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The Hirzebruch–Riemann–Roch Theorem

Madhav V. Nor i

Dedicated to Professor William Fulton on his sixtieth birthday

It is indeed an honor to dedicate this essentially self-contained proof of HRR to
William Fulton, whose contributions to the study of Chow groups, intersection
theory, and the Riemann–Roch theorems have led to a deeper understanding of
these topics.

As is well known, Grothendieck formulated a relative version GRR of the
Riemann–Roch for proper morphismsf : X → Y, and HRR turned out to be
the special case whenY is a point. To prove GRR, Grothendieck showed that it
sufficed to prove GRR for the projectionY ×P n→ Y and for a closed immersion.
The former is easy, but the latter is much more subtle; in parallel, Grothendieck
also proved the Chern character induces an isomorphism

ch:Q⊗K(X)→ Q⊗ A(X).
Accounts of Grothendieck’s method are found in [SGA; BS; M]. Fulton proved

GRR without denominatorsfor closed immersions quite directly by the famous
“degeneration to the normal cone”. This method has since been used in several
related contexts (see e.g. [Fa] and [GS]).

The aim of this note is to give a direct proof of HRR that does not rely of Grothen-
dieck’s method of factoring a morphism. What is crucially used here, however,
is the formalism introduced by Grothendieck, and in particular the isomorphism
K(X)→ G(X) of theK-groups of vector bundles and coherent sheaves, respec-
tively, whenX is regular (the hypothesis of quasi-projectivity was removed by
Kleiman; see[F]). Ourmethod can be extended to deduce GRR itself directly, but
this has not been carried out here.

The HRR for compact complex manifolds was deduced by Atiyah and Singer
from their index theorem; it was also proved by methods of differential geometry
by Patodi [P] and Toledo–Tong [TT1]. What is more relevant to this paper is the
Atiyah–Bott version of the Lefschetz fixed-point formula (see [AB]) adapted to
cover the case where the set of fixed points is a submanifold. Such a version is due
to Toledo and Tong (see [TT2]). The fixed-point formula we obtain in Section 2
for periodic self-maps is a little stronger than the classical formula when the char-
acteristic of the ground field is positive: we get an identity in the Witt ring, which
reduced modulo the characteristic yields the classical formula.

The Adams–Riemann–Roch is deduced from the fixed-point formula in Sec-
tion 3. The Hirzebruch–Riemann–Roch is deduced from this in Section 4. The
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reductions in Section 4 involve use of the Adams operations and are, for the most
part, quite standard (see e.g. [GS]); thus, our exposition is brief.

If we taken = 2 in Sections 2 and 3 then the paper would be about one-third
in length, and this is enough to cover the Hirzebruch–Riemann–Roch whenever
char(k) 6= 2. Indeed, the paper rests on the following observation: IfF is a co-
herent sheaf on a varietyX, then the Lefschetz number of the natural involutionσ
on the cohomologies ofF �F onX×X is simplyχ(X,F ). The Riemann–Roch
formalism is introduced in Section 1. The book by Fulton and Lang [FL] is a good
reference for this section.

The author would like to thank Dipendra Prasad and S. Ramanan for useful dis-
cussions, and also Kaj Gartz for doing an excellent job of putting the manuscript
into TEX.

1. The Riemann–Roch Formalism

We recall briefly the Adams power operationsψn
X and the Bott classesθ n(X), the

Adams–Riemann–Roch, the Todd class, and the Hirzebruch–Riemann–Roch.
We useK(X) to denote the Grothendieck group of locally free coherent

sheaves of a schemeX, separated, and of finite type over Spec(k). For such a
sheafF, its representative inK(X) is denoted by cl(F ). We often putδ(F ) =∑

p(−1)p
(∧p F ).

The formalism of Hirzebruch (see [FL]) associates to a power seriesP ∈
A[[ t − 1]] a homomorphismAPX : K(X) → A ⊗ K(X) of Abelian groups, for
every such schemeX as just described, so that:

(a) f ∗ B APY = APX B f ∗ for every morphismf : X→ Y ; and
(b) APX(cl(L)) = P(cl(L)) for every sheaf locally free of rank 1,L onX.

Furthermore, theAPX are uniquely determined by these properties.
If P ∈A[[ t −1]]× then there is a unique system of homomorphisms of Abelian

groups,MP
X : K(X)→ (A⊗K(X))×, so that (a) and (b) hold.

Definition 1.1. A = Z, n∈Z, andP(t) = t n. ThenAPX = ψn
X is thenth power

operation of Adams.

For example: ifn = −1, thenψn
X(cl(F )) = cl(F ∗); if n = 2, thenψn

X(cl(F )) =
cl(Sym2F )− cl

(∧2F ).
Definition 1.2. A = Z[ 1

n

]
, n is a nonzero integer, andP(t) = (t n−1)/(t −1).

Thenθ n(X) = MP
X(cl(�X)) are Bott’s cannibalistic classes, whereX is smooth.

With n = −1, for example,θ n(X) = (−1)d cl(�d
X) whered = dim(X); for n =

2, we have
θ n(X) =

∑
p

cl(�p

X).

Theorem (ARR). Assume thatX is smooth and complete. Then, for alla ∈
K(X), we have

χ(X, a) = χ(X, θ n(X)−1 · ψn
X(a)).
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Definition 1.3. R = Q andP(t) = log(t)/(t−1). Thent̃d(X) = MP
X(cl(�X)).

Lemma 1.4. If X is smooth of dimensiond, then

θ n(X) · ψn
X(t̃d(X)) = ndim(X) t̃d(X).

Proof. Becauseψn
X is a ring homomorphism, we can see thatψn

X BMP
X = M

Q
X

whereQ(t) = P(t n) andP ∈Q[[ t − 1]]×. Thus, the lemma is a consequence of
the identity

t n −1

t −1
· log(t n)

t n −1
= n

(
log(t)

t −1

)
.

In view of Lemma 1.4, ARR is equivalent to ARR′.

Theorem (ARR′). If X is smooth and complete of dimensiond, and if a ∈
K(X), then

χ(X, a) = n−dim(X)χ(t̃d(X)−1 · ψn
X(a · t̃d(X)).

Definition–Notation 1.5. A(X) = ⊕
p A

p(X) denotes the Chow ring, and
ch: Q ⊗ K(X) → Q ⊗ A(X) denotes the Chern character. This is a ring ho-
momorphism, and chp B ψn

X = np · ψn
X, where ch(a) = ∑

p chp(a) and where
chp(a) ∈ Q ⊗ Ap(X). Note that the Todd class ofX, denoted by td(X), equals
ch(t̃d(X)). Forη ∈Q⊗A(X), write η =∑p η

p with ηp ∈Q⊗Ap(X). Let d =
dimX. The degree of the zero cycleηd, denoted by deg(ηd), is written as

∫
X
η.

Theorem (HRR). For all ξ ∈Q⊗K(X), whereX is smooth and complete, we
have

χ(X, ξ) =
∫
X

ch(ξ) · td(X).

That HRR implies ARR is obvious, simply because HRR gives a formula for
χ(X, ξ) and forχ(X, θ n(X)−1 · ψn

X(ξ)).

2. The Atiyah–Bott–Lefschetz Formula

We fix a perfect fieldk and a natural numbern so thatk containsn distinctnth
roots of unity. The only schemes considered in this section are schemesY of fi-
nite type over Spec(k), equipped with an action of a cyclic groupG of ordern. A
generatorσ of G will be fixed once and for all.

We will consider sheaves ofOY -modules onY equipped withG-action. The
Grothendieck group of such sheaves that are locally free and finite rank (resp., co-
herent) will be denotedKG(Y ) (resp.,GG(Y )). Every subgroupH of G also acts
onY and thusKH(Y ) andGH (Y ) are also defined. For anyH -sheafF onY we
have the induced representationI GH (F ), which is aG-sheaf onY. This defines
I GH : KH(Y )→ KG(Y ) andI GH : GH (Y )→ GG(Y ). If H is generated byσa with
a | n, and ifF is anH -sheaf onY, note thatI GH (F ) =

⊕a−1
i=0(σ

i)∗F . If A is an
H -sheaf onY andB is aG-sheaf onY, thenB⊗ I GH (A) = I GH (B⊗A). Thus we
see thatI GH (KH(Y )) ⊂ KG(Y ) is an ideal. We defineKσ(Y ) to be the quotient of
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KG(Y ) by the sum of theI GH (KH(Y )) taken over allpropersubgroupsH ofG;we
defineGσ(Y ) in a like manner. ThusKσ(Y ) is a ring,Gσ(Y ) is aKσ(Y )-module,
and the natural arrowKσ(Y )→ Gσ(Y ) is a module homomorphism.

Lemma 2.1. If Y is a regular scheme, then
(a) KG(Y )→ GG(Y ) and
(b) Kσ(Y )→ Gσ(Y )
are both isomorphisms.

Proof. The standard method of proof (see e.g. [F, Apx. B.8.3]) shows that
KG(Y ) → GG(Y ) is an isomorphism, once it is checked that every coherent
G-sheafF onY is a quotient of a locally freeG-sheaf onY of finite rank. An epi-
morphismA → F of ordinary sheaves induces aG-epimorphismI GH (A) → F
whereH = {e}. TakingA to be locally free of finite rank, the result follows.

Part (b) is a consequence of part (a) becauseG can be replaced by any proper
subgroupH in part (a).

Lemma 2.2. Let F be aG-stable closed subset ofY and letU be its comple-
ment. Leti : F → Y andj : U → Y denote the inclusions. Theni∗ andj ∗ induce
the exact sequences
(a) GG(F )→ GG(Y )→ GG(U)→ 0 and
(b) Gσ(F )→ Gσ(Y )→ Gσ(U)→ 0.

Proof. For part (a), again the standard proof applies. Exactness atGG(Y ) is the
issue, and for this we needφ : GG(U) → T = coker(i∗ : GG(F ) → GG(Y )).
For a coherentG-sheafF onU, choose a coherentG-subsheafF ′ of j∗F so that
F ′ |U = F . We defineφ(cl(F )) = cl(F ′) in T .

For part (b), one need only note that (a) is valid for all proper subgroupsH of
G as well.

Lemma 2.3. If σ acts without fixed points onY (i.e., if {y ∈ Y(k̄) | σy = y} =
∅), then

Z
[

1

n

]
⊗ Gσ(Y ) = 0.

Proof. We may choose aG-stable, nonempty Zariski-open affine subsetU of Y
such that theG-action ofU comes from a fixed-point–free action ofG/H where
H is a proper subgroup. We attempt to prove the lemma forU first. If F is a
G-sheaf onU, thenI GH (F ) = F⊗ I GH (OU). Thus, ifI GH (OU) ∼= O a

U as aG-sheaf,
wherea = #(G/H ), it would follow that a · GG(U) = 0. Let π : U → V be
the quotient by the(G/H )-action. By descent, the(G/H )-sheafI GH (OU) = π∗A
for some locally free rank-a sheafA on V ; actuallyA = π∗OU , but this does
not concern us. ReplacingV by a suitable nonempty openV ′ and replacingU by
π−1(V ′), we may assume thatA ∼= O a

V . Induction on dimension and Lemma 2.2
now show thatGσ(Y ) is annihilated byne, wheree = 1+ dimY.

Proposition 2.4. LetFY denote the closed subscheme of fixed points ofσ in Y.
Leti : FY → Y denote the inclusion. Theni∗ : Z

[
1
n

]⊗Gσ(FY )→ Z
[

1
n

]⊗Gσ(Y )
is surjective.
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Proof. This is an immediate consequence of Lemmas 2.3 and 2.2.

Remark 2.5. In Proposition 2.4,i∗ is an isomorphism, as we can see from
Quillen’s exact sequence (see [Q, Thm. 5.4, p.131] adapted toG̃ ). We prove
this here only whenY is smooth (see Theorem 2.8).

Notation 2.6. LetR(k) be the subring generated by1
n

and all thenth roots on
unity in k (resp., the Witt ringW(k) of k) if char(k) = 0 (resp.,> 0). We have a
ring homomorphismR(k)→ k, and everynth root of unityλ in k lifts uniquely
to annth root of unity〈λ〉 in R(k).

Let Ĝ = Hom(G, k×). Let Y be a scheme on whichG acts trivially (this will
be applied to Spec(k) andFY in the sequel). EveryG-sheafF onY is the direct
sum of its eigensheavesFg for g ∈ Ĝ. ThusGG(Y ) = Z[Ĝ] ⊗ G(Y ). For τ ∈G
we define

tr(τ |F ) =
∑
g∈Ĝ
〈g(τ)〉 cl(Fg).

This extends to anR(k)-module homomorphism

tr(τ | ·) : R(k)⊗ GG(Y )→ R(k),

which is anR(k)-algebra homomorphism ifY is smooth.
Put gen= {τ ∈G | τ generatesG}. Taking allτ ∈G and then allτ ∈ gen, we

obtain the isomorphisms

tr : R(k)⊗ GG(Y )→ G(Y )G,
tr : R(k)⊗ Gσ(Y )→ G(Y )gen.

These arrows areR(k)-algebra homomorphisms ifY is smooth.

Notation 2.7. We putδ(F ) =∑p(−1)p cl
(∧p F ) for a locally free sheafF .

Theorem 2.8. If Y is smooth, then so isFY. Let I be the sheaf of ideals inOY
that vanish onFY. Then:

(a) δ(I/I 2) is a unit inZ
[

1
n

]⊗ Gσ(FY );
(b) i∗ : Z

[
1
n

]⊗ Gσ(FY )→ Z
[

1
n

]⊗ Gσ(Y ) is an isomorphism; and
(c) i∗i∗a = aδ(I/I 2) for all a ∈Z[ 1

n

]⊗ Gσ(FY ).
Proof. If F is locally free onFY, then torOYp (F,OFY ) ∼= F ⊗

∧p
(I/I 2), so this

proves part (c). From Proposition 2.4, we see that (a) implies (b).
BecauseI/I 2 =⊕g∈Ĝ(I/I

2)g we see thatδ(I/I 2) = ∏g∈Ĝ δ(I/I
2)g. Because

R(k) is a nonzero freeZ
[

1
n

]
-module, it suffices to check thatδ(I/I 2)g is a unit in

R(k)⊗ Gσ(FY ); in view of 2.6, this is the same as checking that tr(τ | δ(I/I 2)g)

is a unit inR(k)⊗G(FY ) for everyτ ∈ gen and everyg ∈G. Let r(g) be the rank
of (I/I 2)g. Because{a ∈K(FY ) | rank(a) = 0} is a nilpotent ideal, it suffices to
check that rank tr(τ | δ(I/I 2)g) = (1− 〈g(τ)〉)r(g) is a unit inR(k).

BecauseFY is also the fixed points ofτ, no eigenvalue ofτ onI/I 2 can equal 1.
Thus, ifr(g) is positive at some point ofY, theng(τ) 6= 1. Thus〈g(τ)〉 6= 1, and
that 1− 〈g(τ)〉 is a unit inR(k) is standard.
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Notation 2.9. We will assume thatY is complete. Then we haveχG(Y, ·):
GG(Y ) → KG(Spec(k)) given byχG(Y, clF ) = ∑

p(−1)p cl(Hp(Y,F )). Be-
causeI GHH

p(Y,F ) = Hp(Y, I GH (F )) for anH -sheafF onY, theχG(Y, ·) factors
through as

χσ(Y, ·) : Gσ(Y )→ Kσ(Spec(k)).

We put Lef(σ, Y, a) = tr(σ |χσ(Y, a)) with tr(σ | ·) as in 2.6. Clearly, ifG acts
trivially on Y then

Lef(σ, Y, a) = χ(Y, tr(σ | a)).
Theorem 2.10. LetY be smooth and complete. Leta ∈ Z[ 1

n

]⊗ Gσ(Y ) and put

b = δ(I/I 2)−1 · i∗a, with the notation of 2.7; thusb ∈ Z[ 1
n

] ⊗ Gσ(FY ). Then
Lef(σ, Y, a) = χ(FY, tr(σ | b)).
Proof. From Theorem 2.8, we see thati∗b = a. Becauseχσ(Y, i∗b) = χσ(FY, b),
the result follows from the setup in 2.9.

3. The Adams–Riemann–Roch Theorem

We now apply the results of the previous section to the following special situation.
LetX be a smooth variety defined overk, and letY = Xn be equipped with the
natural action of the permutation group. We choose ann-cycleσ once and for all
and denote byG the subgroup generated byσ. We denote byi : X→ Y the diag-
onal embedding; in the notation of the previous section this isFY, the fixed points
of σ in Y.

Lemma 3.1. For a coherent sheafF onX, we putSF = F �F � · · ·�F onY.
ThusSF is aG-sheaf. There is an additive homomorphismS : G(X)→ Gσ(Y ),
so thatS(cl(F )) = cl(SF ) for all coherentF onX.

Proof. Let 0→ F ′ → F → F ′′ → 0 be a short exact sequence of coherent
sheaves onX. We put

F = F 0F ⊃ F 1F = F ′ ⊃ F 2F = 0.

The decreasing filtrationF •F onF induces a decreasing filtrationF •SF of SF
for which we see thatF 0SF = SF, F n+1SF = 0, and:

(1) F 0SF/F 1SF ∼= SF ′′ andF nSF/F n+1SF ∼= SF ′;
(2) for 0 < p < n, FpSF/Fp+1SF is a direct sum of sheaves induced from

proper subgroups ofG.

Thus, cl(SF ) = cl(SF ′)+ cl(SF ′′) in Gσ(Y ), and the lemma follows.

Naturally, we also haveS : K(X)→ Kσ(Y ).

Lemma 3.2. For all a in K(X), we have

i∗Sa = ψn
Xa in Z

[
1

n

]
⊗Kσ(X).
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Lemma 3.3. If X is smooth, then

δ

(
I

I 2

)
= θ n(X) in Z

[
1

n

]
⊗Kσ(X).

The right-hand sides of the equations in Lemmas 3.2 and 3.3 belong toK(X),

and we have a natural arrowK(X)→ Kσ(X) becauseG acts trivially onX. The
Adams operationsψn

X and the Bott classesθ n(X) have been defined in 1.1 and 1.2,
respectively, andδ(I/I 2) occurs in 2.7 and 2.8.

Proof of Lemma 3.2.For every generatorτ of G, the operationa 7→ tr(τ | i∗Sa)
is additive in a by Lemma 3.1, and it is obviously functorial inX. If a =
cl(L) whereL is locally free of rank 1, then theG-action onSL is trivial and
cl(i∗SL) = an. Since these properties characterize the Adams operations, we see
that tr(τ | i∗Sa) = ψn

Xa in R(k)⊗ K(X). From 2.6, it follows thati∗Sa = ψn
Xa

in R(k)⊗Kσ(X), and this implies the result.

Proof of Lemma 3.3.We set
∧
(A) = ∑

p(−T )p cl
(∧pA) in Z[T ] ⊗ Kσ(X)

for every locally freeG-sheafA onX. For every locally free sheafF with trivial
G-action, we have an exact sequence ofG-sheaves onX:

0→ sF → F n→ F → 0,

whereF n = I GH (F ) andH = {e}. If F = �X, then sF = I/I 2 and thus
δ(I/I 2) is the value, atT = 1, of

∧
(s�X). Let τ be a generator ofG and put

L(F ) = tr
(
τ | ∧(sF )). We first compute tr

(
τ | ∧(Ln)) whereL is locally

free of rank 1 onX. Because the action ofτ on {S ⊂ {1,2, . . . , n} | #S = p},
where 0< p < n, is fixed-point–free, it follows that cl

(∧p Ln) = 0 in this
range. Puttinga = cl(L), we see that tr

(
τ |∧(Ln)) = 1+ 〈ε(τ )〉an(−T )n =

1− (aT )n, whereε denotes the sign of the permutation. Also, tr
(
τ |∧(L)) =

1− aT and tr
(
τ |∧(L)) · tr(τ |∧(sL)) = tr

(
τ |∧(Ln)). Furthermore, 1− aT is

not a zero divisor inR(k)[T ] ⊗ K(X) because its rank, 1− T, is not a zero di-
visor inR(k)[T ]. SettingP(t) = (t n − 1)/(t − 1), we see that tr

(
τ |∧(sL)) =

P(aT ) and, evaluating atT = 1, we have tr(τ | δ(sL)) = P(a). It follows that
tr(τ | δ(sF )) = MP

X(cl(F )) withMP
X as in Section 1; this holds for all generators

τ of G, soδ(sF ) = MP
X(cl(F )) in R(k)⊗Kσ(X). PuttingF = �X then yields

the result.

Theorem 3.4. Assume thatX is smooth. For everya ∈K(X),
Sa = i∗(θ n(X)−1 · ψn

X(a))

holds inZ
[

1
n

]⊗Kσ(X).
As in 3.2 and 3.3, the right-hand side belongs toZ

[
1
n

] ⊗ K(X). Theorem 3.4 is
immediate from 2.8, 3.2, and 3.3.

Proposition 3.5. Assume thatX is complete. For alla ∈ G(X),
χσ(Y, Sa) = ψnχ(X, a)

holds inKσ(Spec(k)).
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Once again,χ(X, a)∈K(Spec(k)) = Z and soψnχ(X, a) = χ(X, a).
Proof. It suffices to check this fora = cl(F ) whereF is a coherent sheaf on
X. The cohomologies ofSF on Y are computed by the Kunneth formula, and
the off-diagonal terms can be dropped because they are induced from proper sub-
groups. TheG-representation onHp(X,F ) ⊗ Hp(X,F ) ⊗ · · · ⊗ Hp(X,F ) ⊂
Hnp(Y, SF ) is the permutation representation tensored withεp, whereε : G →
{±1} is the sign of the permutation. By Lemma 3.2 applied to Spec(k), the
image of the former inKσ(Spec(k)) is ψn(clHp(X,F )) = rkHp(X,F ) ∈ Z ⊂
Kσ(Spec(k)). Because the image ofε ∈KG(Spec(k))→ Kσ(Spec(k)) is(−1)n+1,

it follows that

χσ(Y, Sa) =
∑
p

(−1)pn · (−1)p(n+1) · rkHp(X,F )

=
∑
p

(−1)p rkHp(X,F )

= χ(X,F ).
Theorem 3.6 (ARR). If X is complete and smooth and ifa ∈ K(X), then
χ(X, a) = χ(X, θ n(X)−1 · ψn

X(a)).

Proof. By Theorem 3.4,

χσ(Y, Sa) = χσ(X, θ n(X)−1 · ψn
X(a)) = χ(X, θ n(X)−1 · ψn

X(a)).

Butχσ(Y, Sa) = χ(X,F ) from Proposition 3.5. This completes the proof ofARR.

4. The Hirzebruch–Riemann–Roch Theorem

The notation is as in Section 3; in addition, we assume thatk is algebraically
closed. For HRR, we may assume this without any loss of generality.

Notation 4.1. X is smooth of dimensiond. For every coherent sheafF onX,we
have cl(F )∈ G(X) = K(X). We useGp(X) to denote the subgroup ofG(X) gen-
erated by cl(F ) with dim supp(F ) ≤ d − p. We putKp(X) = {a ∈Q⊗K(X) :
ψn
X(a) = npa}.

Proposition 4.2 is proved in [GS]; a proof is included here for completeness.

Proposition 4.2. Q⊗ Gp(X) =⊕q≥p K
q(X).

Notation 4.3. Letπ : Q ⊗ K(X) → Kd(X) denote the projection obtained
from p = 0 andq = d in Proposition 4.2.

Remark 4.4. Assume, in addition, thatX is complete. Thena 7→ ∫
X

ch(a) is
a homomorphism fromG(X) to (n!)−1Z. Restrict this homomorphism toG d(X).
The kernel ofχ(X, ·) : G d(X) → Z is a divisible group because Jacobians of
curves are divisible. It follows that there ise(X)∈ (n!)−1Z so that
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X

ch(a) = e(X)χ(X, a)

for all a ∈ G d(X). If f : X1 → X2 is a surjective morphism (both smooth and
complete of dimensiond ) then, by consideringf ∗a for a ∈ G d(X2), we see that
e(X1) = e(X2). Checking thate(P d) = 1, by Chow’s lemma we see thate(X) =
1 for all smooth completeX.

Proof of HRR.We proved ARR in Section 3; thus we may assume ARR′ (see
Section 1). Fora ∈ Q ⊗ K(X), we putχ ′(a) = χ(X, t̃d(X)−1a). By ARR′, we
have

χ ′(a) = n−d · χ ′(ψ n
Xa) for all a ∈Q⊗K(X).

It follows thatχ ′(a) = 0 for all a ∈ Kp(X) and for allp 6= d. In other words,
χ ′(a) = χ ′(πa) with π as in 4.3. Also, fora ∈ Q ⊗ G d(X), a = t̃d(X)−1a be-
causeP(1) = 1, whereP(t) = log t/(t − 1). Thusχ ′(a) = χ(X, a) = ∫

X
ch(a)

from 4.4 if a ∈Q⊗ G d(X). Finally, because ch(Kp(X)) ⊂ Q⊗ Ap(X), we see
that

∫
X

ch(a) = ∫
X

ch(πa) for all a ∈Q⊗K(X). It follows that

χ(X, t̃d(X)−1a) = χ ′(a) = χ ′(πa) =
∫
X

ch(πa) =
∫
X

ch(a),

and replacinga by t̃d(X)a yields the statement of HRR.

Proof of Proposition 4.2.For any closed subschemeZ of X, we have [Z] =
cl(OZ) ∈ G(X) = K(X). It is standard thatGp(X)/Gp+1(X) is generated by [Z]
for Z closed and irreducible of codimensionp in X. To prove 4.2 (by decreasing
induction onp), it suffices to prove thatψn

X[Z] − np[Z] is in Gp+1(X) for such
Z ⊂ X.

Let F be a finite locally free resolution ofOZ. We putD = F ⊗n; thus,D is a
complex ofG-sheaves onX. We see that

ψn
X[Z] = ψn

X

(∑
q

(−1)q cl(Fq)

)

=
∑
q

(−1)q cl(F ⊗
n

q ) in Z
[

1

n

]
⊗ Gσ(X) (by Lemma 3.2)

=
∑
q

(−1)q cl(Dq) (ignoring the off-diagonal terms as with 3.5)

=
∑
q

(−1)q cl(H q(D)).

This is an equality inZ
[

1
n

]⊗Gσ(X). LetI be the sheaf of ideals inOX that anni-
hilatesOZ. ThenI annihilates theG-sheafHq(D) and tr(τ |Hq(D)) for anyτ ∈
gen. If m =∑q(−1)q l(tr(τ |Hq(D)), wherel denotes the length of the sheaf at
the generic point ofZ, thenψn

X[Z] −m[Z] ∈ Gp+1(X), so we have to provem =
np. For this, we may replaceX by any Zariski-open subset whose intersection
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with Z is nonempty. Thus we may assume thatZ is a local complete intersec-
tion inX. Let j : Z → X denote the inclusion and defineN ∈K(Z) by j∗N ∗ =
I/I 2. With s as in the proof of Lemma 3.3, we see thatHq(D) = j∗

∧q
(sN ∗) as

aG-sheaf, just by checking the action of transpositions in the permutation group.
It follows, as in the proof of 3.3, that

∑
q(−1)q cl(Hq(D)) = j∗(MP

Z (N
∗)) where

P(t) = (t n−1)/(t−1), and the equality holds inZ
[

1
n

]⊗Gσ(X). BecauseP(1) =
n and rkN ∗ = p, it follows thatm = np as desired; this completes the proof of
the proposition. We remark that this method of proof also yields ARR for closed
immersions directly.
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