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Introduction

Divided differences were introduced by Newton in his famous interpolation for-
mula (cf. [N, pp. 481-483] and [L] for some historical comments).

Their importance in geometry was shown in the early 1970s by [BGG] and
[D1; D2] in the context ofSchubert calculuor generalized flag varieties associ-
ated with semisimple algebraic groups. More recently, simple divided differences,
interpreted agorrespondencem flag bundles, were extensively used in the se-
guence of papers [F1; F2; F3] by Fulton in the context of degeneracy loci asso-
ciated with classical groups. Still another interpretation of divided differences, as
Gysin morphism# the cohomology of flag bundles associated with semisimple
algebraic groups, was discussed in [P2, Sec. 4] and [PR, Sec. 5]. We refer to the
lecture notes [FP] for an introduction.

The case of Sln) has been developed by the first author and Schutzenberger
(see e.g. [LS1; LS2; LS3; M1)).

For other classical groups, see the parallel studies by [BH; FK; LP1; PR]; the
present paper is a continuation of [LP1]. Here we study divided differences associ-
ated with the orthogonal groups $&) and SQ2n + 1) (i.e., for typesD andB).

The results for typ® are animmediate adaptation of the results for mgven in
[LP1]; we summarize them in the appendix. However, we add a certain new result
(Theorem 9) for typ&, whoseC-analog was not needed in our former paper [LP1].

Our results for typeD require some new computations with vertex operators,
which are furnished in Section 3 and summarized in our main Theorem 11. In order
to simplify the computations with divided differences, we display them as planar
arrays, which allows us to perform some kind of “jeu de taquin”. This offers a
certain technical novelty with respect to [LP1]. In tyg (or B,), the key role is
played by the divided differences of the form

(0001 -+ 0y—1) -~ (0001 - - 0y—i), (*)

wherek < n. In type D,, it appears that a similar role is played by the divided
differences of the form
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(0002 -+ 8,-10102+ -+ 8,—2) - (3002 - - D24 410102 * - - Dp—24)5 (%)
wherek < n/2. Hered;, fori > 0, are Newton'’s (simple) divided differences:

£o, = f=fC g xi, ..

Xi —Xiq1

moreover, we set

fdo = f— f(—=x1,x2,...) _ f— f(—xp, —xl,xs,...).

and fdo =

—X1 —X1— X2
We compose the simple orthogonal divided differencésjrmand(xx) from left to
right. Because the Weyl group of tygeis naturally embedded in the Weyl group
of type B, the divided difference&xx) can be expressed in terms @f). Such
basic relations are given in Proposition 6 and Corollary 8. The symmetric func-
tions that are most adapted to orthogonal divided difference® grelynomials
[PR], which are a variant of Schut-polynomials.

Our paper is of an algebro-combinatorial nature, but its motivation comes from
geometry. The algebro-combinatorial properties studied here should be useful in
Schubert calculus associated with orthogonal groups and the related degeneracy
loci. The computations of this paper are closely related to the ones in [LLT2]; we
plan to develop this link in some future publication.

The algebro-combinatorial techniques used in the present paper are chosen to
be as elementary as possible. This should help those readers with a more geo-
metric and less algebro-combinatorial background. We mention, however, that
several results used in the proof of Theorem 9 are particular instances of more
general properties of Hall-Littlewood polynomials (see [LLT1] and [LP2]). Let
us remark also that there is an interesting algebra and combinatorics of “isobaric
divided differences” with associat€&tothendieck polynomialgf. [FL]). Finally,
we have used ACE (see [V]) extensively for explicit computations.

Itis our pleasure and honor to dedicate the present article to the mathematician
whose recent work has illuminated important connections between geometry and
combinatorics.

NoTtaTioN AND CONVENTIONS. A vector (of lengthm) is a sequence
[Ul, ceey vm] eZ™.
We will compare vectors of the same lengths, writing

[vla ey Um] g [uL L) um]

if v <u;foralli =1,..., m. Given avectotr = [ay, ..., @,], we will write |«|
for the sum of its components.

A partition is an equivalence class of sequendes - -- > i, ] € N, where
we identify the sequences]..., i,,] with [i1, ..., i,,, 0]. We denote the corre-
sponding partition ag = (i1, ..., i,,) by taking any representative sequence. A
part of a partition/ is a nonzero component of any sequence that repregents
Thelengthof a partition/, denoted?(7), is the number of its nonzero parts. We
call a partitionstrict if all its parts are different. We writé < J for two partitions
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I andJ (of possibly different lengths) if the same relation holds for any pair of
the same length representing them.

All operators act, in this paper, on théft. Polynomials are usually treated as
operators acting by multiplication.

1. Divided Differences

Letn be a fixed (throughout the paper) positive integer.
The symmetric group (i.e., the Weyl group of typeS,, is the group with gen-
eratorssy, ..., s,_1 Subject to the relations

2 e .
st=1 si_18i8i-1 = 8iSi—18i,  8isj =858 Vi, jili—j|>1 1y

We shall callsy, ..., s,_1 simple transpositionsf &,,.
The hyperoctahedral group (i.e., the Weyl group of tfeB,, is an extension
of &,, by an element such that

sg =1 s0S150S1 = 51505150, SoS; = s;s9 fori > 2. 1.2)
The Weyl group®,, of type D is the extension of,, by an elementc, such that
sé =1 5150 = S0S1, SoS250 = s25082, Sos; = siso fori > 2. (L3)

The group®,, can be thought as a subgroup®j by sendingso to sgs1s0.
The three groups just defined act on vectors of lendily

[ve, ..., valsi i=[va, ..o, Vica, Viga, Vi, Vigo, ..., Unl,
[vi, ..., vu]s0 i=[—v1, V2, ..., U],
[vi, ..., vp]s0 :=[—v2, —v1, V3, ..., U,].

The orbit of the vectov = [1, ..., n] underW = &,, 9B,, or ©, is in bijection
with the elements oW, and we shall code eaahe W by the vector [1..., n]w,
writing 7 instead of—i.

The three group® = G,,, B, ®,, also act on the ring of polynomials inin-
determinatest’ = {xy, ..., x,}: the simple transpositios) (i > 1) exchanges;
andx; 1, so sendsx; to —x3, andse sendsr; to —x, andx, to —x;, the action
being trivial in the nonlisted cases. We shall denoteg'Bythe image of a polyno-
mial f € Z[X] underw € W, and we writex*, with « = [«y, ..., @,] € N”, for
the monomial;™ - - - x .

Let Pol be the ring of polynomials i’ with coefficients inZ[%] (we need
only division by 2). For anyn < n, let Sym(m | n — m) denote the subring
of Pol consisting of polynomials invariant under gl <i <n —1,i # m),
and let Synin) = Sym(n | 0) = Sym(0 | n) be the ring of symmetric polyno-
mials. It contains as subrings S¥), the ring of polynomials invariant under
B,, as well as Syi(n), the invariants of9,. It is easy to see that Pol is a
free module over these different rings: generated bya C [n —1,..., O] (or
a CJ0,...,n—1]) over Symn), by x*, « C[2n —1,2n —3,...,1] (ora C
[1,...,2n—3,2n—1]) over Synf(n), and byx®, « € [2n —2,2n—4, ..., 2,0]
(ora €[0,2,...,2n — 2]) over Syn(n).
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The respective elements of maximal length in each of the groups are
w:=[n,...,1 for &,, wh =1[1,...,1] for B,,

and, for®,, B
wh l[l ..., n] n even
0 - 1, 2, ..., 7] n odd
We shall also need the following elementf:

, .. 1] n even
, n—=1 ..., 1] n odd

Relations between reduced decomposition®ircan be represented planarly.
By definition, a planar display will be identified with its reading from left to right
and top to bottomrpw-reading. We shall also useolumn-readingthat is, read-
ing successive columns downward from left to right.

For example, we will write

v::ww?:”i

2 1 2
1 2 1

for the following equality of simple transpositions:

$28182 = §15291.

Suppose that a rectangle is filled row-wise from left to right and column-wise
from bottom to top with consecutive numbers fr¢in. .., n — 1}. Then one eas-
ily checks that its row-reading and column-reading produce two words that, when
interpreted as words in the, are congruent modulo the Coxeter relations.

Here is an example of such a congruence:

3456 3 456
2345 =2.3.4.5;
12 3 4

the congruence class may be conveniently denoted by the rectang|e:

More generally, the planar arrays that we shall write will have the property that
their row-reading and column-reading are congruent modulo Coxeter relations (cf.
[LS2; LS3] or [EG] for a “jeu de taquin” on reduced decompositions). In this no-
tation, for any integers, b, ¢, d,kwithl<a <b,c <d <n,a+d=b+c,
andk < d — b, one has the congruence

b+1 --- b+k R |
. . = : 1.4)
a
a PR PRI PR C C—k ... C—l

Itis convenient to work in the group algebraWf= &,,, B,,, orD,,. The works
of Young and Weyl have stressed the role of the alternating sum of elements of
these groups. Fov = &, B,, or®,, let
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QY= (=D ™w. (1.5)

weW

Using thatB, (resp.®,) is isomorphic to the semi-direct produ®t, x Z’ (resp.
S, X Zg‘l), one obtains the following factorizations in the group algebra:

QP =q% [[a-wm=[]a-ma®. (1.6)
1<i<n 1<i<n
1
©n _— bn . J— .
Q% =20 ( H<1+r,>+ H(l n))
1<i<n 1<i<n
1
= E( 1_[(1+ 7)) + H(l—fi))gg”, L.7)
1<i<n 1<i<n

wherery = sg andt; = s;_17;,_15;_1 for i > 1. The element§2", as operators on
the ring of polynomials Polcan be obtained from the cases®f, %5;, and®,.
To see this, we first need to defisenple divided differencess follows:

Pols> f — f0; = (f — f")/(xi —xi11), i2>21 (1.8)
Pols f = foo = (f — f*°)/(—x1): 1.9
Pol> f > fio = (f — £°°)/(—x1— x2). (1.10)

The d;, dp, 0 satisfy the Coxeter relatior(8.1)—(13), together with the rela-
tions

32 =0=9? for 0<i <n. (L12)

Therefore, to any element of the groupW there correspondsdivided difference
8. Any reduced decomposition s;, - - - s;, = w of w gives rise to a factorization
9;,0;, - - - 0;, Of 9,, (cf. [BGG] and [D1; D2]).

We shall display divided differences planarly according to the same conventions
as for products of the.. For example, the divided difference

000102030001020001
will be displayed as
do 01 0J2 03
dg 01 O02.
do 01

As mentioned previously, the displays that we write have the property that their
row-reading is congruent to their column-reading; thus the preceding display en-
codes the equality

000100020100030201 = 000102030001020001.

We shall especially need timeaximaldivided differences,,, CTS andawg. To
describe them using alternating sums of group elements, we define
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A= [] Gi—xp=xi"tx3Q8", (L12)
I<i<j<n
- 1
8 =TTn [T F—xp = prgaltd 2l (119
i=1 n>i>j>1
1
A= [T @7 —ap) = a2 g, (1.14)

n>i>j>1

The Weyl character formula for types B, and D can be written as follows.

Lemma 1. For each of the group¥ = &, 8, or D,,, the alternating sun®",
as an operator on the ring of polynomidfl, is related to the maximal divided
difference by

QG"% =3, Q%n% - (—1)(3)awg, and QK’HA—lD - (—1)(§)awg.
Indeed, all the operators in Lemma 1 commute with multiplication by polynomials
that are invariant undeéV. Moreover, they decrease degree by the length of the
maximal element of the group. Since Polis a module over'&yinwith a basis of
monomials of degree strictly less than this length (except for a single monomial),
it remains only to check that actions of tkes andds agree on this monomial,
which offers no difficulty.

2. Bases of Polynomial Rings

The monomials mentioned in the previous section are not an appropriate basis,
when interpreted in terms of cohomology classes for the flag variety. Define (for
the rest of this paper) the vector

p:=[n-1..10] (2.1)
Motivated by geometry, one defines recursivBthubert polynomialg,, for any
sequence € N" with o C p, by
Yaa,' = Ylg if o > Uiy, (22)
where
IB = [ala ey 01, ai-‘rla o — 17 C(i+2, ceey al‘l]

starting fromY, = x” (cf. [LS1; M1]). In particular, ife € N” is weakly decreas-
ing theny, is equal to thenonomialx*.

On the contrary, ifw; < -+ < o andogyy = --- = o, = 0 for some
k < n, thenY, coincides with theSchur polynomiab;(x, ..., x;), wherex =
(Olk, ceey 0[1).

CONVENTION. Leta € N*. Then we shall write,, for Y, o o.
We also record, for later use, the following equality: do&= [ay, ..., o] € N,

Yoxi--xk = Yoty .. cu+1- (2.3)



Orthogonal Divided Differences and Vertex Operators 423

On Pol there is a scalar product
(-, -): Pol x Pol — Sym(n)
defined forf, g € Pol by

(f, &) = f80,. (2.4)
There exists an involutiom — «’ such that
(Y2, Yp) = (=D)'*8, (2.5)

(this involution is: codéw) = a > a’ = codgww); cf. [M1]). Moreover, when
a, B C p are such thalw| + | 8] = |p|, then one has
(Yo, Yin—1-g1.n—2—8s, ..., 0-,]) = Sap- (2.6)

We also will needQ-polynomials of [PR]. We seD, := ¢; = ¢;(X), theith
elementary symmetric polynomial iti. Given two nonnegative integeis> j,
we adapt Schur’s definition of hi@-functions by putting

j
0 1=0i0;+2) (-1"0i1,0jp- @2.7)
p=1
Given any partitionl = (iy, ..., ix), Where we can assunteto be even, we set
0, = Pfaffian M), (2.8)

whereM = (m, ,) is thek x k skew-symmetric matrix with, , = Q,»p,,-q for
l<p<qg=k

Equivalently, for any partitiod = (iy > i, > --- > i, > 0), the polynomial
0, = 0,(X) is defined recurrently of by setting

¢
0= Z(—l)j_léijQ(il,...,ij,l,ijﬂ ..... i0) (2.9)
=1
for odd¢ and ,
0= Z(—l)jéil,i,Q(iz,...,,j,-,l,im ..... ) (2.10)
j=2

for event. For any positive integek, let p (k) denote the partition
pk) == (k,k—1,...,D). (2.12)

The ring Synin) is a free module over the ring of polynomials symmetric in
xf, x,f with a basis provided by th@, (X), wherel C p(n) ranges over strict
partitions.

As functions ofxy, ..., x,,, the Q-polynomials can also be defined recursively
by induction orm, involving now all partitions without restriction (as for Hall—

Littlewood polynomials). For any strict partitiah one has
1405

Ql(xl» e Xp) = Zx,f,;( Z Q](xl, R xm_1)>, (2.12)
j=0

H=11=j
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where the sum is over all (i.e., not necessarily strict) partitibrs / such that

I/J has at most one box in every row (cf. [PR, Prop. 4.1]). Moreover, given a
partition !’ = (..., i, j, j,k,...) and denotingd = (...,i,k,...), one has the
factorization property

Or = 0;;0:. (2.13)
We define, for a strict partition,
P =279, (2.14)

The ring Synin) is a free module over Syfin) with a basis provided by thg,,
wherel ranges over strict partitions containeddtn — 1).
Now we will need the following divided difference:

0y = (0002 -+ 0,-101" - 0y—2) - - - (0002030102)dc (n €ven) (2.15)
and
0y = (00d2 -+ 0,101+ - - 0y—2) - - - (00020304010203) (3d201) (n 0odd). (2.16)

We use
(-,-): Sym(n) x Sym(n) — SymP(n)

to denote the scalar product defined jog € Sym(n) by
(f. 8) = f80. (2.17)
For strict partitiond, J € p(n — 1), one has
(Pr, Pyu_1ps) = - ®@s,,, (2.18)

wherep(n — 1) \ I is the strict partition whose parts complement the parisiof
(n—21Ln-2,...,1 (cf. [PR]).

Consequently, the polynomial ring Pel Z[%][xl, ..., x,] is a free Sym(n)-
module with a basig,, P;, wherea ranges over subsequences contained amd
I runs over all strict partitions contained ir(n — 1). Note that the element of
maximal degree of this basisﬁﬁp(n,l). Let

[-,-]: Pol x Pol— SymP(n)
be a scalar product defined f@r g € Pol by
[/ 8]:= fed,p. (2.19)
Then one has, far, 8 C p and strict partitiond, J C p(n — 1),
[Y2Pr, Yo Poin1ns] = (—1)‘a‘+(g)5a,3511 (2.20)

(see (2.5)).

LetY = {y1,..., y.} be a second set of indeterminates of cardinalityrhe
symbol = will mean: “congruent modulo the ideal generated by the relations
fx2,...,x3) = f(y2,...,y2), f € Sym(n), together withxy - - - x,, = y1---y,".
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Following Fulton [F2; F3], define

F(X,))
= Py j—2i(X) + Py j—2i(V)|1<i, jn-1
Py 1(X) 4 Pi_a(Y) 0

Py 3(X) + Pi_3(Y) Py o(X) + Ba())

1 PuX)+ Pyi(Y)
(2.21)
Following [PR], define

P(X,Y) =Y Pr(X) Pyunpi (W), (2.22)

where the summation is over all strict partitiohs p(n — 1). The reasoning in
[LP1, Sec. 2] made for casg, adapts to cas®, and so furnishes the following.

PROPOSITION 2.

(i) We have _
F(X,Y) = PX,)). (2.23)
(i) Foreverywe®,\ 6,, B
P(X", X) =0, (2.24)
and for everyw € 6,
P(XY, X) = P(X, X) = 5,(_1(X). (2.25)
(iii) Foreveryf e Sym(n),
(f(X), FX, ) = (D@ ). (2.26)
(iv) Foreveryf ePol,
[f(év), [T i —ypFx, y)} = (). (2.27)
n>i>j>1

In other words F (X, )) is a reproducing kernel for the scalar prodyct), and
]_[i>j(xi — y))F(X,Y) is a reproducing kernel for,[-]. One can show that the
“vanishing property” (ii) characterizeB(.X', V) up to=. The congruence (i) can
also be derived from geometry by comparing the classes of diagonals in flag bun-
dles associated with S@n) given in [F2; F3] and [PR] (see also [G]).

3. Vertex Operators

In this section we shall mainly make computations using the following two divided
differences.

DEerFINITION 3. Fork < n, we set
Vi(n) 1= (0001- - - 0y—1) - - (9001 + - - Dn—r)- (3.1)
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Fork < n/2, we put

VP(n) i= (0002 -+ 8,-19192 -+ 3p—2) -+ (D02 Dy 24410102 * - - In—24)-
(3.2)
We shall need the following fact from [LP1], quoted in the appendix.

Fact 4. Letk <nandletw = [a; < --- < a;] e N with o < n — k. Suppose
that! C p(n) is a strict partition. Then the image ¢f,Y, underv,f(n) is 0 un-
lessn — 0 — ay,...,n — (k — 1) — a; are parts ofl. In this case, the image is
(=D*=D+s2k , whereJ is the strict partition with parts

{il, ...,ig([)} \ {n —0—0[1, e, — (k —1) —Otk}
ands is the sum of positions of the parts erased.in
ExamMpLE 5. Forn = 7 andk = 2, we have
06,4320 Y25V5(7) = 054321 Y2,5(30919203920536) (900192039435)

=40Q432;
for k = 3, we have

05431 Y12.34V5(7) = —80 7.4

The following result establishes a basic relation betweervthand theVv2.
ProposITION 6. Letk be a positive integer. As operators 8ym(2k),

VP(2k) = x1- - x4 V5, (2k) + x1- - - X251V, _1(2K). (3.3)
Before proving (3.3), we illustrate it by the following examples.

ExAMPLE 7. As operators on Sy(@),
VP(2) = o = x1x2000190 + x19001.
As operators on Sy),
V2(4) = (0002030102)00
= X1X2x3X4(00010203)(000192)(9001)do
+ x1x2x3(00010203) (300192) (3001).
The RHS of the last equation is depicted planarly as

dg 01 02 03 5 3 3 9
80 31 82 0 1 2 3
X1X2X3X4 d 0 + X1Xx2Xx3 dog 01 0z.
9% do 01

Proof of Proposition 6.In this proof, letX := {xy, ..., x2x}. Both sides of (3.3)
are Syn¥(2k)-linear. The operatov,’(2k) sends allQ,(X), I < p(2k—1),t00
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except forQ, 2x_1 which is sent taq—1)¥22¢-1 (cf. (2.18)). Thusv?(2k) annihi-
lates allQ; (X), I C p(2k), exceptforl = p(2k —1) which is sent ta—1)¥22+—1
andl = p(2k) which is sent taq—1)¥2%¢"1x; - - - xoy.
The action of
x1- - X2 V5 (2k)

is given by Fact 4. OnlyD, 2 (X) survives and is sent t6-1)%2%x; - - - x ;.
We will now calculate the action of

X1 X2k_1Vay_1(2k)
ontheQ;(X), wherel C p(2k) is a strict partition. We set, temporarily in this
proof,
V:=Vs ,(2k) and V' :=VE ,(2k-1),
so that
V = V/82k71~ o 81.

LetX' = {x4,..., )52,(_1}. We decomposé,(é\,’) as a sum of products of powers
of x5, times soma) ;(X’), according to the formula (2.12):

01(X) =) 0,(X")xyy.
Let J be the strict partition obtained from a partitidrby subtracting all the pairs
of equal parts. We have three cases to examine.
Case 1:i; < 2k —2. We havelJ|+m; + 2k —1 < degV for each/ and hence
X1+ x25-101 (X)V = 0.

Case 2:i1 = 2k — 1. For degree reason®; (X)xy- - - xpx_1V # 0 is possible
only if I = p(2k — 1) (sincel is a strict partition).
Claim: We have _
x1- - Xx24-10 (X)V' # 0 (3.4)
onlyif J = J = p(2k — 2).

Indeed, suppose first that = 2k — 1. Then

X1+ X210 /(X)) =P - O (X)),

whereP is a polynomial symmetric in?, ..., x%k_l and the strict partitiortf has
no part equal to 2 — 1. Since this expression is annihilated %y, we cannot have
(3.4). So, for degree reasons, (3.4) holds onlj; i= 2k — 2. Suppose now that
j2 =2k — 2. We get

X1 X210 (X)) =P - Qu(X),

whereP is a polynomial symmetric in?, ..., x5, , and the strict partitio/ has

no part equal to 2 — 2. Since this expression is annihilated B, we cannot have
(3.4). So, for degree reason, (3.4) holds onljit= 2k — 3. Continuing this way,
we get the claim.
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ForJ = p(2k — 2), we compute
X1+ X510 7 (X X5 TV = Qparen(XIV/x5F Mogpg - - 9 = (=DF 122
Case 3:i1 = 2k. We have(iy, ...) € p(2k —1). Thus
X1 X101 (X)V = xF - x5 1x2 Qiy..H(X)V
= Q(iz,...)(X)V/Xf X 'ng,lxzkazk—l' -+ 01.

ForH C (ip,...) C p(2k — 1) it follows that O (X)V’ #0ifandonly if H =
02k — 1) and so iff(i, ...) = p(2k — 1). We have
Qp2k-1(X)V' = Qpar-n(X )V = (=D*2%1
and
xf .. .xgk_lekaZk_l. 1= —x1- - X2k
In summary: Q;(X)x1---xo4_1V # 0 only if I = p(2k — 1), when we get
(=D*122k=1 or I = p(2k), when we get—1)F 122k 1x . .. xpp.
Finally, comparing the computed values of #Bg(X) under the operators

VPQ2k), x1---xuV3.(2k), and xi---xp 1V ,(2K),

which are possibly nonzero only far = p(2k) and p(2k — 1), we obtain
the desired formula (3.3). (Note that we have also used the equalify 2
2r — 2r—1) O

CoroLLARY 8. Letk be a positive integer such that< n/2. As operators on
the ringSym(2k | n — 2k),

VP(n) = x1---x3VE () + x1- - - x24_1VE,_1(0)1- - 8,21 (3.5)

This property is obtained from Proposition 6 by composing the expression for the
operatorv”(2k) with the divided difference

ok -+ On—1
(02 + -+ 0p—1) -+~ (02 - 02k (01 - - Dp—2k) = S

d2 - Op—2k41

01 -+ Ou—2k

In the proof of Theorem 11, we will need the following supplement to Fact 4.

THEOREM 9. Letk <nandleta =[ay <--- <oyl eNtwithay =n —k+ 1
Suppose that € p(n) is a strict partition. Then the image &,Y, underv,f(n)
is O unlesst(l) # n (modulo 2 andn — 0 — ag,...,n — (k — 2) — a;_1 are
parts of I. In this case, the image is-1) *-"D(»-D+1+s2k)  whereJ is the strict
partition with parts

liv,....iegni\{n —0—ay,...,n — (k —2) —ay_1}

ands is the sum of positions of the parts erased.in
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The proof of this theorem will be given in the appendix.

ExampLE 10. (i) Forn =5 andk = 1, we have

x70(5.3210001020302 = —205.321 and x50 s 219091929394 = 0.

(if) For n = 7 andk = 2, we have

0w6.40YneVi(7) = —4Q741 and Qzea31YneVa(7) =0.
(iii) For n = 7 andk = 4, we have
O6.4320Y1224VE(7) =1607.21

and ~ _
0764320Y1344VE(T) = =160 7.4.2).

The following theorem is the main result of this paper.

THEOREM 11. Letk be a positive integer such that< n/2. Suppose that C
p(n — 1) is a strict partition. Lete = [o1 < ap < --- < ay] € N2¢ with
agr < n — 2k. Then the image of,Y, underv,?(n) is 0 unless all the integers
n—1—ai,...,n—2k —ay belong tofiy, ..., iy, O}. In this case, the image is
(=1)*P;, where/J is the strict partition with parts

{i]_,...,ig([)}\{l’l—1—&1,...,”—2k—a2k}.

Moreover, lets’” be the sum of positions of the parts erased irand lets” :=
£(I)+1 Thens = s’ if app < n—2k,ands = s" +s” if apr = n — 2k. (Hereit
is convenient to tredd = n — 2k — ay; as an “extra part” of I and to takes as
the sum of positions of all the parts erasedinincluding the extra par).

ExampLE 12. (i) Forn = 7 andk = 1, we have

13(5,4,3,2.L0)Y[1,3]Vf(7) = 13(5,4,3,2.],0)Y[1,3]8082838485868182838485 = —13(4,3,1)
and
P6,4,3210 Y25V (7) = P32
(i) For n = 7 andk = 2, we have
1;(6,5,4,3,2,],0)Y[l,],LZ]VQD(?) = _13(6,2)
and ~ ~
Pe.5.43210Y1113V5(7) = P21

Proof of Theorem 11To compute the action &7 (n), one uses its decomposition
into a sum of two operators as given in (3.5).
The image ofQ, (X)Y, under the first operator

Q1= x1---xuVa (n)

is given (a) by Fact 4 combined with (2.3)if; < n — 2k and (b) by Theorem 9
combined with (2.3) in the casge;, = n — 2k.
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However, sincer,; appears irt,, the same results daot directly furnish the
value of Q;(X,)Y, under the second operator

Q2 =1 X5 1Vay_1(M)d1- - D2k
To end this computation, we proceed as follows. For simplicity of indices, let us
take temporarily: = 7 andk = 2. Suppose that = [a1 < a» < a3 < ay] € N*
is such thaty4 < 3. We want to compute

dop 01 0J2 03 J4 05 Op
dp 01 02 03 04 Os

O1Yyx1x2x3 9% 81 9o 93 Ou’
31 92 93
Now, thanks to the relations (1.4), one has
do 91 92 93 s 5 g o 33 91 95 9s
Bo 91 2 B3 da s _ [ 0 P)| 92 85 da B
do 01 32 93 s 0 al 1 9 03 Oa
01 02 03 0 91 02 03
3 95 g
do 91 9
B B | SRR P ER
- 0 31 dp 3 Oa Os
7\ o1 9, 93 s
do 01 02 03 04 Js Op
= 0o 01 |(04050e)| 02 03 04 05
3o 1 9y B3 04

Sinced;d50 commutes with the divided differences on its left, the last expression
is rewritten as
dg 01 02 J3 0J4 Js5 OJg
040506 dp 01 0J2 03 04 05 = 348586V§(7).
0p 01 02 03 04

Sinced,ds59 commutes withvixoxz andQ; = Q;(x1, ..., x7), the polynomial
to be computed is equal to

Yo 040506 Q1 x1x2x3V5 (7).
However, using (2.2), the image By, a,.as,«, UNderasdsde is

Yo, 02,03,0.0,0,04—3] = Y[u.02,03]

if 4 = 3, and 0 otherwise. Hence, by (2.3), the polynomial to be computed is
equal to y
Y[a1+la2+la3+l] Q1V§(7)~

In general, arguing along these lines, we evaluate

OrYoux1---Xok 1Vh (03192 - - 8,2z,
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wherea = a1 < ap < --- < ay] € N?f is such thatvy, < n — 2k. By the
relations (1.4), this amounts to evaluating

O1Yox1- - X2k 192502541+ - - Du_1Viy_1(n).

SiNCedok o1 - - - 9,1 COMMULES Withyy - - - xo¢_1 andQ; = O;(x1, ..., xp), the
polynomial to be computed is equal to

Yodok ki1 - 9n-101X1- - Xox_1Vay_q(n).
However, using (2.2), the image 8f underdy;do¢11--- 0,1 1iS
Y[Oll, e 002k=1,0" 2K o —(n—2k)] * (3'6)

The expression (3.6) equals 0 unlesg = n — 2k, whenitis equal tqy,, .. oy 1
Hence, by (2.3), the polynomial to be computed is equal to

QIY[a1+2L ...,a2k71+1]vgk_1(n)~
Sinceay;_1+1<n — (2k — 1), Fact 4 provides the end of the computation with
the operatof2,.

Note that, when we have a contribution from both operairand2,, we also
use the equality’2t = 27 — 271, O
ExampLE 13. (i) Forn = 5 andk = 1, we have

PazYnaVi () = P,
and this comes from the contribution of both operat@sandS2,, as follows:
032 YL3x1x2V5(5) = Q@2 Y. qVa(5) = 40,
by Theorem 9; and
0.2 Y1.31x1VE(5)919203 = Q3.2 Y2 VE(5) = —20,

by Fact 4.
(if) For n = 7 andk = 2, we have

13(6,5,4,3,2,1,0)Y[o,12,21V5(7) = —15<5,3)7
and only the operataR; gives the contribution:
06543210122 %1%2x3%4VE(7) = Q6543211233 V4(7) = —160s 3,

by Fact 4.
(iii) For n = 7 andk = 2, we have

Pe543210Y1123V2(7) = —Pg 31
and the contribution comes from operat®sand2,:
0654321 Y1123 X1%2X3%aVE(7) = Q654321 Y2.234VA(7) = —16Q6 31
by Theorem 9; and
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06.5.4.321 Y1123 X1X2x3V5(7)819203 = Q6.5.4.32.1¥2.23VE(7) = 80631
by Fact 4.

4. Applications to P-Polynomials and
Orthogonal Schubert Polynomials

The following presentation of &-polynomial in the form
P = Xa(”ﬁp(n—l)ﬁ ),

wherea(/) € p and2(I) is a divided difference operator, appears to be quite
useful.

LemMma 14. Let! = (iy,...,ig > 0) € p(n — 1) be a strict partition. Ifn
and ¢ are of the same parity, we sét:= n — ¢ and {j; < --- < jp} =
{4,....,n}\ {iz+1,...,i, + 1}. If n and £ are of different parity, we set =
n—e¢—land{ji<--- < jp}={L...,n}\{ia+L1 ..., + 11}

Then, fora(I) :=[n — j1,....,n — jp, 0,...,0landk := h/2,

Vo) = (=1)°Py, (4.1)

wheres is the number of positions of the parts eraseg{n — 1) in order to get
the partition/.

x*DP 1024

.....

The assertion of this lemma is a direct consequence of Theorem 11 and the defini-
tion of a SchurS-polynomial via the Jacobi symmetrizer.

Now, with every strict partitiod = (iy, ..., i, > 0), we associate the following
element(l) € ®,. If n — £ is even, we set

v(I) i=[ir+Lios+1 ....ic+1 j1, ... jnl; (4.2)
if n — ¢ is odd,
v(I)=[ir+Lio+1 ....i¢+11 ja, ..., jul (4.3)

(the notation is the same as in Lemma 14).

THeoOREM 15. For a strict partition/ C p(n — 1),
)Cp];p(n_]_)av(l) = (—1)|1|+(;)131. (44)

The proof of this result is analogous to the proof of [LP1, Thm. A.6]. Using the
notation of Lemma 14, we have
do(r) = o k-1 gV (R), (4.5)
where
[js ooy Juoia+ 1 .o i +1], n and/ of the same parity,
N { [ji s jnoin+1 ...,ig +1,1], n and¢ of different parity.

Note thatx” 3, = x*" and hence the assertion follows by Lemma14. [
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This result leads to the following characterizationfpolynomials via orthogo-
nal divided differences.

CoroLLARY 16. For a strict partition! C p(n — 1), we setw(l) = v(])*leD.
More explicitly, for evert we havew(I) = [i1+1,...,i, + 1, j1, ..., ja] "+ and
for odd¢ we havew(I) = [i1+1,...,i¢ + L 1, ja, ..., j»]% Thenw = w(l) is
the unique element d,, such that?(w) = |1| and P;d,, # 0. In fact, P;d,,;, =
(_1)|1I_

This can also be seen by geometric considerations (see [P1] and [LP1]), with the
help of the characteristic map [B; D1; D2].
More generally, for anw € ©,, consider therthogonal Schubert polynomial

XuD) = Xﬁ(l’l) = xpﬁp("—l)awgw (46)

of degreef(w). Arguing in the same way as in [LP1, pp. 33-36], one shows that
these Schubert polynomials have 8tability propertyin the sense that, fap
Qn C ®n+l7

X2 +1)| = XP(n). 4.7

Xp41=0

Together with the “maximal Grassmannian property” from Theorem 15, which as-
serts that

D — (—pH+®Bp
X[i1+l...,ig+1.j1 ..... Jnl =D 2Py (4.8)
for event and that
D — (—p+Bp
X[i1+l...,iz+ll,j1,...,jh] (=D py (4.9)

for odd¢, (4.7) shows that orthogonal Schubert polynomials provide a natural tool
for the cohomological study of Schubert varieties for the orthogonal groyg50
and the related degeneracy loci.

We also record the following result.

ProposITION 17. For a strict partition! = (i1, i, i3,14,...) € p(n — 1),
Pdody - - 0;,0102 - i, = (1) 2P;, 1, . (4.10)

To see this, we argue in a manner similar to the proof of [LP1, Prop. 5.12]. For
J = (i3, i4, ...), we choose the presentation from Lemma 14,

:Eﬁ] = x“(”f’p(,,_l)au and ﬂ:ﬁj = x“(J)ﬁp(,,_l)&v
for appropriate:, v e ®,. Leto € &, be the permutation such that
V= OUSQS "+ 8;;5152 " * Si5.

The assertion now follows from*3, = x*),
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Appendix: Results in Type B

In this appendix we give a summary of the results for type They are obtained
directly from the results for typ€,, in [LP1], by changind, therein to—2d,. The
results now read as follows.

THEOREM 18.
(i) LetV = V2(n). Fora eN"anda C p,
th Isp(n)V = (_1)|a|+(,l§1) Yaw- (51)
(i) Forstrict! & p(n)anda < p,
Y, P,V =0. (5.2)
Denote by
(-,-): Sym(n) x Sym(n) — SymP(n)
the scalar product defined fgt ¢ € Sym(n) by
(f.8) = fgV. (5.3)
For strict partitiond, J C p(n), one has
(Pr, Pyiups) = (—1)(”31)5111 (5.4)

wherep(n) \ J is the strict partition whose parts complement the partg of
{n,n—1,...,1} (cf. [PR]).

Consequently, the polynomial ring P&l Z[ ][ x1, ..., x,] is a free Synfi(n)-
module with basi¥, P;, wherex ranges over subsequences containesamd/
runs over all strict partitions contained iin). Note that the element of the max-
imal degree of this basis ig'P,,). Let

[, -]: Pol x Pol— Symf(n)
be a scalar product defined fgy g € Pol by
[/ 8] := /gd,z. (5.5)
Fora, B C p and strict partitiond, J C p(n), we then have
[Y2P;, Yo Boiups] = (_1)|a‘+(”;rl)8aﬂ811 (5.6)

(see (2.5)).

LetY = {y1,..., y.} be a second set of indeterminates of cardinalityrhe
symbol= will mean: “congruent modulo the ideal generated by the relations
f(x2,...,x3) = f(»%,...,y2), wheref € Sym(n).”
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Following Fulton [F2; F3], define
F(X,Y)
= Potayj2i(X) + Posayj—2i(V)li<i j<n

RO+ P 0
P 2(X) + Py a(Y)  Pra(X) 4 Pa(Y)

1 PuX)+ PuY)

(5.7)
Following [PR], define

PX,Y) =) Pr(X) Py (D), (5.8)

where the summation is over all strict partitiadhs p(n). The reasoning in [LP1,
Sec. 2] made for caggé, adapts to casB, and so furnishes the following.

ProposITION 19.

(i) We have B
F(x,Y) = P(X,)). (5.9)
(i) ForeveryweB,\ &,, 5
P(X", X) =0, (5.10)
and for everyw € &,
P(X", X) = P(X, X) = s5p(n)(X). (5.12)
(iii) For everyf € Sym(n),
(), FX, D)) = DD fp). (5.12)
(iv) Foreveryf € Pol,
[f(X), [T i—ypFx, y)} = ). (5.13)
n>i>j>1

In other words F (X, )) is a reproducing kernel for the scalar prodyct), and
]_[i>j(xi — ) F(X, ) is a reproducing kernel for,[.]. One can show that the
“vanishing property” (ii) characterizeB(.X’, ) up to=. The congruence (i) can

also be derived from geometry by comparing the classes of diagonals in flag bun-
dles associated with S@n + 1) given in [F2; F3] and [PR] (see also [G]).

ProrosiTION 20. Suppose > p > 0. LetIpJ C p(n) be a strict partition, and
let H C p(n) be a strict partition not containing. Then

Xy Prpydody - - dpr = (=1 Py (514)
and
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X1 PPydgdy--- 9,1 =0. (5.15)
More generally, we have our next theorem.

THEOREM 21. LetO < k < n, and lete = [oy < --- < o] € N* be such that
ar < n — k. Suppose that C p(n) is a strict partition. Then the image af;,
undervVg(n)isOunlessn — a1 — 0, ...,n — o — (k — 1) are parts of/. In this
case, the image i6~1)k(»=D+sp, whereJ is the strict partition with parts

{i]_, ...,ig([)} \ {I’l — 01— O, e, — O — (k —1)}
ands is the sum of positions of the parts erased.in

(This is a restatement of [LP1, Prop. 5.9].)

ProposITION 22. For a strict partition! = (i, i, ...),
Pdgdy- - - 81 = (—D)P,. ). (5.16)

Now, let us associate with every strict partitibr= (i, ..., i, > 0) the following
element ofB,,: B B
v(I) = [il,...,ig,jl,...,jh], (517)

wherej; < -+ < jj.
THEOREM 23. For every strict partition/ C p(n),
X By dury = (~DVH DBy (5.18)

This leads to the following characterization Bfpolynomials via divided dif-
ferences.

CorOLLARY 24. For any strict partition 7, let w(l) = v(I)"*wg; that is,
w(l) = [ix, ..., 1, j1, ...,~j,,]*1. Thenw = w(/) is the unique element dB,
such that¢(w) = || and P;d,, # 0. In fact, P;d,,) = (=!I

This can also be seen by geometric considerations (see [P1] and [LP1]), with the
help of the characteristic map [B; D1; D2].
More generally, for any € 98, consider therthogonal Schubert polynomial

XB = xB(n) = xpﬁp(n)awgw (5.19)

w w

of degreef(w). Arguing in the same way as in [LP1, pp. 33-36], one shows that
these Schubert polynomials have 8tability propertyin the sense that, fap
%n C %VlJrls

X3+ Dls,0m0 = X0 (n). (5.20)

Together with the “maximal Grassmannian property” from Theorem 23, which
asserts that s
X8 = (" ()P, (5.21)

[ CZURRTIY T
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(5.20) shows that these orthogonal Schubert polynomials provide a natural tool for
the cohomological study of Schubert varieties for the orthogonal grodg:s€1)
and the related degeneracy loci.

Proof of Theorem 9

Given a symmetric functiorf, let D, be the Foulkes derivative—that is, the ad-
joint operator to the multiplication by with respect to the standard scalar product
on the ring Sym of symmetric functions in a countable number of variables (cf.
[M2]). We use the following vertex operators on Sym:

Ul =1- DP1S1+ Dp2S2 — (522)
U =1- Dplel + Dp262 — (523)
Ve :=1— D, Pi+ DyPr—--. (5.24)

We refer to [LP1, p. 24] for the definitions of SchArfunctionsP; [S]. In [LP1]
the reader can also find a definition of t@é-functionsQ; [LLT1] used in the
following proposition.

ProrosITION 25. Let/ be a strict partition. Then we have the following identi-
ties of symmetric functions Bym:

B 0, () even

N — 2

v 0, ¢(I) odd: (5.25)
Q;. () even

U = 5.26

Qv 0, £(I) odd; (5-26)
P;, ¢(I) even

PV = 5.27

! 0, ¢(I)odd (®-27)

Proof. First of all, arguing as in [LP1, pp. 24-27] with the help of the operators
Ve, U, U instead ofV¢, U;, U, we note that the equalities (5.25), (5.26), and
(5.27) are equivalent.

Here we show (5.27). It suffices to prove the statement when the set of indeter-
minates{xy, ..., x,} is of finite cardinalityn > |I|.

Fork > O,

xf T ot x)dndz- - 8ya = Pelx, ... x0). (5.28)
2<i<n

Besides this well-known equality, we also need the following formula from [P2].
Fact 26. For a strict partitiod,

Pr(x2,...,x,) H (x1+x;)0102 - 9p—1

2<i<n

_1yn-1 —
_{( D" (o), m— U0 odd, oo

0, n —£(I) even.
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More precisely, (5.29) is a special case of the following formula (given in [P2,
Prop. 1.3(ii)]). Letg, r, k, andh be integers suchthat@ g <n,n =¢+r, 0 <
k<gq,and 0< h < r. Suppose = (i1, ..., i) e N*andJ = (ju, ..., jn) €
N*". Then

d o O
Pr(x1, ..., xg) Py(Xg41, ..o\ Xp) ]_[ (xi +x;) -
l<i<g<j<n d02 - i1
9 -+ 9,
=d- P, g &L x0),  (5.30)
whered is zero if(¢ — k)(r — h) is odd and
—k—h)/2
d= (—1)“’"‘”(“” )/ J) (5.31)
L(g —k)/2]
otherwise.

We then obtain (5.29) as (5.30) specialized te- 1 andk = 0.
To end the proof of (5.27), we first write

P(x2,...,X,) = Py — PiDyy - X1+ PiDoy - x2 — PiDpy - X3+, (5.32)

where the RHS is evaluated in the firsvariables. Then we multiply both sides
of (5.32) by
(x1+x2)(x1+ x3) - - (x1+ x)

and apply the operat@nd, - - - 3,—1. Thus we derive the following equalities of
symmetric polynomials in the first variables. Ifn is odd, the RHS of the so-
obtained equality becomes

Py — PD, - Pi+ PD,,- Po— PDey- P3+---,
by (5.28) and (5.29), and its LHS is equal to
P;, ¢(I) even,
{ 0, £(I) odd,

by (5.29). This shows (5.27) for odd If n is even, the RHS of the obtained equal-
ity becomes

O— PiDyy - Pr+ PiDy - P2 — PiDey- P3+ -+,
by (5.28) and (5.29), and its LHS is equal to
0, £(I) even,
{ —P;, £(1) odd,

by (5.29). This shows (5.27) for even Hence we have proved Proposition 25.
O
Let nowd§ be the divided difference defined by

Pols f > f3§ = (f — )/ (2x1). (5.33)
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Arguing similarly as in [LP1, pp. 27-28] and using

8$ = Dp, — Dpyx1+ Dpyx? — - - (5.34)
and the formula
xfal- . -3,,,1: Sp,nJr]_(xl, ...,)Cn), (535)

yields the following lemma.

LEMmMA 27. As operators oisym, evaluated in symmetric polynomials in the first
n variables,
1- U =3§x701- -+ dp1. (5.36)

Equations (5.25) and (5.36), together with the equalities
x2S = 95x2m  and x2S = —a§x2m L 4 x2m (5.37)

applied for evem = 2m or oddn = 2m + 1 accordingly, imply our last prop-
osition.

ProposITION 28. Let] C p(n) be a strict partition. We then have
—-20;, n+£(I) odd

(5.38)
0, n+¢(I) even

Q1x70001- - 0p—1 = {
Equation (5.38) is the content of Theorem 9 fo&= 1. For higherk, one obtains
the desired assertion by [LP1, Thm. 5.1], Proposition 28, and [LP1, Lemma 5.10].
(Note that this last fact holds true for any nonnegative integem the notation
of [LP1, Lemma 5.10], as is clear from its proof.)
This finishes the proof of Theorem 9. O

Finally, we take this opportunity to correct some misprints in [LP1]:

p.1%4; should read “... a partition.”;

p.13 shouldread !, ): SP(X) x SP(X) — SP(X?)";
p. 36, should read “..9/C,, =C, ..."”;

p.37 should read “... (87 0 3/ ...";

p.3%g should read “..9/, (Q;(X)) =1..."

wr

Moreover, in Example 5.11, the sequence of successive signs sheuldhe-, —.
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