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1. Introduction

Let X be a compact re&Pn + 2)-dimensional submanifold of the complex space
C"*2. For generic suclX at all but a finite number of points, the tangent space of
X will have a 2:-dimensional subspadé that inherits a complex structure from
the ambienC"+2. There are, though, topological obstructions preventing the sub-
spacesH from forming a subbundle of the tangent bundl&. The existence of
such obstructions was shown by Wells [35]. Lai [26] gave an explicit description
of these obstructions.

There has recently been a lot of work on determining when two CR structures
are locally equivalent, subject to various restrictions on dimension and conditions
on the Levi form. There is the work of Beloshapka [1; 2], Ebenfelt [10; 11], Ezhov
and Isaev [12], Ezhov, Isaev, and Schmalz [13], Ezhov and Schmalz [14; 15; 16; 17],
Garrity and Mizner [18; 19], Le [27], Mizner [28], and Schmalz and Slovak [29].
These works concentrate on the understanding of the Levi form, a vector-valued
Hermitian form at each point mappirfdj x H to TX/H.

All of these techniques and methods for producing local invariants break down
for compact manifolds. What has prevented people from applying standard tools
from differential geometry to understand the obstructions preventing the exten-
sions of these local invariants to global invariants has been that the subl#indle
is not a true subbundle. All of the local calculations dependioithe part of the
tangent bundle inheriting a complex structure fréri2, having real dimension
2n. For a compack, there will be points (theomplex jump pointswvhich we
will denote by.7) where theH will have real dimension2+ 2. The existence of
these points is what prevents any easy attempt to extend local invariants to global
ones.

We use a version of the Nash blow-up to replacesubject to certain natural
conditions, with a smooth manifol#f so that there is a natural mag X — X
with 7z an isomorphism fronk — 717 to X — 7 and so that there is a com-
plex ranks vector bundleH on X such thatd pushes forward to the bundé
on X — J. Thus global calculations can now be performed.

The method presented here is to show that there is a natural map (a version of
the Gauss map) frok — 7 to a flag manifoldr’. The Nash blow-up is the closure
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of the graph of this map iX x F. Our main result is to give a clear criterion as to
when this closure is a smooth manifold. We will show that the Nash blow-up will
be smooth when the Gauss—Lai imageafransversally intersects the subvariety
of real 2:-planes in the real Grassmannian(&r, C"*2) that inherit a complex
structure from the ambiern”"*+2.

Finally, it gives me great pleasure to present this paper in honor of William
Fulton’s sixtieth birthday.

2. Basic Definitions

2.1. CR Structures

Let X be a compact real codimension-2 submanifold’éf2. Thus X has real
dimension 2 + 2. Let J: C"*2 — C"*2 be the linear map corresponding to
multiplication byi. ThusJ? = —I. For more on this, see [3, chap. 3] and [6; 25;
30; 31].

DeriniTION 1. Thecomplex tangent spa@# X at a pointp is the subspace
H,=T,XNJT,.

The complex tangent space is the subspace of the tangent space that inherits a
complex structure from the ambient complex spaé¢e?. As we will discuss, at

all but a finite number of points for generlE, the real dimension of the complex
tangent spacé/,, will be 2n and thus complex dimension will be

DEFINITION 2. A point p of X is acomplex jump poinif the dimension o, is
2n + 2.

(Lai [26] used the term “RC-singular point” and Wells [35] used the term “non-
generic point”).

We denote the set of complex jump points By Then X — 7 has a natural
structure of a codimension-2 CR manifold.

DEerINITION 3. A real 21 + k submanifoldX in C"** is anembedded CR mani-
fold of codimensiork if, for all points p in X, the complex tangent spaég, has
real dimension 2.

There is an abstract notion of a CR structure as follows.

DEFINITION 4. A real 2: 4+ k manifold X will be acodimension: CR manifold
if there is a complex subbundie of the complexified tangent bunde ® TM
suchthatL,L] c LandLNL =0.

All embedded CR manifolds are CR manifolds, simply by identifying the sub-
bundleL in the latter definition with the eigenbundle1° of the mapJ for the
complexified bundle” ® H. The lion’s share of the work on CR structures has



Global Structures on CR Manifolds via Nash Blow-Ups 283

been on trying to determine when a CR structure can be realized as a real subman-
ifold of a complex space. We will not be concerned here with those questions.

2.2. Nash Blow-Ups

Nash blow-ups are a technique for trying to resolve singularities of embedded
varieties. It is unknown whether or not repeated applications of Nash blow-ups
will resolve all singularities. We will look at an example of how to use the Nash
blow-up to resolve a node of a plane curve. Consider the plane augreen as

the zero locus of the polynomidl(x, y) = y2 — x% — x2. Since both partials are
zero at the origin, the origin is a singular point. The Gauss map

o: X —(0,0)— PL

whereP?! denotes the complex projective line, is defined by sending each point of
X — (0, 0) to its tangent line. Thus
o(p) = <% : —%> = (2y : 2x + 3x?).
ay ox

The Nash blow-up is the closure of this graphXnx P For this example, it
can be explicitly checked using local coordinates that the closure is smooth, with
two points sitting over the origig0, 0)—namely the pointg0, 0) x (1 : 1) and
(0,0) x (1: —1), reflecting that for this plane curve the lines= y andx = —y
are the natural tangents at the origin.

For more information on Nash blow-ups, see [24, p. 221]. It should be noted
that the Nash blow-up is not the same as the usual blow-up.

3. Lai's Work

The major work on the global properities of embedded CR structures has so far
been done by Lai in [26]. (See also the work of Webster in [32; 33; 34] and Coff-
manin [7; 8; 9]). Since we use his work as a springboard for this paper, we quickly
review his results and techniques. He concentrates on the Gauss map

o X — Gr(2n + 2, C"*?),

which maps each point € X to its tangent spacé,X in the Grassmannian
Gr(2n + 2, C"*?). Set

C = {A €Gr(2n + 2, C"*?) : A inherits a complex structure fro6y*2}.

Since generic elements in @n4-2, C”"*+2) will not themselves be complex spaces
(but instead will only contain a complex subspace of real dimension will

be a proper subvariety in Gn + 2, C"*?). The next lemma follows from the
definitions.

LeEmmA 5. Apointp in X will be a complex jump point precisely whefp) € C.
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Lai describes the cycle corresponding’tn terms of the special Shubert cycles
(which generate the ring structure of the homoldgyGr(2n + 2, C"*+?)). By
pulling back the information from the Grassmannian, Lai showed in the following.

THEOREM 6 [26]. Let F be a realk-dimensional manifold and/ a real 2n-
dimensional almost complex manifold. LLetF — M be an immersion. Assume
2n — 2 =k. Then
n—1
Q(F)+—§:§XF)””_1Uiﬂ;UW)::20%0(F)~C)
r=0

Here§2(F) is the Euler class of', Q(F) is the Euler class of the normal bundle
of F in M, o andC are analogs of our earlier definitions,is the cup product,
ando*(a(F) - C) denotes the pullback of(F) - C, which is the Poincaré dual of
the intersection product of(F) andC in H,(Gr(2n + 2, C"*2)). In our case the
manifold M is simply C"*2 and the submanifold is X. Note that the right-hand
side of this formula is an algebraic count of the number of complex jump points,
showing that there are topological reasons for the existence of jump points.
The initial part of Lai's proof needs to use that, for geneéficthe imager (X)
will transversally intersect the subvarigly The assumption of transversality will
be seento be the condition needed in order for the CR-Nash blow-up to be smooth.
In the case wheh = 2n — 2 (the codimension-2 case), we have #héX) N C
will be a finite number of points. Thus, in codimension 2, there are generically
only a finite number of complex jump points.

4. Flags and the CR-Nash Blow-Up

For this section, we will denote a complexdimensional subspace ¥ and a
real (2n + 2)-dimensional subspace hby. Set

F={Z,A):=CACC"?;

F isanexample of aflag manifold. By an argumentsimilarto thatin [24, Ex.11.40],
F is locally isomorphic to the product &tn, n + 2) x Gr(2n, 2n + 2), where
Gre(n, n 4 2) is the Grassmannian of complexdimensional subspaces of the
complex spac€”*2. Note that there is a natural map frafrto Gr(2n + 2, C"*2)
given by simply sending eadtt, A) to A. The inverse image of the map over
any A ¢ C will be a single point, but over & € C the inverse image will be the
full complex Grassmannian G(n, n + 1).

There are natural universal bundles over a flag, analogous to the universal bun-
dles for Grassmannians. L&} be the complex rank-vector bundle whose fiber
over a point(X, A) consists of points irE. This bundle is a subbundle of the real
rank<2n + 2) vector bundld/,, . », whose fiber over the poift, A) consists of
the points inA.

We now want to extend the Gauss map.



Global Structures on CR Manifolds via Nash Blow-Ups 285

DEFINITION 7. The CR-Gauss map: X — J — F is the map
(p) = (Hy, T, X).

Note that the pullback of the vector bundlg is the vector bundlé/ and that the
pullback of the vector bundlg,, . ; is the tangent bundIEX. Also, the CR-Gauss
map is not defined at complex jump points, sidgis the full tangent spacg, X
at these points.

DEFINITION 8. The CR-Nash blow-ug is the closure of the graph of the CR-
Gauss map in the spaéex F.

This is the CR analog of the traditional Nash blow-up.
We can now state the main theorem of this paper.

THEOREM 9. LetX be areal(2n + 2)-dimensional submanifold of the complex
spaceC"+? such that the image of under the Gauss map intersects transver-
sally the subvariety in the real Grassmanniasr(2n + 2, C"*2). Then the
CR-Nash blow-ugX is a smooth manifold.

5. Transversality in Local Coordinates

In order to prove the main theorem we must first have a good description of when
the image of the Gauss map Bfintersect< transversally. As is common with
Grassmannians, we will dualize the Gauss map, now defining it as

o X — Gr2,Cc"?

with o(p) = N,, the conormal bundle. The analog of the subvariety oft22
planes that inherit a complex structure fra*2 will be

C = {A € Gr(2, C"?) : A inherits a complex structure fro6y'*2}.

Viewing C"*2 as the real vector spad+*, complex conjugation becomes a
linearmap/ : R+ — R?"**with J? = —I. Extending the mag to C ® R?"**
allows us to splitC ® R?"** into its +i and—i eigenspaces, which are denoted
H'° and H % respectively:

For a vectow € C ® R?"*+*, we write this splitting as
v=00a = (vlo’ v°1).
Following the discussion in [3, Sec. 3.2], we can show the following lemma.

Lemma 10.  Two vectors andw in C ® R%*+* will span a2-plane inC if v Aw #

0 but

VA w0 =% A w = 0.
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We will need to understan@s local coordinates with respect to the various coor-
dinate systems for the Grassmanniag @t C2"+*) that are given by the Plucker
embedding of G¢(2, C?"+4) into the complex projective spad@?'+2-1 Recall
how this map is defined. Let vectarandw span the 2-pland ; then the Plucker
embedding is given by A w. If we choose a basis faf ® R?"** and use the
splitting H° @ H°, we can write each 2-plane as the span of the two rows:

1 1
vy 0 OD (v - V2uga VT ... V3
= 10 oy ) = _ .
w wd®  ©d Wi ... Wptd Wi ... Wy

Then the Plucker embedding is given by the determinants of th@ Zninors in
the above matrix. This is not yet a coordinate system. At least one of these deter-
minants must be nonzero. Here we will assume that tke22minor

Unt2  VUiis
Wnt2 Wi

is invertible. By a change of basis 6%"+* we can, in fact, assume that

Upn42 vm _ 1 1
Wy42 wm i —i

By keeping this matrix fixed and then considering the Plucker embedding, we ob-
tain a coordinate system on the open set in the complex Grassmannian, where

Up+2 vnTZ _ 1 1
Wp42 wm 1 —l1

Then the coordinates on this open set for the complex Grassmannian will be given
by

U py2 = Vg — Wi,
(the (k, n + 2) parts of the wedge product),
Up o = —ivg — Wy,
(the (k, n + 2) parts of the wedge product),
Uins2 = WV — Wi,
(the (k, n + 2) parts of the wedge product), and
Ui = —ivgp — Wi,
(the (k, n + 2) parts of the wedge product).
On our fixed open subset of the Grassmann@awill be the linear subvariety
Ukn+2 = Up ;5 =0,

sinceC is wherev® A wl® = v A w0 = 0. (Note that this shows that the dimen-
sion ofC is 2n +2.) Fix the basis for the tangent space to the whole Grassmannian,
on our open subset, to be

d 0 d 0

9 b 9 .
auk,,,+2 auk,m au,;n_*_z aui,m
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The tangent space tbis the span of the vectod du, -, 9/0uj ,,,. Then, in
terms of this basis, we can describe the tangent spatiejtthe(2n+2) x (4n+4)

matrix
071 0O
0O 071 o)

where eacll is an(n + 1) x (n + 1) identity matrix. Here the first + 1 columns
correspond to thék, n + 2) parts of the wedge product, the next 1 columns
correspond to thék, n + 2) parts of the wedge product, and so forth. The first
n + 1 rows correspond t6's tangent vectors/du, -, and the last + 1 rows
correspond t@’s tangent vectors/duy ,, , ,.

Return now to our manifol&. At a pointp € X, we can describ& as the zero
locus of two smooth real-valued functions:

X=(p1=0N(p2=0).

The Gauss map will be
o(x) = spandps, dp2).

Then a complex jump point (those points whose image uadands inC) will
be those points whei@ A 90, = 0 (see [3, Seci.1,Lemma 4]).

We want to find clean conditions for when the intersectiom @X) with C is
transverse. Thus we must look at the Jabolidan Let p € X be a complex jump
point. Change coordinates so thats the origin inC"+2. Rotate the coordinate
system so that locally, about the origiK, is the zero locus of the two smooth
functions

PL=2Zps2+ Zur2 + f1,
P2 =1(Zpy2 — Znt2) + f2,

where the functiong; and f> are smooth functions that vanish to second order at
the origin. Since we have

dp1(0) = dz,i2+dZurs and dpa(0) = i(dzus2 — dZura),

the origin does map to a point th Both X andC have real dimensioni2+ 2,
which is half the dimension of the ambient Grassmanian. Thus we will have a
transverse intersection if the respective tangent spaces span the full tangent space
of the Grassmanian.

The Plucker coordinates of the Gauss mapXare given by the Z 2 minors

of the matrix
dp1 0p1
dp2 dp2

and hence are
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.0p1 0p2

Uk,nt2 = l@ - 8_Zk7
w = 0P 02

k,n+2 aZk azk
v o

k,n+2 0Zr 0k
e = _j0P1 02

k.nt2 0zr 0k

In order to compute the Jacobian, we need to differentiate this map with respect to
a local coordinate system &f. We can assume that, at the origin, the local coor-
dinate system foK is given byzy, ..., z,41, Z1, - -+, Znt1. Then the tangent space

to the image aX will be the (2n + 2) x (4n + 4) matrix

i(l-% _ @) i(,i% _ %) i(,% _ %) i(,,% _ %)
dz1 \ 0zx 0z 0z1 0z 07k 0z \ 0Zx 0z 0z1 0z 0Zk

9 (i% _ @) 9 <_,~% _ @) L(,.% _ %) 9 (_,.% _ %)
32,,4.1 sz 3Zk BZ,IH sz 3Zk BZ,IH azk sz 82,,+1 sz BZk
Here thek are running from 1 ta 4 1. Using our earlier description of the tangent
space ofC, we see that transversality will occur when 8 + 2) x (2n + 2)

minor of the above matrix formed from the fisst- 1 columns and the lagt+ 1
columns is invertible.

6. Smoothness

We now want to prove the main theorem of this paper, restated here for con-
venience.

Let X be areal(2n + 2)-dimensional submanifold of the complex space
C"*? such that the image ok under the Gauss map intersects
transversally the subvariet§ in the real Grassmanniasr(2n + 2,
C"*+2). Then the CR-Nash blow-up is a smooth manifold.

We will reduce this to the standard blow-up of the origi€iti (as in [20, p. 182]),
which is well known to be smooth.

In a manner similar to [24, Ex. 11.40], we can locally write our flag manifold
F as sitting inside G2n, 2n + 2) x Gr(2n + 2, 2n + 4). The CR-Gauss map
projected onto the second factor is the traditional Gauss map. Since our manifold
X is smooth inC"+2, this part of the closure of (X — ) will be smooth. The
part where the closure can fail to be smooth will be the parttbfat is projected
onto the first factor. Since(p) = (H,, T,X) at non-jump pointyp, it is the first
factor H, that fails to be defined at jump points and is the source of the difficulties.

Let p be an isolated jump point at which the Gauss mdptersects transver-
sally the subvarietg. We know that, at this point, the tangent spdg& inherits
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a complex structure from the ambient space and can thus be identif@ttto
Then our flag can be identified with Gn, C"*1) x Gr(2n + 2, 2n + 4), where
Gre(n, C"Y is the Grassmannian of complex subspace of dimensiarC+1,
At pointsq nearp, we know thabp1(q) A 9p2(q) # 0 (which, via duality, defines
the subspacél,) butdpi(p) A dp2(p) = 0.

Using the notation from the previous section, we know that the Plucker coordi-
nates of the Gauss map &fare

Uk, n+2 = i% — %
’ 0zx  0zg
_ aft  af?
~ou o
and
’ 0Zx 0z
aft  ar?
oz on
By the transversality assumption, we have that(the+ 2) x (2n + 2) matrix
i(i%_%> i(_.@_@) [
0z1\ 0z 0z 021 Zk Zk 071 071
0 (i%—%> 9 <_,-%_@) Biniz Oz
0Zpra\ 9zx  0zx ) 0Zpn Zk Zk %1 0Zpia

wherek =1, ..., n + 1isinvertible. Then we can choose a (real) coordinate sys-
temuws, ..., wy, 2 for X such that

Uk.nt+2 = Wi + iw,4+x + higher-order terms
and

Up i = Wk — iWnpk + higher-order terms.

Let A9 C"+2 denote the vector space @, 0)-forms onC”*2. There is the
natural map

X — /\(Z,O)C}l-‘rz

given by sending a poinj to dp1(g) A dp2(g). Away from the complex jump
points, we have the map

X —J - P(\>0C"t),

where P(\?9 C"*+2) denotes the projectivization of>% C"*+2. We want to look
at the closure of this graph il x P(A>?C"*2). By our choice of local coordi-
nates, we have

o1 A dpp = Z(wk + iwy4x)dzi A dz42 + higher-order terms
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and
3p1 A dpp = Z(wk — iwny2.04)dZx A dZ,42 + higher-order terms.

But then the closure will be smooth, since up to higher order we can view the
map as a may — P" given by

(W1 + Wy ng2s oo vy Wppd + Wit 1y nt2)
= (W14 iWigpe2 D vve D Wogd + Wy 14ny2)

and thus the closure is smooth (again, this is known and can also be directly calcu-
lated). Under duality, we have that the grapiXix Gr¢ (n, n +1) will be smooth,
completing the proof.

7. Extending the Levi Form to the Blow-Up

The key tool for understanding CR structures is the Levi form, which is a vector-
valued map
L:=HYxHY: - coTXx/(H e H),

defined as follows. Lep € X and letv, € H)° andw, € H.. Extendv, to a
vector fieldv in H° andw, to a vector fieldw in H°. Then defineL (v,, w,)
asL(v,, wy) = m,[v, w], where p, w] is the Lie bracket and,: C ® TX —
C ® TX/(H° @ H") is the natural projection map. Here we are using that the
Lie bracket of two tangent vectors is again a tangent vector and that there is a nat-
ural projection map t@ ® TX/(H° @ H’). At complex jump points, the Levi
form will be undefined owing to the lack of the natural projection map.

There is an alternative approach for defining the Levi form. Again, we restrict
attention to whereX has a CR structure. As befork,is locally defined inC"+?
as the zero locus of the functions and p», but now assume that the vectors
Vp1 and Vp, form an orthonormal basis for the normal bundie (We will be
using throughout the natural Hermitian metric 612, allowing us to identify
various bundles and their dual spaces—an identification that will usually not be
explicitly made.) Using that the normal bundk is isomorphic to the bundle
C ® TX/(H® @ H), under the mag we can define the Levi form as follows.
Let

n+2 9
v = Vi —

Z ! aZ,‘

j=1 ’

be a vector inH1°, and let

n+2 9
w = Vi—

Z J 8Zj

j=1

be a vector i L. Then the map
L=HYxH": - CoN
defined by
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~ n+2 32 n+2 32p2
Lv,w) = ( Z az,a vjwk) Vo1 + (,-;1 92,0, vjwk) Vp2
is equivalent to the Levi form, as shown in [3, Sec. 10.2].

We want to extend this to the CR-Nash blow-XipA pointin X is described by
specifying a poinp € X and a Z-dimensional subspadé'® @ H% of C @ TX
and thus asp, H @ H%, C @ TX) in X x F. Over the flagF we have the nat-
ural universal bundle€ ® U, andC ® Us,+2 which match up, away from the
complex jump points ok, with the bundles7'°@ H*andC ® TX, respectively.
Moreover, the isomorphism from the normal buntléwhich isC"+?/C ® TX)
to C ® TX/(H® @ H) extends, and we will still denote it by.

DerINITION 11, Let(p, H® @ H, C @ TX) be a point in the CR-Nash blow-
up of X. Let

n+2 n+2
10 : o1
UP—ZUJ—EH and wp—ZvJEEH

Define the Levi form to be the map

L: HOx HY:» c @ TX/(H® ¢ H)

given by
n+2 2 n+2 2
L, w,) = J[— —v;wy | Vo1 + —0Vjw; |V, .
(p 07) <(Zaz,-azk’k P ,Z:aZjaijk P2
Jok=1 J k=1

8. An Example of a Global Obstruction: Levi Nondegeneracy

The Levi form has been the main tool in trying to solve the local equivalence prob-
lem for CR structures, and much of the previous work has depended on placing
various algebraic restrictions on the Levi form. We will find topological obstruc-
tions for the Levi form to be nondegenerate. The same obstructions will be seen
to effect the local work in [28].

Locally on the Nash blow-ugX, choose sections fat1° (which will give us
sections forH %Y and7X/(H'° @ H®Y). Then the Levi form becomes twox n
Hermitian matriceq L, L,). Consider the degree-homogeneous polynomial
(first introduced by Mizner [28]):

P(x,y) =det(xLy+ yL>).

If we change the choice of sections #° by an elemeng € GL(n, C), then the
polynomial is altered by multiplying all of its coefficients by the fadubet g)| 2.
Changing sections fafX /( H'°@ H %) will correspond to making a homogeneous
change of coordinates of the polynomia{x, y). Thus the polynomialP(x, y)
can be viewed as a section of the buntlle °* @ N"H% @ S"TX /(H @ HY),
whereS” denotes thath symmetric product of X/(H*® @ H°Y).
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We will concentrate on determining the topological obstructions that would
force the polynomiaP(x, y) to be the zero polynomial (which means that the two
Hermitian matriced.; and L, would share a nontrivial element in their kernels).
From [4, 20.10.5], we see that a complex vector bundle has a nonvanishing section
when its top Chern class is zero. Sinéé °* @ N"H* @ S"W has rank: + 1,
it follows that if

Cn+1(/\nH01* ® /\nH01>k ® SnW) 7& 0

then there must be points on the Nash blow-up at which the polyngqialy) is
the zero polynomial.

Now we shall see how the vanishing of the polyomfalx, y) relates to Levi
nondegeneracy.

DEFINITION 12. A Leviform L = (L1, L») is hondegeneraté:

(i) LyandL, are linearly independent; and
(i) L;andL, do not share a common nonzero kernel.

This has been an important idea in the work of many of the people mentioned in
the introduction. Note that, if; andL, do share a common nonzero kernel, then
P(x, y) is the zero polynomial. Thus if,, 1(N'H %% @ N'"H* @ §"W) # 0 then

the Levi form on the blow-up cannot be Levi nhondegenerate at every point.

9. Questions

There should be nothing particularly special about codimension-2 manifolds. One
can easily define a CR-Nash blow-up for any codimensional submanifold of a
complex space. We suspect that, if the Gauss map of a submakifiokhsver-
sally intersects the analog 6f then the CR-Nash blow-up will be smooth for all
codimensions.

More difficult is determining if there is a type of CR-Nash blow-up for an ab-
stract manifoldX on which there is a CR structure at most points. If such a blow-up
exists, then this may provide topological obstructions for embeddibility of com-
pact manifolds into a complex space.

Finally, there is the question of how the work of Harris [21; 22; 23] on the func-
tion theory near jump points relates to blow-ups.
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