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1. Introduction

The point of departure for this paper is the following result, obtained in [10; 11].
Let N2 denote the semialgebraic set of all unipotent upper-triangutarn ma-
tricesx with real entries such that, for eveky=1, ..., n — 1, the minor ofx with
rows 1...,k and columns: — k +1,...,n is nonzero. Then the numbey #f
connected componentsM? is given as follows: # =2, #3 = 6, #, = 20, #5 =

52, and# = 3-2"1forn > 6.

An interesting feature of this answer is that every case that can be checked by
hand turns out to be exceptional. But the method of the proof seems to be even
more interesting than the answer itself: itis shown that the connected components
of N0 are in a bijection with the orbits of a certain groDpthat (a) acts in a vector
space of dimension(n — 1)/ 2 over the 2-element fiell, and (b) is generated by
symplectic transvections. Such groups appeared earlier in singularity theory (see
e.g. [5] and references therein).

The construction of’, given in [10; 11] uses the combinatorial machinery (de-
veloped in [1]) of pseudo-line arrangements associated with reduced expressions
in the symmetric group. In this paper we present the following far-reaching gener-
alization of this construction. Lév be an arbitrary Coxeter group of simply laced
type (possibly infinite but of finite rank). Latandv be any two elements iw, and
leti be areduced word (of lengith = £(u)+£(v)) for the pair(u, v) in the Coxeter
groupW x W (see Section 2 for more details). We associaieatsubgrougd’ in
GL,.(Z) generated by symplectic transvections. We prove (among other things)
that the subgroups corresponding to different reduced words for the same pair
(u, v) are conjugate to each other inside (ZZ). To recover the group;,, from
this general construction, one needs several specializations and reduction: take
to be the symmetric grou§,; take(u, v) = (wo, €), wherewy is the longest per-
mutation inS,, ande is the identity permutation; takeo be the lexicographically
minimal reduced word,2,1,...,n — 1 n — 2,...,1 for wg; and take the group
Ti(F,) obtained fronT'; by reducing the linear transformations fréfrto 5.
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We also generalize the enumeration result of [10; 11] by showing that, under cer-
tain assumptions om andv, the number of; (F,)-orbits inF5' is equal to 3 2°,
wheres is the number of simple reflections Wi that appear in a reduced decom-
position foru or v. We deduce this from a description of orbits in an even more
general situation that sharpens the results in [5; 11] (see Section 7).

Although the results and methods of this paper are purely algebraic and combi-
natorial, our motivation for the study of the groupsand their orbits comes from
geometry. In the case whé# is the (finite) Weyl group of a simply laced root
system, we expect (see Conjecture 4.1) thal{kE,)-orbits inF}' enumerate con-
nected components of the real part of the reduced double Bruhat cell correspond-
ing to (1, v). Double Bruhat cells were introduced and studied in [4] as a natural
framework for the study of total positivity in semisimple groups; as explained to
us by N. Reshetikhin, they also appear naturally in the study of symplectic leaves
in semisimple groups (see [6]). Let us briefly recall their definition.

Let G be anR-split simply connected semisimple algebraic group with the Weyl
groupW; thusW = Normg (H)/H, whereH is anR-split maximal torus inG.

Let B and B_ be two (opposite) Borel subgroups éhsuch thatB N B_ = H.
Thedouble Bruhat cells;* ¥ are defined as the intersections of ordinary Bruhat
cells taken with respect tB8 andB_:

G"' = BuB N B_vB_.

In view of the well-known Bruhat decomposition, the gra@jis the disjoint union
ofall G*-¥ for (u,v) e W x W.

The term “cell” might be misleading because the topologg6f can be quite
complicated. The toruH acts freely orG*? by left (as well as right) translations,
and there is a natural sectidri-¥ for this action that we call theeduced double
Bruhat cell. These sections are introduced and studied in a forthcoming paper [3]
(for the definition, see Section 4).

The special case whem, v) = (e, w) for some elemeniy € W is of particu-
lar geometric interest. In this case?" is biregularly isomorphic to thepposite
Schubert cell

€2 :=C, NwoCyy,
wherewy is the longest element & and whereC,, = (BwB)/B C G/B is the
Schubert celcorresponding tav. These opposite cells have appeared in the lit-
erature in various contexts and were studied (in various degrees of generality) in
[1; 2; 8; 9; 10; 11]. In particular, the variety %, which was the main object of
study in [10; 11], is naturally identified with the real part of the opposite«igy
for G = SL,.

By the informal “complexification principle” of V. I. Arnold, if the group ()
enumerates connected components of the real part bfthen the group; itself
(which acts inZ™ rather than ir5") should provide information about topology
of the complex variety.*-. So far, we have not found a totally satisfactory com-
plexification along these lines.

The paper is organized as follows. Main definitions, notations and conventions
are collected in Section 2. Our main results are formulated in Section 3 and proved
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in Sections 5—7. The geometric connection just outlined is discussed in more de-
tail in Section 4.

2. Definitions

2.1. Simply Laced Coxeter Groups

Let IT be an arbitrary finite graph without loops or multiple edges. Throughout the
paper, we use the following notation: writes IT if i is a vertex of[T and write

{i, j} € I if the verticesi and j are adjacent iffl. The (simply laced) Coxeter
groupW = W(II) associated witlT is generated by the elementsfor i € IT,
subject to the relations

siz =e; sisi =885 ({i, jY¢I);  sisisi = 55887 ({i, j}eID). (2.1)

Awordi = (iy, ..., i,;,) in the alphabefl is areduced wordfor w € W if w =
sy -+ si,, andm is the smallest length of such a factorization. The lengtof
any reduced word fow is called thdengthof w and denoted by: = ¢(w). Let
R(w) denote the set of all reduced words for

The “double” group x W is also a Coxeter group; it corresponds to the graph
I1, which is the union of two disconnected copiedhfWe identify the vertex set
of IT with {+1, —1} x IT and write a vertex+1, i) € I1 simply as+i. For each
+i e T we sete(+i) = +1 and|+i| = i € I1. Thus, two vertices and j of I1
are joined by an edge if and onlydfi) = ¢(j) and{|i|, |j|} € I1. In this nota-
tion, a reduced word for a pair, v) e W x W is an arbitrary shuffle of a reduced
word for u written in the alphabet-IT and a reduced word far written in the
alphabeftT.

In view of the defining relations (2.1), the set of reduced woRds, v) is
equipped with the following operations.
(a) 2-move: Interchange two consecutive entrigsy, i; in a reduced word =

(i, ..., i) provided{i,_, ir} ¢ I1.
(b) 3-move:Replace three consecutive entrigs,, ix_1, iy iNi by i;_1, ix_2, ix_1
if Iy = ip_2 and{ik,l, ir} € 1:[

In each case, we will refer to the indéxe [1, m] as thepositionof the corre-
sponding move. Using these operations, we mRie v) the set of vertices of a
graph whose edges correspond to 2- and 3-moves. Itis a well-known result due to
Tits that this graph isonnected-that is, any two reduced words ®(u, v) can
be obtained from each other by a sequence of 2- and 3-moves. We will say that a
2-move interchanging the entrigs; andiy istrivial if iy # —i;_1; the remaining
2-moves and all 3-moves will be referred toramntrivial.

2.2. Groups Generated by Symplectic Transvections

Let X be a finite directed graph. As before, we shall wkite X if k is a vertex
of ¥ and{k, [} € X if the verticesk and! are adjacent in the underlying graph ob-
tained fromX by ignoring the directions of edges. We also wiite— /) € X if

k — lis adirected edge af.
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Let V = Z* be the lattice with a fixe.-basis(e; )icx labeled by vertices of.
Let & € V* denote the corresponding coordinate functions; that is, every vector
v € V can be written as
v=) &er

kex
We define a skew-symmetric bilinear foifon vV by
Q=Qz = Z &k N&1. (2.2)
(k—Dex

For eachk € ¥, we define the symplectic transvection= 7, x: V — V by
(V) = v — Q(v, ep)ey. (2.3)

(The word “symplectic” might be misleading, sin€eis allowed to be degener-
ate; still, we prefer to keep this terminology from [5].) In the coordinate form, we
haveg,; (1 (v)) = & (v) for I # k and

E(m) =&W) — Y &+ Y. &) (2.4)

(a—k)eXx (k—b)ex

For any subseB of vertices ofZ, we denote by'y 5 the group of linear trans-
formations ofv = Z* generated by the transvectionsfor k € B.

Note that all transformations fromy s are represented by integer matrices in
the standard basig. Let 'y p(IF,) denote the group of linear transformations of
theF,-vector spacé/(FF,) = F obtained fronT's z by reduction modulo 2 (re-
call thatFF; is the 2-element field).

3. Main Results

3.1. The Graph=(i)

We now present our main combinatorial construction that brings together simply
laced Coxeter groups and groups generated by symplectic transvectiofi.= et
W (IT) be the simply laced Coxeter group associated to a grafsfee Section 2.1).
Fix a pair(u, v) e W x W, and letm = £(u) + £(v). Leti = (i1, ..., i) € R(u, v)
be any reduced word fau, v). We shall construct a directed graphi) and a
subsetB(i) of its vertices, thus giving rise to a grolig.(i, 5y generated by sym-
plectic transvections.

First of all, the set of vertices @t (i) is just the set [Im] = {1, 2, ..., m}. For
I € [1, m], we denote by~ = I; the maximal index such that 1< k < [ and
lix] = |il; if |ig] # |i;| forl < k < Ithenwe set™ = 0. We defineB(i) C [1, m]
as the subset of indicés: [2, m] such that~ > 0. The indiced € B(i) will be
calledi-bounded.

It remains to define the edges Bf(i).

DErFINITION 3.1. A pair{k, [} C [1, m] with k < [ is an edge o (i) if it satisfies
one of the following three conditions:
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(i) k=17

(i) k= <1~ <k, {ligl, liz]} € I, ande(i;-) = e(ix);
(III) 1= < k= <k, {Jig], iy} € I, ande(iy-) = —e(iy).
The edges of type (i) are calldtrizontat those of types (ii) and (iii) arén-
clined. A horizontal (resp. inclined) eddé, /} with k < [ is directed fromk to /
if and only if e(ix) = +1 (respe(iy) = —1).

We will give a few examples in the end of Section 3.2.

3.2. Properties of GraphX (i)
We start with the following property of (i) andB(i).

ProrosiTION 3.2. For any non-empty subs§tc B(i), there exists a vertaxe
[1, m] \ S such that{a, b} € (i) for a uniqueb € S.

For any edgdi, j} €1, let ; ;(i) denote the induced directed subgrapfzg)
with verticesk € [1, m] such that|iy| = i or |ix] = j. We shall use the follow-
ing planar realization oE; ;(i), which we call the(i, j)-strip of X(i). Consider
the infinite horizontal strifR x [—1, 1] ¢ R?, and identify each verteke )
with the pointA = A, = (k, y), wherey = —1for|iy| = i andy = 1for |iy| = .
We represent each (directed) edge— 1) by a straight line segment frow, to
A,. (This justifies the terms “horizontal” and “inclined” edges in Definition 3.1.)
Note that every edge df (i) belongs to somé:, j)-strip, so we can think of
3(i) as the union of all its strips glued together along horizontal lines.

THEOREM 3.3. (a)The(i, j)-strip of X (i) is a planar graph equivalently, no
two inclined edges cross each other inside the strip.

(b) The boundary of any triangle or trapezoid formed by two consecutive in-
clined edges and horizontal segments between them is a directed c¥tle(in.

Our next goal is to compare the directed graptis) andX (i") when two reduced
wordsi andi’ are related by a 2- or 3-move. To do this, we associateatadi’

a permutatiorv;; of [1, m] defined as follows. li andi’ are related by a triv-
ial 2-move in positiork thenoj j = (k — 1, k), the transposition of — 1 andk;

if i andi’ are related by aontrivial 2-move theroi ; = e, the identity permuta-
tion of [1, m]; finally, if i andi’ are related by a 3-move in positiarthenoi: | =
(k—2, k—1). The following properties of;. ; are immediate from the definitions.

ProrosiTiON 3.4. The permutatior; ; sendsi-bounded indices t@-bounded
ones. If the move that relateandi’ is nontrivial then its positiort is i-bounded
andoir,i(k) = k.

The relationship between the grapfisi) and (i) is now given as follows.

THEOREM 3.5. Suppose that two reduced woidsndi’ are related by &- or 3-
move in positiork, and thato = oy, ; is the corresponding permutation @, m].
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Leta and b be two distinct elements df, m] such that at least one of them is
i-bounded. Then

(a—>Db)eX(i) < (c(a) = o) e X(i’), 3.1

with the following two exceptions.

(1) If the move that relateisandi’ is nontrivial, then(a — k) € X (i) if and only
if (k— o(a))ex(i).

(2) If the move that relates and i’ is nontrivial anda — k — b in Z(i),
then{a, b} € X (i) if and only if {o(a), o(b)} ¢ Z(i’); furthermore, the edge
{a, b} € (i) can only be directed as — a.

The following example illustrates these results.

ExaMmpLE 3.6. LetIT be the Dynkin graph 4, that is, the chain formed by ver-
tices 1, 2, 3, and 4. Let = s4525152535285451 andv = 525153525451535251. (IN

the standard realization & as the symmetric grou§s, with the generatorg =

(i, i + 1) (adjacent transpositions), the permutatierendv can be written in the
one-line notation ag = 53241 andv = 54312) The graphx (i) corresponding
tothereducedword= (2,1, -4, -2, -1,3 —-2,2, -3 -2,4,1,—4,-1,3 2, 1)

of (u, v) is shown in Figure 1. Here white (resp. black) vertices of each horizontal
leveli correspond to entries othat are equal te-i (resp. tai). Horizontal edges
are shown by solid lines, inclined edges of type (ii) in Definition 3.1 by dashed
lines, and inclined edges of type (iii) by dotted lines.

Figure 1 GraphX(i) for type A,

Now leti’ be obtained fron by the (nontrivial) 2-move in position 8, that is,
by interchanging; = —2 with ig = 2. The corresponding grapfi(i’) is shown
in Figure 2.

Notice that the edges @t (i) that fall into the first exceptional case in Theo-
rem 3.5areA — B, C — A, andA — D; by reversing their orientation, one
obtainsthe edgeB’ — A’, A’ — C’, andD’ — A’ of X(i’). The second excep-
tional case in Theorem 3.5 applies to two edffes> £ andD — E of X (i) and
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O —O.
c 7 S
o - —0
4 /’/f/::{/ \\D/’,—”7’ G/
&—0 O—0 °
,/// //// B/ A/ vvvvvvvv ~N ) E/ /7
@ G -@ O @

Figure 2 Graph transformation under a nontrivial 2-move

two “non-edges”{C, B} and{C, D}; the corresponding edges and non-edges of
¥ (i’)areC’ - B, C' — D', {E', B'}, and{E’, D'}.

Finally, consider the reduced word obtained fromi’ by the 3-move in posi-
tion 10, that is, by replacingg, ig, i1y) = (=2, —3, —2) with (-3, -2, —3). The
corresponding grapBR (i”) is shown in Figure 3.

® —e—O.
— A
c//m f\D// =4
o — 0O — °
7 ,/k/ A// b ‘i\~~‘_ ® G//
o O . 4 O —@
4
/// /7{/ A . /7
® G @ O @

Figure 3 Graph transformation under a 3-move

Now the first exceptional case in Theorem 3.5 covers the efijes> A/,
C'—- D', D' — F’,andG’ — D’ of X(i") as well as the corresponding edges
A" - D", D" — C", F" — D", andD” — G” of £(i”). The second ex-
ceptional case covers the edgés — C’ and A’ — C’ as well as non-edges
{G’, F'}and{G’, A’} of £(i”); the corresponding edges and non-edges @f )
areG// — F//, G// — A”, {(/V//7 F//}, and{A”, C,/}.

3.3. The Group$'; and Conjugacy Theorems

As before, let = (iy, ..., i,,) be a reduced word for a pair, v) of elements in

a simply laced Coxeter groujy. By the general construction in Section 2.2, the
pair (X (i), B(i)) gives rise to a skew-symmetric forfa i, onZ™ and to a sub-
group s, si) C GL,,(Z) generated by symplectic transvections. We denote
these symplectic transvections by;, and we also abbreviat®; = Q5 and

I = T'sa).Ba)-



538 B. SHAPIRO, M. SHAPIRO, A. VAINSHTEIN, & A. ZELEVINSKY

THEOREM 3.7. For any two reduced wordsand i’ for the same paif(u, v) €
W x W, the groupd’; and Iy are conjugate to each other insid&.,,,(Z).

Our proof of Theorem 3.7 is constructive. In view of the Tits result quoted in Sec-
tion 2.1, it is enough to prove Theorem 3.7 in the case wizli’ are related by

a 2- or 3-move. We shall construct the corresponding conjugating linear transfor-
mations explicitly. To do this, let us define two linear mmﬁs 7" — 7. For

v € 2", the vectorsp; ;(v) = v andg, ;(v) = v~ are defined as follows. if
andi’ are related by a trivial 2-move ards arbitrary, or ifi andi’ are related by

a nontrivial move in positio and! # k, then we set

Y =§0T) =&, o) (3.2)
for [ = k in the case of a nontrivial move, we set

BN = Y EO-&L: &)= Y & —-&W). (3.3)

(a—k)ex(i) (k—b)ex(i)

THEOREM 3.8. If two reduced words and i’ for the same pailu, v) e W x W
are related by &- or 3-move, then the corresponding linear mags; and ¢;, ;
are invertible and

I = (pif,i oljo (QOiJC.i)_l =g, ;0 Io (goif,’i)_l. (3.4)

Our proof of Theorem 3.8 is based on the following properties of the mﬁps
which might be of independent interest.

THeoREM 3.9. (a)The linear maps;; ; satisfy

Qo =elyoe;=ld (3.5)
(b) If the move that relatesandi’ is nontrivial in positionk, then
Qi o el =T (3.6)
(c) For anyi-bounded index e [1, m], we have
%ﬁi O T = Ty ()i’ © <,0iJ7,i (3.7)

unless the move that relateandi’ is nontrivial in positionk and (I — k) € %;.

3.4. Enumeratings 3(IF2)-Orbits inF¥

Let ¥ and B have the same meaning as in Section 2.2, and letI's, g (F,) be
the corresponding group of linear transformations of the vector sace
The following definition is motivated by the results in [5; 10; 11].

DeriniTION 3.10.  Afinite (nondirected) graph i&-compatibléf it is connected
and if it contains an induced subgraph with six vertices isomorphic to the Dynkin
graphEg (see Figure 4).

THeoreM 3.11. Suppose that the induced subgraph3fvith the set of vertices
B is Eg-compatible. Then the number dforbits inF3 is equal to
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Figure 4 Dynkin graphEs

H(\B) | 2+ 2dim(IFZBﬂKer§2))

where2 denotes th&,-valued bilinear form or]FZ2 obtained by reduction modulo
2 from the formQ = Qg in (2.2).

Theorem 3.11 has the following corollary, which generalizes the main enumera-
tion result in [10; 11].

CoroLLARY 3.12. Letu andv be two elements of a simply laced Coxeter group
W(IT) and suppose that, for some reduced word R(u, v), the induced sub-
graph of X (i) with the set of verticeB(i) is Eg-compatible. Then the number of
Ii (Fp)-orbits inF4' is equal to3 - 2°, wheres is the number of indicese IT such
that somdequivalently, anyreduced word for(u, v) has an entryti.

4. Connected Components of Real Double Bruhat Cells

In this section we give a (conjectural) geometric application of the foregoing con-
structions. We assume that is a Dynkin graph of simply laced type—that is,
every connected component Bff is the Dynkin graph of typel,,, D,,, Es, E7,
or Eg. Let G be a simply connected semisimple algebraic group with the Dynkin
graphII. We fix a pair of opposite Borel subgroups. andB in G; thusH =
B_N Bisamaximal torusirG. Let N andN_ be the unipotent radicals & and
B_, respectively. Lefw; : i € IT} be the system of simple roots for which the cor-
responding root subgroups are containeir-or everyi € I, letgp; : SL, - G
be the canonical embedding corresponding;toThe (split) real part of5 is de-
fined as the subgrou@(R) of G generated by all the subgroupgSL,(RR)). For
any subseL C G, we define its real part bz (R) = L N G(R).

TheWeyl groupW of G is defined byW = Normg(H)/H. It is canonically
identified with the Coxeter groupy (IT) (as defined in Section 2.1) via=5;H,
where

5= (p,-<(i) _01) e Normg(H).
The representatives € G satisfy the braid relations ii; thus, the representa-

tive w can be unambiguously defined for amye W by requiring thativ =it - v
whenever (uv) = £(u) + £(v).
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The groupG has twoBruhat decompositionsith respect taB and B_:

G = U BuB = U B_vB_.

ueW veW

Thedouble Bruhat cells;* " are defined by;*" = BuB N B_vB_.
Following [3], we define theeduced double Bruhat cell”:* ¢ G*" as fol-
lows:

L“? = NiN N B_vB_. (4.1)

The maximal torugd acts freely orG*:* by left (or right) translations, antd*:* is

a section of this action. Thus*? is biregularly isomorphic t@f x L*?, and all
properties ofG*-? can be translated in a straightforward way into the correspond-
ing properties ofL*:¥ (and vice versa). In particular, Theorem 1.1 in [4] implies
that L* is biregularly isomorphic to a Zariski open subset of an affine space of
dimensiont(u) + £(v).

CoNJECTURE 4.1.  For every two elementsandv in W and every reduced word
i € R(u, v), the connected components bf-?(R) are in a natural bijection with
the T'j (F,)-orbits inFy® ™,

The precise form of this conjecture comes from the “calculus of generalized
minors” developed in [4] and in a forthcoming paper [3]«lfs the identity ele-
mente € W, thenL®" = N N B_vB_ is the varietyN " studied in [2]. IfG = SL,,

andv = wg (the longest element i), then the real pat *°(R) is the semialge-
braic setv? discussed in the introduction; in this case, the conjecture was proved
in [10; 11] (for a special reduced woid= (1, 2,1,...,.n —1n—2,...,2.1) €
R(wo)).

5. Proofs of Results in Section 3.2

5.1. Proof of Proposition 3.2

By the definition ofi-bounded indices, we have € [1, m] for any k € S. Now
pick b € S with the smallest value df—, and setu = b~. Clearlya ¢ S, and
{a, b} is a horizontal edge il (i). We claim thab is the only vertex ir§ such that
{a, b} € X(i). Indeed, if{a, c} € (i) for somec # b thenc™ < a, in view of
Definition 3.1. Because of the waywas chosen, we havet S, as required. O

5.2. Proof of Theorem 3.3

In the course of the proof, we fix a reduced worR(u, v) and an edgéi, j} €
IT; we shall refer to thei, j)-strip of (i) as simply the strip. For any vertex
A = A, = (k, y) in the strip, we sep(A) = y ande(A) = &(iy); we cally(A)
thelevelande(A) thesignof A. We also set

c(A) = y(A)e(A)
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and callc(A) thechargeof a vertexA. Finally, we linearly order the vertices by
settingA; < A, if k < [, thatis, if the vertexi is to the left ofA;. In these terms,
one can describe inclined edges in the strip as follows.

Lemma 5.1. A vertexB is the left end of an inclined edge in the strip if and only
if it satisfies the following two conditions

(1) B is not the leftmost vertex in the strip, and the preceding vettbas oppo-
site chargec(A) = —c¢(B); and

(2) there is a vertexC of opposite levey(C) = —y(B) that lies to the right oB.

Under these conditions, an inclined edge with the left Brislunique and its right

end is the leftmost verteX satisfying conditior{2).

This is just a reformulation of conditions (ii) and (iii) in Definition 3.1.

LEmMMA 5.2. Supposel < C < C’arethree vertices in the strip such thaid) =
—c(C) andy(C) = —y(C’). Then there exists a vertédxsuch thatA < B < C
and B is the left end of an inclined edge in the strip.

Proof. Let B be the leftmost vertex such that < B < C andc(B) = —c(A).
Clearly, B satisfies condition (1) in Lemma 5.1. It remains to show thatso sat-
isfies condition (2); that is, we need to find a vertex of opposite levBlttmat lies
to the right of B. Depending on the level @, eitherC or C’ is such a vertex, and
we are done. O

Now everything is ready for the proof of Theorem 3.3. To prove part (a), assume
that{B, C} and{B’, C'} are two inclined edges that cross each other inside the
strip. Without loss of generality, assume tidak C, B’ < C’, andC < C’. Then
we must haveB’ < C (otherwise, our inclined edges would not cross). Since
{B’, C’'} is aninclined edge anf’ < C < C’, Lemma 5.1 implies that(C) =
y(B'). Therefore,y(B) = —y(C) = —y(B’). Again applying Lemma 5.1 to the
inclined edgd B’, C’}, we conclude thaB < B’; thatis, we musthavB < B’ <
C < C’. But then, by the same lemméB, C} cannot be an inclined edge, pro-
viding a desired contradiction.

To prove part (b), consider two consecutive inclined ed@e<} and{B’, C'}.
Again we can assume without loss of generality tBat<x C, B’ < C’, and
C < C'. Let P be the boundary of the polygon with verticBs C, B/, andC’.
By Lemma 5.1, the leftmost vertex &f is B, the rightmost vertex i€’, and P
does not contain a verte® such thatB’ < D < C’; in particular, we have either
C < B'or C = C’. Now we make the following crucial observation: All the
verticesD on P such thatB < D < B’ must have the same chargéD) =
c¢(B). Indeed, assume thatD) = —c(B) for someD with B < D < B’. Then
Lemma 5.2 implies that somB” with B < B” < D is the left end of an in-
clined edge, but this contradicts our assumption tBaiC} and{B’, C’} are two
consecutivénclined edges. Hence we see thab) = ¢(B) for any vertexD €
P\ {B’, C’}. Combining this fact with condition (1) in Lemma 5.1 applied to the
inclined edge{B’, C’} with the left endB’, we conclude that(B’) = —c(B).
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Remembering the definition of charge, the foregoing statements can be reformu-
lated as follows:B’ has the same (resp. opposite) sign with all vertices of opposite
(resp. same) level i \ {C’}. Using the definition of directions of edges in Defi-
nition 3.1, we obtain the following.

(1) Horizontal edges on opposite sidesiofire directed in opposite ways, since
their left ends have opposite signs.

(2) SupposeB’ is the right end of a horizontal eddd, B’} in P. Then exactly
one of the edgefA, B’} and{B’, C'} is directed towardB’, since their left
endsA and B’ have opposite signs.

(3) The same argument shows that(if is the right end of a horizontal edge
{A, C'} in P then exactly one of the edgé¢d, C’'} and{B’, C'} is directed
towardC’.

(4) Finally, if B is the left end of a horizontal eddg®, D} in P then exactly one
of the edge$B, C} and{B, D} is directed toward.

These facts imply thaP is a directed cycle, which completes the proof of Theo-
rem 3.3. O

5.3. Proof of Theorem 3.5

Let us call a pair of indice&z, b} exceptionalfor i andi’) if it violates (3.1). We

need to show that exceptional pairs are precisely those in two exceptional cases
in Theorem 3.5; to do this, we shall examine the relationship between the corre-
sponding strips irk (i) andX(i’). Let us consider the following three cases.

Case 1: Trivial2-Move. Suppose, = i;_; = io, ix—1 = i = jo, andi; = i;
forl ¢ {k — 1, k}, whereiq, jo € I1 are such thafig| # |jo| and{io, jo} ¢ I1.

If both i and are different fromjio| and] jo|, then the stripz; ;(i) is identical
to X; ;(i’) and so does not contain exceptional pairs.

If (say)i = |io| but j # | jol, then the only vertex itE; ;(i) but notinX; ;(i’)
is Ax (in the notation of Section 5.2), while the only vertexdn ;(i’) but not in
z; () is Ay = A, . The vertexA, has the same level and sign and hence the
same charge as the verte ,  in X; ;(i’); by Lemma 5.1, there are no excep-
tional pairs in the striZ; ;(i).

Finally, suppose thafi, j} = {liol, |jol}; in particular, in this case we have
{liol, ljol} € IT and sce(ip) = —&(jo). Now the only vertices irE; ;(i) butnotin
%, ;(i") areA andA_1, while the only vertices irE; ;(i") but notinX; ;(i) are
A=A, andA); = A, SinceA, andA,_; are of opposite level and op-
posite sign, they have the same charge, which is also equal to the charge of
andA; ;. Again using Lemma 5.1, we see that the strip in question also does not
contain exceptional pairs.

Case 2: Nontrivial-Move. Supposé, = i;_; =ig€ I, i1 = i, = —io, and
ip = ij forl ¢ {k — 1, k}. Interchanging if necessanandi’, we can and will as-
sume thai, € I1. Clearly, an exceptional pair can only belong to(any)-strip
with i = ip. In our case, the location of all vertices ¥y ;(i) andX; ;(i’) is the
same; the only difference between the two strips is that the verticesand A
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in X; ;(i) have opposite signs and hence opposite charges to their counterparts in
%, ;(i"). Itfollows that exceptional pairs of vertices of the same level are precisely
horizontal edges containingy,—that is,{Ax_1, Az} and{A,, C}, whereC is the

right neighbor ofA; of the same level (note th&t does not necessarily exist).
Sincee (ix) = €(i;_,) = +1ande(ix_1) = &(i;) = —1, we have

(Ay = Ap_p) € X(i), (Ay = C)e X(i),
(Aj_s— Apex(), (C'— Apex(i),

so both pairdA;_1, Ay} and{Ay, C} fall into the first exceptional case in Theo-
rem 3.5.

Let us now describe exceptional pairs corresponding to inclined edge®8 Let
be the vertex of the opposite level #g and closest ta;, from the right (like the
vertexC above,B does not necessarily exist). By Lemma 5.1, the left end of an
exceptional inclined pair can only be,_;, Ay, or the leftmost ofB andC; fur-
thermore, the corresponding inclined edges can onlyAe1, B}, {Ax, B}, or
{B, C}. We claim that all these three pairs are indeed exceptional and that each of
them falls into one of the exceptional cases in Theorem 3.5.

Letus start with B, C}. SinceA, is the preceding vertex to the leftmost member
of {B, C}, and since it has opposite charges in the two strips, Lemma 5.1 implies
that{B, C} is an edge in precisely one of the strips. By Theorem 3.3(b), the trian-
gle with verticesA,, B, C is a directed cycle in the corresponding strip. Thus the
pair { B, C} falls into the second exceptional case in Theorem 3.5.

The same argument shows that,_,, B} falls into the second exceptional case
in Theorem 3.5 provided one df,_; andB isi-bounded, that s, ifi;_; is not the
leftmost vertex in the strip. As fdrA,, B}, itis an edge in both strips, and it has
opposite directions in them because its left énchas opposite signs there. Thus
{A;, B} falls into the first exceptional case in Theorem 3.5.

It remains to show that the exceptional pairs (horizontal and inclined) just dis-
cussed exhaust all possibilities for the two exceptional cases in Theorem 3.5. This
is clear because, by the preceding analysis, the only possible edges thrpugh
in X(i) are(Ay — Ax_1), (Ax — C), and(B — Aj) with B of the kind just
described.

Case 3:3-Move. Suppose thal, = ix_» = i;_; =igandiy_1 =i =i;_, =
Jjo for somefio, jo} € IT and thati; = i; for [ ¢ {k — 2,k — 1, k} (the case when
{io, jo} € —II is quite similar). As in the previous case, we need to describe all
exceptional pairs.

First, an exceptional pair can only belong to @nj)-strip with at least one
of i andj equal toig or jo. Next let us compare th@g, jo)-strips inX (i) and
3(i"). The location of all vertices in these two strips is the same with the exception
of Ay_», Ar—1, Ax (in the former strip) and their counterpans_, = A;(k_l),
Ay _1 = AL, andA; (in the latter strip). Each of the six exceptional vertices
has sign'+-1; so its level is equal to its charge. These charges (or levels) are given
as follows:

C(Ar-2) = c(Ay_p) = c(A) = =1 c(Ar-d) = e(Ay_g) = c(A}) =1
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Let B (resp.B’) denote the vertex in both strips that is the closest from the right
to A; on the same (resp. opposite) level; note tRair B’ may not exist. Since
the trapezoidl’ with verticesA;_», Ax—1, B’, andB in X;, ,(i) is in the same
relative position to all outside vertices as the trapeZoiavith verticesA , ,,
Al_1), B',andBin X, ,(i"), it follows that every exceptional pair is contained
in T. An inspection using Lemma 5.1 shows tifatontains the directed edges

Ak,2—>Ak—>Ak,1—> B/—>Ak—>B

and does not contain any of the eddes,_», B}, {Ay_2, B'}, or {A;_1, B}.
Similarly (or by interchanging andi’), we conclude thaf?”’ contains the di-
rected edges

Ajgy = Ay = Ao —> B— A — B

and not any of the edgds\, . B'}, {A} ;4. B'}, or {A__,, B'}. Further-
more,{B, B’} is an edge in precisely one of the strips (since the preceding vertices
A andA} have opposite charges); and precisely one of the pajrs,, A;_,} and

{A} 1 AL} IS @an edge in its strip, provided,_, is not the leftmost vertex
(since their left endsl,_, and A}, _, have opposite charges).

Comparing this information for the two trapezoids, we see that the excep-
tional pairs inT are all pairs of vertices ifT with the exception of two diago-
nals{A;_»,, B’} and{A;_1, B} (and also off A;_», A;_1} if A;_5 is the leftmost
vertex in the strip). By inspection based on Theorem 3.3(b), all these exceptional
pairs fall into the two exceptional cases in Theorem 3.5.

A similar (but much simpler) analysis shows that a@nyj)-strip with precisely
one ofi and;j belonging td(ig, jo} contains neither extra exceptional pairs nor any
inclined edges through . or A,. We conclude that all the exceptional pairs are
contained in the trapezoifl. That these exceptional pairs exhaust all possibilities
for the two exceptional cases in Theorem 3.5 is clear because, by the foregoing
analysis, the only edges through in X (i) are those connecting, with the ver-
tices of 7. Theorem 3.5 is proved. O

6. Proofs of Results in Section 3.3

We have already noticed that Theorem 3.7 follows from Theorem 3.8. Let us first
prove Theorem 3.9 and then deduce Theorem 3.8 from it.

6.1. Proof of Theorem 3.9

We fix reduced wordsandi’ related by a 2- or 3-move, and abbreviate- oi/ ; =

oii andpt = (p?,'!i. Let us first prove parts (a) and (b). We shall only prove the
first equality in (3.5); the proof of the second one and of (3.6) is entirely analo-
gous. Letv € Z", vT = ¢T(v), andv’ = @fi,(vﬂ; thus we need to show that

v = v/, in other words, tha}; (v) = &;(v’) for all [ € [1, m]. Note that the permu-
tationo is aninvolution. In view of (3.2), this implies the desired equaljiy) =

& (v') in all cases except the following: the move that relat@sdi’ is nontrivial
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in positionk, and! = k. To deal with this case, we use the first exceptional case
in Theorem 3.5, which we can write as
(k—>b)eX(i") & (o) > k) eX().
Combining this with the definitions (3.2) and (3.3), we obtain
E0)= Y &Y -&LT)

(k—b)eS(i")

= > s(,(b)(v)—( > sa(v>—sk<v>)=§k(v),

(o(b)—k)ex(i) (a—k)ex(i)
as required.
We deduce part (c) from the following lemma, which says that the r(wﬂfgs*
induced by<pi,,i “almost” transform the fornf2;: into ;.

LeEmMA 6.1. If the move that relateisandi’ is trivial, then
(97 )7 (Qi) = (97,)"( Qi) = Q.
If the move that relateisand i’ is nontrivial in positionk, then
(@r ) Q) = (@ ) Q) =Qi— Y Enb. (6.)

(a—k—b)eX(i)
a,bgB(i)

Proof. We will deal only with (¢*)*(Qi/) = (<pi+,,i)*(§2ir); the form(p;, )*(Qi1)
can be treated in the same way. By the definition,
@HQ)= Y. @A) E.
(@' —b"ex(i)

The forms(p*)*&,, are given by (3.2) and (3.3). In particular,iiaindi’ are re-
lated by a trivial move thetw™)*§,, = &, for anya’ € [1, m]; by Theorem 3.5,
in this case we have

@@= Y EAE
(a—b)eX(i)
as claimed.

Now suppose thdatandi’ are related by a nontrivial move in positién Then
we have

@ Q= Y. EArk

(o(a)—>o(b)ex(i)
a,b+k

+ ) ( > sa—sk)m/

(k—o(a)ex(i’) ~(a—k)eX(i)

+ ) w( > éa—sk)

(c(h)—k)ex(i’) (a—k)ex(i)
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Using the second exceptional case in Theorem 3.5, we can rewrite the first sum-

mand as
o bns+ Y Enk.

(a—b)ex(i) (a—k—>Db)eX (i)
a,b#k {a,bYNB(1)#£0

Similarly, using the first exceptional case in Theorem 3.5, we can rewrite the last
two summands as

Yo En&+ Y EAGB— Y EaAE

(a—k)eZ(i) (k—>b)eX (i) (a—~k—Db)eX(i)

note that the missing term

Z %_a A Sa’
(a—k)eZ(i)
(a'=k)ex(i)
is equal to 0. Adding up the last two sums, we obtain (6.1). O

Now everything is ready for the proof of Theorem 3.9(c). Sihc®assumed to
bei-bounded, Lemma 6.1 implies th@{ (v, ¢;) = Qi (¢1(v), ¢ T (e;)) for anyv
Z™. Onthe other hand, since we have excluded the case when the move that relates
i andi’ is nontrivial in positionk and(! — k) € Z;, we now have thap™(¢;) =
+e, () (with the negative sign fof = k only). Therefore, our assumptions 6n
imply that

Qi(, e)et(e) = Qi (), exty) €sq)-

Remembering the definition (2.3) of symplectic transvections, we conclude that
(Toy.i © 7)) = oF (V) — Qir(9™ (V). €50)) o)
=9 (v) = Qi(v, e (er) = (9" 0 117)(v),
as required. This completes the proof of Theorem 3.9. O
REMARK 6.2. It is possible to modify all skew-symmetric forniy without
changing the corresponding groupsin such a way that the modified forms

will be preserved by the mapi@ﬁi)*. There are several ways to do this. Here is
one “canonical” solution: replace ea€h by the form

- 1
Q=Q— > ZS(ik)ék N,

where the sum is over all pairs bfinbounded indjcels < {such that|icl, |i;]} €
I1. It follows easily from Lemma 6.1tha(toii,’i)*(9i/) = Qj. Unfortunately, the

formsQ; are not defined ove£; in particular, they cannot be reduced to bilinear
forms overFs,.

6.2. Proof of Theorem 3.8

The fact that,oiﬁi andg;, ; are invertible follows from (3.5). To prove (3.4), it re-
mains to show thap;/ ; o 7, o (<piﬁi)—1 € I'y for anyi-bounded index € [1, m].



Simply Laced Coxeter Groups 547

This follows from (3.7) unless the move that relatesdi’ is nontrivial in posi-
tionk and(! — k) € Z;. In this exceptional case, we conclude by interchanging
andi’ in (3.7) that

</)iJ_ri« O Toy (). ir = TLi © <Pri/~

Using (3.6), we obtain that

(p?’_,i 0Tyjo ((p?/-,i)—l = (‘pi-t,i S (p?:ir) © Toyi(1).i7 © (%ﬁi S ‘pi-t_i')il
= Thit © Toy ,0,i’ © Tpy €T,
as required. This completes the proofs of Theorems 3.8 and 3.7. O

7. Proof of Theorem 3.11

7.1. Description of '-Orbits

In this section we shall only work over the field, so we find it convenient to
change our notation a bit. L&t be a finite-dimensional vector space ogemwith
a skew-symmetrid,-valued forms2 (i.e., 2(v, v) = 0 for anyv € V). For any
veVletr,: V— V denote the corresponding symplectic transvection acting
by 7,(x) = x — Q(x, v)v. Fix a linearly independent subsktc V, and letl" be
the subgroup of GLV) generated by the transvectionsfor » € B. We makeB
the set of vertices of a graph with, b’} an edge whenevee (b, b') = 1.

We shall deduce Theorem 3.11 from the following description offtkerbits
in V in the case when the grapghis Eg-compatible (see Definition 3.10). Let
U C V be the linear span aB. The groupI’ preserves each parallel translate
(v+U) e V/U of U in V, so we only need to descritieorbits in eachy + U.

Let us first describe one-element orbits, thaflidjxed points in each “slice”
v+ U. Let VI C V denote the subspace Bfinvariant vectors and leX ¢ U
denote the kernel of the restrictigy .

ProposITION 7.1. If Q(K, v+ U) =0then(v+U)N VT is a parallel translate
of K; otherwise, this intersection is empty.

Proof. Suppose the intersectign+ U) N V! is non-empty; without loss of gen-
erality, we can assume thais I"-invariant. By the definitiony € V' if and only
if Q(u,v) =0forallu e U. InparticularQ (K, v) = 0and henc& (K, v+U) =
0. Furthermore, an element+ u of v + U is I'-invariant if and only ifu € K, and
we are done. O

Following [5], we choose a functio@: V — [, satisfying the following prop-
erties:
Qu+v)=0w + QW) +Qu,v) (u,veV),
Qb)=1 (beB).

(Clearly, these properties uniquely determine the restrictiof té U.) An easy
check shows thaP (t,(x)) = Q(x) wheneverQ(v) = 1; in particular, the func-
tion Q is I'-invariant.

(7.1)
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Now everything is ready for a description Bforbits in V.

THEOREM 7.2. If the graphB is Eg-compatible therl™ has precisely two orbits
in each sefv + U) \V'. These two orbits are intersections af + U) \ V' with
the level set®~1(0) and 0~%(1) of Q.

The proof will be given in the next section. Let us show that this theorem implies
Theorem 3.11 and Corollary 3.12.

CoroLLARY 7.3. If the graphB is Es-compatible then the number af-orbits
in V is equal to2dM(V/U) . (2 4 20mUNKerD) in particular, if U N KerQ = {0}
then this number i8 - 24mV/U),

Proof. By Proposition 7.1 and Theorem 7.2, each sligeU with Q (K, v+U) =

0 splits into 2'MX 1 2 -orbits, while each of the remaining slices splits into 2
orbits. There are®"(V'/K) slices of the first kind and®"(V/0) — 2dm(V/K) gices

of the second kind. Thus the numberIdorbits inV is equal to

2dim(v1“/1<) . (ZdimK +2)+ (2dim(V/U) _ 2dim(v1‘/1<)) .2
Our statement follows by simplifying this answer. O

Now Theorem 3.11 is just a reformulation of this corollary. As for Corollary 3.12,
one needs only show that its assumptions inipty Ker 2 = {0}. But this follows
at once from Proposition 3.2.

7.2. Proof of Theorem 7.2

We split the proof into several lemmas. LEtC U be the linear span of six vec-
tors from B that form an induced subgraph isomorphicAg The restriction of
Q to E is nondegenerate; in particulagf,N K = {0}.

Lemma 7.4. (a)Every4-dimensional vector subspace Bfcontains at least two
nonzero vectors witl) = 0.
(b) Every5-dimensional vector subspacebtontains at least two vectors with

0=1

Proof. (a) It suffices to show that every 3-dimensional subspadé obntains a
nonzero vector withD = 0. Let ey, 2, e3 be three linearly independent vectors.
If we assume thaf = 1 on each of the six vectoes, e», e3, e1+¢eo, e1+ €3, and
ez + ez then, in view of {.1), wemust haveR (e, e2) = Q(e1, e3) = Q(e2, €3) =
1 ButthenQ(e1 + e2 + e3) = 0, as required.

(b) It follows from the results in [5] (or by direct counting) thAtconsists of
28 vectors withQ = 0 and 36 vectors witl) = 1. Since the cardinality of every
5-dimensional subspace ffis 32, our claim follows. O

Lemma 7.5. The functionQ is nonconstant on each sa@t+ U) \V'.
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Proof. Supposey € V \ V. By Lemma 7.4(b), there exist two vectars# e’ in
E such that

Q,e) =Q(@,e’)=0 and Q(e) =Q0(') =1

In view of (7.1), we haveDd (v + ¢) = Q(v + ¢’) = Q(v) + 1, and it is clear that
at least one of the vectorst e andv + ¢’ is notI'-invariant (otherwise we would
haveQ (e — ¢’, u) = 0 for all u € U, which contradicts the fact thal|E is non-
degenerate). 0

To prove Theorem 7.2, it remains to show tRadcts transitively on each level set
of Qin (v+U)\VT. To do this, we shall need the following important result due
to Janssen [5, Thm. 3.5].

LEmMA 7.6. If u is a vector inU \ K such thatQ(«) = 1, then the symplectic
transvectionr, belongs tar.

We also need the following result from [11, Lemma 4.3].

LemmMma 7.7. If the graphB is Eg-compatible thed™ acts transitively on each of
the level sets o in U \ K.

To continue the proof, let us introduce some terminology. For a linear foem
U*, denote

Te ={ueU\K: Q) =Ewu) =1
We shall call a family of vectoréu,, u, ..., uy) weakly orthogonaif

Q(M1+"'+ui—1,ui)=0 fori=2,...,s.

LemMma 7.8. Let& € U* be a linear form onlJ such thatg]K # 0. Then every
nonzero vector € U such thatQ (u) = &(u) can be expressed as the sum=
u1+ - - - +uz of some weakly orthogonal family of vectous, u, ..., u;) fromT;.

Proof. We need to construct a required weakly orthogonal farilyu, ..., uy)
in each of the following three cases.

Case 1.Let0# u = k € K be such thap (k) = &£(k) = 0. Since¢ # 0, we
have&(b) = 1 for someb € B. By (7.1), wealso haveQ (b) = 1. Sinceb ¢ K, we
can take(u, uz) = (b, k — b) as a desired weakly orthogonal family.

Case 2.Letu = k € K be suchthaQ (k) = £(k) = 1. By Lemma 7.4(a), there
exist distinct nonzero vectoesande’ in E such thatQ(e) = &(e) = Q(e’) =
(') =Q(e,e¢’) =0. Thenwe cantak@uy, us, uz) = (k—e,k—e’,e+e¢’ —k)
as a desired weakly orthogonal family.

Case 3.Letu € U \ K be such thaD(u) = &) = 0. Since§|K # 0, we
can choosé € K so thaté(k) = 1 If Q(k) = 1then a desired weakly orthogo-
nal family for u can be chosen &%, u», us, us), where(us, u, uz) is a weakly
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orthogonal family fork (constructed in Case 2) amd = u — k. If Q(k) = 0,
chooser € E such thatQ(e) =1, Q(u, e) = 0, andu — e ¢ K (the existence of
such a vectoe follows from Lemma 7.4(b)). 1€(e) = 1 then a desired weakly
orthogonal family forx can be chosen asy, uz) = (e, u — e). Finally, if £(e) =
0 then a desired weakly orthogonal family fercan be chosen a@i, u;) =
(e+k,u—e—k). O

Now everything is ready for completing the proof of Theorem 7.2. Take any slice
v+ U € V/U; we need to show thdt acts transitively on each of the level sets
of Qin (v+ U)\V'. First suppose that + U) N V' # @; by Proposition7.1,
this means thaf2 (K, v + U) = 0. Without loss of generality, we can assume
thatv is I'-invariant. Ther®2 (u, v) = 0 for anyu € U, so we haveQ (v + u) =
QO(v) + Q(u). On the other hand, we haggv + u) = v + g(u) foranyg e I’
andu € U. Thus the correspondenae— v + u is al’-equivariant bijection be-
tweenU andv + U preserving partitions into the level sets@f Our statement
then follows from Lemma 7.7.

It remains to treat the case wh@i K, v+ U) # 0. In other words, if we choose
any representative and define the linear forth € U* by £(u) = Q(u, v), then
£|, #0. Letu € U be such thaQ(v) = Q(v + u); we need to show that+ u
belongs to tha -orbit I'(v). In view of (7.1), we haveQ (u) = £(u). In view of
Lemma 7.8, it suffices to show thBtv) containsv + u; + - - - +u, for any weakly
orthogonal family of vectorsus, u», ..., us) from Tz. We proceed by induction
ons. The statement is true for = 1 because + u; = 7,,(v) andr,, € I' (by
Lemma 7.6). Now let > 2, and assume that = v + uy + - -+ + u,_1 € I'(v).
The definition of a weakly orthogonal family implies that

vtur+ - tug =0 +u, =1,0)el(v),
and we are done. This completes the proof of Theorem 7.2. O
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