisely
horizontal edges containingAk—that is,{Ak−1, Ak} and{Ak,C}, whereC is the
right neighbor ofAk of the same level (note thatC does not necessarily exist).
Sinceε(ik) = ε(i ′k−1) = +1 andε(ik−1) = ε(i ′k) = −1, we have

(Ak → Ak−1)∈6(i ), (Ak → C)∈6(i ),
(A′k−1→ A′k)∈6(i ′), (C ′ → A′k)∈6(i ′),

so both pairs{Ak−1, Ak} and{Ak,C} fall into the first exceptional case in Theo-
rem 3.5.

Let us now describe exceptional pairs corresponding to inclined edges. LetB

be the vertex of the opposite level toAk and closest toAk from the right (like the
vertexC above,B does not necessarily exist). By Lemma 5.1, the left end of an
exceptional inclined pair can only beAk−1, Ak, or the leftmost ofB andC; fur-
thermore, the corresponding inclined edges can only be{Ak−1, B}, {Ak, B}, or
{B,C}. We claim that all these three pairs are indeed exceptional and that each of
them falls into one of the exceptional cases in Theorem 3.5.

Let us start with{B,C}. SinceAk is the preceding vertex to the leftmost member
of {B,C}, and since it has opposite charges in the two strips, Lemma 5.1 implies
that{B,C} is an edge in precisely one of the strips. By Theorem 3.3(b), the trian-
gle with verticesAk, B,C is a directed cycle in the corresponding strip. Thus the
pair {B,C} falls into the second exceptional case in Theorem 3.5.

The same argument shows that{Ak−1, B} falls into the second exceptional case
in Theorem 3.5 provided one ofAk−1 andB is i-bounded, that is, ifAk−1 is not the
leftmost vertex in the strip. As for{Ak, B}, it is an edge in both strips, and it has
opposite directions in them because its left endAk has opposite signs there. Thus
{Ak, B} falls into the first exceptional case in Theorem 3.5.

It remains to show that the exceptional pairs (horizontal and inclined) just dis-
cussed exhaust all possibilities for the two exceptional cases in Theorem 3.5. This
is clear because, by the preceding analysis, the only possible edges throughAk
in 6(i ) are(Ak → Ak−1), (Ak → C), and(B → Ak) with B of the kind just
described.

Case 3:3-Move. Suppose thatik = ik−2 = i ′k−1 = i0 andik−1 = i ′k = i ′k−2 =
j0 for some{i0, j0} ∈5 and thatil = i ′l for l /∈ {k − 2, k − 1, k} (the case when
{i0, j0} ∈ −5 is quite similar). As in the previous case, we need to describe all
exceptional pairs.

First, an exceptional pair can only belong to an(i, j)-strip with at least one
of i andj equal toi0 or j0. Next let us compare the(i0, j0)-strips in6(i ) and
6(i ′). The location of all vertices in these two strips is the same with the exception
of Ak−2, Ak−1, Ak (in the former strip) and their counterpartsA′k−2 = A′σ(k−1),

A′k−1 = A′σ(k−2), andA′k (in the latter strip). Each of the six exceptional vertices
has sign+1; so its level is equal to its charge. These charges (or levels) are given
as follows:

c(Ak−2) = c(A′σ(k−2)) = c(Ak) = −1, c(Ak−1) = c(A′σ(k−1)) = c(A′k) = 1.
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Let B (resp.B ′) denote the vertex in both strips that is the closest from the right
to Ak on the same (resp. opposite) level; note thatB or B ′ may not exist. Since
the trapezoidT with verticesAk−2, Ak−1, B

′, andB in 6i0,j0(i ) is in the same
relative position to all outside vertices as the trapezoidT ′ with verticesA′σ(k−2),

A′σ(k−1), B
′, andB in6i0,j0(i

′), it follows that every exceptional pair is contained
in T . An inspection using Lemma 5.1 shows thatT contains the directed edges

Ak−2→ Ak → Ak−1→ B ′ → Ak → B

and does not contain any of the edges{Ak−2, B}, {Ak−2, B
′ }, or {Ak−1, B}.

Similarly (or by interchangingi and i ′), we conclude thatT ′ contains the di-
rected edges

A′σ(k−1)→ A′k → A′σ(k−2)→ B → A′k → B ′

and not any of the edges{A′σ(k−1), B
′ }, {A′σ(k−1), B

′ }, or {A′σ(k−2), B
′ }. Further-

more,{B,B ′ } is an edge in precisely one of the strips (since the preceding vertices
Ak andA′k have opposite charges); and precisely one of the pairs{Ak−2, Ak−1} and
{A′σ(k−1), A

′
σ(k−2)} is an edge in its strip, providedAk−2 is not the leftmost vertex

(since their left endsAk−2 andA′σ(k−1) have opposite charges).
Comparing this information for the two trapezoids, we see that the excep-

tional pairs inT are all pairs of vertices inT with the exception of two diago-
nals{Ak−2, B

′ } and{Ak−1, B} (and also of{Ak−2, Ak−1} if Ak−2 is the leftmost
vertex in the strip). By inspection based on Theorem 3.3(b), all these exceptional
pairs fall into the two exceptional cases in Theorem 3.5.

A similar (but much simpler) analysis shows that any(i, j)-strip with precisely
one ofi andj belonging to{i0, j0} contains neither extra exceptional pairs nor any
inclined edges throughAk or A′k. We conclude that all the exceptional pairs are
contained in the trapezoidT . That these exceptional pairs exhaust all possibilities
for the two exceptional cases in Theorem 3.5 is clear because, by the foregoing
analysis, the only edges throughAk in6(i ) are those connectingAk with the ver-
tices ofT . Theorem 3.5 is proved.

6. Proofs of Results in Section 3.3

We have already noticed that Theorem 3.7 follows from Theorem 3.8. Let us first
prove Theorem 3.9 and then deduce Theorem 3.8 from it.

6.1. Proof of Theorem 3.9

We fix reduced wordsi andi ′ related by a 2- or 3-move, and abbreviateσ = σi ′,i =
σi,i ′ andϕ+ = ϕ+i ′,i . Let us first prove parts (a) and (b). We shall only prove the
first equality in (3.5); the proof of the second one and of (3.6) is entirely analo-
gous. Letv ∈ Zm, v+ = ϕ+(v), andv ′ = ϕ−i,i ′(v+); thus we need to show that
v = v ′, in other words, thatξl(v) = ξl(v ′) for all l ∈ [1, m]. Note that the permu-
tationσ is an involution. In view of (3.2), this implies the desired equalityξl(v) =
ξl(v

′) in all cases except the following: the move that relatesi andi ′ is nontrivial
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in positionk, andl = k. To deal with this case, we use the first exceptional case
in Theorem 3.5, which we can write as

(k→ b)∈6(i ′) ⇐⇒ (σ(b)→ k)∈6(i).
Combining this with the definitions (3.2) and (3.3), we obtain

ξk(v
′) =

∑
(k→b)∈6(i ′ )

ξb(v
+)− ξk(v+)

=
∑

(σ(b)→k)∈6(i )
ξσ(b)(v)−

( ∑
(a→k)∈6(i )

ξa(v)− ξk(v)
)
= ξk(v),

as required.
We deduce part (c) from the following lemma, which says that the maps(ϕ±i ′,i)

∗

induced byϕ±i ′,i “almost” transform the form� i ′ into� i .

Lemma 6.1. If the move that relatesi and i ′ is trivial, then

(ϕ+i ′,i)
∗(� i ′) = (ϕ−i ′,i)∗(� i ′) = � i .

If the move that relatesi and i ′ is nontrivial in positionk, then

(ϕ+i ′,i)
∗(� i ′) = (ϕ−i ′,i)∗(� i ′) = � i −

∑
(a→k→b)∈6(i )

a,b/∈B(i )

ξa ∧ ξb. (6.1)

Proof. We will deal only with(ϕ+)∗(� i ′) = (ϕ+i ′,i)∗(� i ′); the form(ϕ−i ′,i)
∗(� i ′)

can be treated in the same way. By the definition,

(ϕ+)∗(� i ′) =
∑

(a ′→b ′ )∈6(i ′ )
(ϕ+)∗ξa ′ ∧ (ϕ+)∗ξb ′ .

The forms(ϕ+)∗ξa ′ are given by (3.2) and (3.3). In particular, ifi and i ′ are re-
lated by a trivial move then(ϕ+)∗ξa ′ = ξσ(a ′ ) for anya ′ ∈ [1, m]; by Theorem 3.5,
in this case we have

(ϕ+)∗(� i ′) =
∑

(a→b)∈6(i )
ξa ∧ ξb

as claimed.
Now suppose thati andi ′ are related by a nontrivial move in positionk. Then

we have

(ϕ+)∗(� i ′) =
∑

(σ(a)→σ(b))∈6(i ′ )
a,b 6=k

ξa ∧ ξb

+
∑

(k→σ(a ′ ))∈6(i ′ )

( ∑
(a→k)∈6(i )

ξa − ξk
)
∧ ξa ′

+
∑

(σ(b)→k)∈6(i ′ )
ξb ∧

( ∑
(a→k)∈6(i )

ξa − ξk
)
.
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Using the second exceptional case in Theorem 3.5, we can rewrite the first sum-
mand as ∑

(a→b)∈6(i )
a,b 6=k

ξa ∧ ξb +
∑

(a→k→b)∈6(i )
{a,b}∩B(i )6=∅

ξa ∧ ξb.

Similarly, using the first exceptional case in Theorem 3.5, we can rewrite the last
two summands as∑

(a→k)∈6(i )
ξa ∧ ξk +

∑
(k→b)∈6(i )

ξk ∧ ξb −
∑

(a→k→b)∈6(i )
ξa ∧ ξb;

note that the missing term ∑
(a→k)∈6(i )
(a ′→k)∈6(i )

ξa ∧ ξa ′

is equal to 0. Adding up the last two sums, we obtain (6.1).

Now everything is ready for the proof of Theorem 3.9(c). Sincel is assumed to
bei-bounded, Lemma 6.1 implies that� i(v, el) = � i ′(ϕ

+(v), ϕ+(el)) for anyv ∈
Zm. On the other hand, since we have excluded the case when the move that relates
i andi ′ is nontrivial in positionk and(l → k) ∈6 i, we now have thatϕ+(el) =
±eσ(l) (with the negative sign forl = k only). Therefore, our assumptions onl
imply that

� i(v, el)ϕ
+(el) = � i ′(ϕ

+(v), eσ(l))eσ(l).

Remembering the definition (2.3) of symplectic transvections, we conclude that

(τσ(l),i ′ B ϕ+)(v) = ϕ+(v)−� i ′(ϕ
+(v), eσ(l))eσ(l)

= ϕ+(v)−� i(v, el)ϕ
+(el) = (ϕ+ B τl,i)(v),

as required. This completes the proof of Theorem 3.9.

Remark 6.2. It is possible to modify all skew-symmetric forms� i without
changing the corresponding groups0i in such a way that the modified forms
will be preserved by the maps(ϕ±i ′,i)

∗. There are several ways to do this. Here is
one “canonical” solution: replace each� i by the form

�̃ i = � i − 1

2

∑
ε(ik)ξk ∧ ξl,

where the sum is over all pairs ofi-unbounded indicesk < l such that{|ik|, |il|} ∈
5. It follows easily from Lemma 6.1 that(ϕ±i ′,i)

∗(�̃ i ′) = �̃ i . Unfortunately, the

forms�̃ i are not defined overZ; in particular, they cannot be reduced to bilinear
forms overF2.

6.2. Proof of Theorem 3.8

The fact thatϕ+i ′,i andϕ−i ′,i are invertible follows from (3.5). To prove (3.4), it re-
mains to show thatϕ+i ′,i B τl,i B (ϕ+i ′,i)−1 ∈ 0i ′ for any i-bounded indexl ∈ [1, m].
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This follows from (3.7) unless the move that relatesi andi ′ is nontrivial in posi-
tion k and(l→ k)∈6 i . In this exceptional case, we conclude by interchangingi
andi ′ in (3.7) that

ϕ+i,i ′ B τσi ′,i (l ),i ′ = τl,i B ϕ+i,i ′ .
Using (3.6), we obtain that

ϕ+i ′,i B τl,i B (ϕ+i ′,i)−1= (ϕ+i ′,i B ϕ+i,i ′) B τσi ′,i (l ),i ′ B (ϕ+i ′,i B ϕ+i,i ′)−1

= τk,i ′ B τσi ′,i (l ),i ′ B τ−1
k,i ′ ∈0i ′ ,

as required. This completes the proofs of Theorems 3.8 and 3.7.

7. Proof of Theorem 3.11

7.1. Description of0-Orbits

In this section we shall only work over the fieldF2, so we find it convenient to
change our notation a bit. LetV be a finite-dimensional vector space overF2 with
a skew-symmetricF2-valued form� (i.e.,�(v, v) = 0 for anyv ∈ V ). For any
v ∈ V, let τv : V → V denote the corresponding symplectic transvection acting
by τv(x) = x −�(x, v)v. Fix a linearly independent subsetB ⊂ V, and let0 be
the subgroup of GL(V ) generated by the transvectionsτb for b ∈ B. We makeB
the set of vertices of a graph with{b, b ′ } an edge whenever�(b, b ′) = 1.

We shall deduce Theorem 3.11 from the following description of the0-orbits
in V in the case when the graphB is E6-compatible (see Definition 3.10). Let
U ⊂ V be the linear span ofB. The group0 preserves each parallel translate
(v + U)∈V/U of U in V, so we only need to describe0-orbits in eachv + U.

Let us first describe one-element orbits, that is,0-fixed points in each “slice”
v + U. Let V 0 ⊂ V denote the subspace of0-invariant vectors and letK ⊂ U
denote the kernel of the restriction�

∣∣
U
.

Proposition 7.1. If �(K, v+U) = 0 then(v+U)∩V 0 is a parallel translate
ofK; otherwise, this intersection is empty.

Proof. Suppose the intersection(v+U)∩V 0 is non-empty; without loss of gen-
erality, we can assume thatv is0-invariant. By the definition,v ∈V 0 if and only
if �(u, v) = 0 for allu∈U. In particular,�(K, v) = 0 and hence�(K, v+U) =
0. Furthermore, an elementv+u of v+U is0-invariant if and only ifu∈K, and
we are done.

Following [5], we choose a functionQ : V → F2 satisfying the following prop-
erties:

Q(u+ v) = Q(u)+Q(v)+�(u, v) (u, v ∈V ),
Q(b) = 1 (b ∈B). (7.1)

(Clearly, these properties uniquely determine the restriction ofQ to U.) An easy
check shows thatQ(τv(x)) = Q(x) wheneverQ(v) = 1; in particular, the func-
tionQ is 0-invariant.
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Now everything is ready for a description of0-orbits inV.

Theorem 7.2. If the graphB is E6-compatible then0 has precisely two orbits
in each set(v +U)\V 0. These two orbits are intersections of(v +U)\V 0 with
the level setsQ−1(0) andQ−1(1) ofQ.

The proof will be given in the next section. Let us show that this theorem implies
Theorem 3.11 and Corollary 3.12.

Corollary 7.3. If the graphB is E6-compatible then the number of0-orbits
in V is equal to2dim(V/U) · (2+ 2dim(U∩Ker�)); in particular, if U ∩ Ker� = {0}
then this number is3 · 2dim(V/U).

Proof. By Proposition 7.1 and Theorem 7.2, each slicev+U with�(K, v+U) =
0 splits into 2dimK + 2 0-orbits, while each of the remaining slices splits into 2
orbits. There are 2dim(V 0/K) slices of the first kind and 2dim(V/U)−2dim(V 0/K) slices
of the second kind. Thus the number of0-orbits inV is equal to

2dim(V 0/K) · (2dimK + 2)+ (2dim(V/U) − 2dim(V 0/K)) · 2.
Our statement follows by simplifying this answer.

Now Theorem 3.11 is just a reformulation of this corollary. As for Corollary 3.12,
one needs only show that its assumptions implyU ∩Ker� = {0}. But this follows
at once from Proposition 3.2.

7.2. Proof of Theorem 7.2

We split the proof into several lemmas. LetE ⊂ U be the linear span of six vec-
tors fromB that form an induced subgraph isomorphic toE6. The restriction of
� toE is nondegenerate; in particular,E ∩K = {0}.
Lemma 7.4. (a)Every4-dimensional vector subspace ofE contains at least two
nonzero vectors withQ = 0.

(b)Every5-dimensional vector subspace ofE contains at least two vectors with
Q = 1.

Proof. (a) It suffices to show that every 3-dimensional subspace ofE contains a
nonzero vector withQ = 0. Let e1, e2, e3 be three linearly independent vectors.
If we assume thatQ = 1 on each of the six vectorse1, e2, e3, e1+ e2, e1+ e3, and
e2+ e3 then, in view of (7.1), wemust have�(e1, e2) = �(e1, e3) = �(e2, e3) =
1. But thenQ(e1+ e2 + e3) = 0, as required.

(b) It follows from the results in [5] (or by direct counting) thatE consists of
28 vectors withQ = 0 and 36 vectors withQ = 1. Since the cardinality of every
5-dimensional subspace ofE is 32, our claim follows.

Lemma 7.5. The functionQ is nonconstant on each set(v + U) \V 0.
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Proof. Supposev ∈ V \V 0. By Lemma 7.4(b), there exist two vectorse 6= e ′ in
E such that

�(v, e) = �(v, e ′) = 0 and Q(e) = Q(e ′) = 1.

In view of (7.1), we haveQ(v + e) = Q(v + e ′) = Q(v)+ 1, and it is clear that
at least one of the vectorsv+ e andv+ e ′ is not0-invariant (otherwise we would
have�(e − e ′, u) = 0 for all u ∈ U, which contradicts the fact that�

∣∣
E

is non-
degenerate).

To prove Theorem 7.2, it remains to show that0 acts transitively on each level set
ofQ in (v+U)\V 0. To do this, we shall need the following important result due
to Janssen [5, Thm. 3.5].

Lemma 7.6. If u is a vector inU \ K such thatQ(u) = 1, then the symplectic
transvectionτu belongs to0.

We also need the following result from [11, Lemma 4.3].

Lemma 7.7. If the graphB isE6-compatible then0 acts transitively on each of
the level sets ofQ in U \K.
To continue the proof, let us introduce some terminology. For a linear formξ ∈
U ∗, denote

Tξ = {u∈U \K : Q(u) = ξ(u) = 1}.
We shall call a family of vectors(u1, u2, . . . , us) weakly orthogonalif

�(u1+ · · · + ui−1, ui) = 0 for i = 2, . . . , s.

Lemma 7.8. Let ξ ∈ U ∗ be a linear form onU such thatξ
∣∣
K
6= 0. Then every

nonzero vectoru ∈ U such thatQ(u) = ξ(u) can be expressed as the sumu =
u1+· · ·+us of some weakly orthogonal family of vectors(u1, u2, . . . , us) fromTξ .

Proof. We need to construct a required weakly orthogonal family(u1, u2, . . . , us)

in each of the following three cases.

Case 1.Let 0 6= u = k ∈K be such thatQ(k) = ξ(k) = 0. Sinceξ 6= 0, we
haveξ(b) = 1 for someb ∈B. By (7.1), wealso haveQ(b) = 1. Sinceb /∈K, we
can take(u1, u2) = (b, k − b) as a desired weakly orthogonal family.

Case 2.Letu = k ∈K be such thatQ(k) = ξ(k) = 1. By Lemma 7.4(a), there
exist distinct nonzero vectorse ande ′ in E such thatQ(e) = ξ(e) = Q(e ′) =
ξ(e ′) = �(e, e ′) = 0. Then we can take(u1, u2, u3) = (k− e, k− e ′, e+ e ′ − k)
as a desired weakly orthogonal family.

Case 3.Let u ∈ U \ K be such thatQ(u) = ξ(u) = 0. Sinceξ
∣∣
K
6= 0, we

can choosek ∈K so thatξ(k) = 1. If Q(k) = 1 then a desired weakly orthogo-
nal family foru can be chosen as(u1, u2, u3, u4), where(u1, u2, u3) is a weakly
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orthogonal family fork (constructed in Case 2) andu4 = u − k. If Q(k) = 0,
choosee ∈E such thatQ(e) = 1, �(u, e) = 0, andu − e /∈K (the existence of
such a vectore follows from Lemma 7.4(b)). Ifξ(e) = 1 then a desired weakly
orthogonal family foru can be chosen as(u1, u2) = (e, u− e). Finally, if ξ(e) =
0 then a desired weakly orthogonal family foru can be chosen as(u1, u2) =
(e + k, u− e − k).
Now everything is ready for completing the proof of Theorem 7.2. Take any slice
v + U ∈ V/U ; we need to show that0 acts transitively on each of the level sets
of Q in (v + U) \V 0. First suppose that(v + U) ∩ V 0 6= ∅; by Proposition7.1,
this means that�(K, v + U) = 0. Without loss of generality, we can assume
thatv is 0-invariant. Then�(u, v) = 0 for anyu ∈ U, so we haveQ(v + u) =
Q(v) +Q(u). On the other hand, we haveg(v + u) = v + g(u) for anyg ∈ 0
andu ∈ U. Thus the correspondenceu 7→ v + u is a0-equivariant bijection be-
tweenU andv + U preserving partitions into the level sets ofQ. Our statement
then follows from Lemma 7.7.

It remains to treat the case when�(K, v+U) 6= 0. In other words, if we choose
any representativev and define the linear formξ ∈ U ∗ by ξ(u) = �(u, v), then
ξ
∣∣
K
6= 0. Let u ∈U be such thatQ(v) = Q(v + u); we need to show thatv + u

belongs to the0-orbit 0(v). In view of (7.1), we haveQ(u) = ξ(u). In view of
Lemma 7.8, it suffices to show that0(v) containsv+u1+· · ·+us for any weakly
orthogonal family of vectors(u1, u2, . . . , us) from Tξ . We proceed by induction
on s. The statement is true fors = 1 becausev + u1 = τu1(v) andτu1 ∈ 0 (by
Lemma 7.6). Now lets ≥ 2, and assume thatv ′ = v + u1+ · · · + us−1 ∈ 0(v).
The definition of a weakly orthogonal family implies that

v + u1+ · · · + us = v ′ + us = τus(v ′)∈0(v),
and we are done. This completes the proof of Theorem 7.2.
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