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0. Introduction

0.1. OVERVIEW. Let Mg be the moduli space of Deligne—Mumford stable curves
of genusg > 2. The study of the Chow ring of the moduli space of curves was
initiated by Mumford in [Mu]. In the past two decades, many remarkable proper-
ties of these intersection rings have been discovered. Our first goal in this paper
is to describe a new perspective on the intersection theory of the moduli space
of curves that encompasses advances from both classical degeneracy studies and
topological gravity. This approach is developed in Sections 0.2—-0.7.

The main new results of the paper are computations of basic Hodge integral
series inA*(M,) encoding the canonical evaluations@f ,_;1;. The motivation
for the study of these tautological elements and the series results are given in Sec-
tion 0.8. The body of the paper contains the Hodge integral derivations.

0.2. MopbuLi FILTRATION.  We will consider the moduli filtration
M, D M D M, D {[X,]}. )

Here, X, is a fixed nonsingular curvé/, is the moduli space of nonsingular genus
g curves, and¥, is the moduli space of stable curves of compact type (curves
with tree dual graphs or, equivalently, with compact Jacobians).

Let A*(Mg) denote the Chow ring witlQ-coefficients. Intersection theory on
Mg may be naturally viewed in four stages corresponding to the filtration (1). There
is an associated sequence of successive quotients:

A (My) — A (M) — A*(My) — A'([X,]) = Q. (2)
We develop here a uniform approach to the study of these quotient rings.

0.3. TauTorLocicaL RinGgs.  The study of the structure of the entire Chow ring of
the moduli space of curves appears quite difficult at present. While presentations
are known in a few genera [F1; F2; I; Mu], no general results have yet been con-
jectured. Since the principal motive is to understand cycle classes obtained from
algebro-geometric constructions, it is natural to restrict inquiry taah#logical

ring R*(M,) C A*(My,).
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216 C. FABER & R. PANDHARIPANDE

It is most convenient to define the full system of tautological rings of all the
moduli spaces of pointed curves simultaneously:

{R*(Myg,n) C A*(M, )} 3)
The first step is to define the cotangent line clagged he class
Vi € ANMy,0)

is the first Chern class of the line bundle with filfi@r(C) over the moduli point
[C,p1,--., pa] € Mg,n. The tautological system (3) is defined to be the set of
smallestQ-subalgebras satisfying the following three properties.

(M R*(Mg,,,) contains the cotangent line classes..., ¥,.

(if) The system is closed under push-forward via all maps forgetting markings:

Ty R*(Mgn) i R*(Mg,n—l)~
(iii) The system is closed under push-forward via all gluing maps:
T R*(Mgl,nlU[*}) ®q R*(Mgz.nzul'l) - R*(Mg1+g2,n1+nz)’
Tt R* (Mg ) = R*(Mgy1m)-
Natural algebraic constructions typically yield Chow classes lying in the tautolog-
ical ring.
We point out four additional properties of the tautological system that are con-

sequences of the definition.

(iv) The system is closed under pull-back via the forgetting and gluing maps.

(v) R*(M, ) is anS,-module via the permutation action on the markings.

(vi) The« classes lie in the tautological rings.
(vii) The A classes lie in the tautological rings.
Property (iv) follows from the well-known boundary geometry of the moduli space

of curves. Since properti€d—(iii) are symmetric under the marking permutation
action, property (v) is obtained. Property (vi) is true by definition because

ﬂ*(wyllib =K € R*(Mg,n)v

wherer is the map forgetting the marking+ 1 (see [AC]). Recall that the
classes are the Chern classes of the Hodge bilthaifethe moduli space of curves.
Property (vii) is a consequence of Mumford’s Grothendieck—Riemann—Roch com-
putation [Mu].

The tautological rings for the other elements of the filtration (1) are defined by
the images oR*(Mg) in the quotient sequence (2):

R*(My) — R*(MJ) — R*(My) — R*([X,])) = Q. (4)

0.4. EvaLuATIONS. The quotient rings (4) exhibit several parallel structures that
serve to guide their study. Each admits a canomcattrivial linear evaluatiors
to Q obtained by integration. Fa¥,, ¢ is defined by

£ € R*(M,), s<s>=/, £.
Mg

The other three evaluations involve thelasses.
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Recall that the fiber oE over a moduli point{] € M, is the rankg vector
spaceH °(C, w¢). Let Ag = Mg \ M. A basic vanishing holds:
,\g|AO =0. (5)
To prove (5), consider the standard ramified double cafer; » — Ao,
[C. p1. p2] = [C].

obtained by identifying the markings,, p» of C to form a nodal curveC. The
pull-back ofE to M, _1 » admits a surjection to the trivial bundlzover M, _; , ob-
tained from the residue of € H%(C, w¢) at the distinguished node 6f. Hence,
the pull-back ofr, vanishes on,_; ,. As we consider Chow groups witf)-
coefficients, the vanishing (5) follows.

For M, evaluation is defined by

§ € R (M), s<s>=/_ £ g,
Mg

well-defined by the vanishing property df. Similarly, the vanishing of the re-
striction of A A1 t0 M, \ M, is proven in [F3]. Define evaluation far, by

£ € R*(M,), e(€) = / E-hghg 1.
Mg
Finally, define evaluation for),] by

ECR (XD, e® = /

M,

E-Aghg 1hg 2.

These four evaluations dwt commute with the quotient structure.
The nontriviality of thes evaluations is proven by explicit integral computa-
tions. The integral computation

1
K3g—3 = = 6
[, 755 = sag ©)

explicitly shows that is nontrivial onR*(Mg). Equation (6) follows from Witten’s
conjectures and Kontsevich'’s theorem (or, alternatively, via an algebraic compu-
tation in[FP2]). Theintegral

22871 _1|By,|
Ay = 7
fMg K23t T a2 @)
shows nontriviality onR*(M;) [FP2]. The integral
1 | B2g|
_2AgAge 1= 8
/M o2 he et T 22120 — I 2g ®)

g

shows nontriviality onR*(M,). Equation (8) is proven in Section 1. Finally, the
computation
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1 |B2g—2| | B2l
AoAo 1Ahe_2 =
/Mg §rsTms 22g —2)! 2¢g -2 2g

establishes the last nontrivialifiz P2]. We note the Bernoulli number convention
used in these formulas is -
m=0

9)

tm

It is known B, never vanishes.

The ¢ evaluation maps are well-defined on the quotient sequence (2) of full
Chow rings. To see the difference in perspective, the nontrivialityfof A*(Mg)
is established by considering any point class whereas the nontrivialitVfaﬁ{g)
requires a tautological point class—such as a maximally degenerate stratum or,
alternatively, (6).

0.5. GORENSTEIN ALGEBRAS. Computations oR*(M,) for generag < 15 have
led to the following conjecture for the ring structure for all genera [F3].

CoNJECTURE 1. R*(M,) is a Gorenstein algebra with socle in codimension
g—2

The evaluatior is then a canonically normalized function on the socle. Itis natu-
ral to hope analogous Gorenstein properties hoId?ft(Mg) andR*(M;), but the

data in these cases is very limited. The following conjectures are therefore really
speculations.

SPECULATION 2. R*(My) is a Gorenstein algebra with socle in codimension
2g — 3.

SPECULATION 3. R*(Mg) is a Gorenstein algebra with socle in codimension
3g—3.

Conjecture 1 was verified foy < 15 via relations found by classical degeneracy
locitechniques [F3] and the nonvanishing result (8)—see Section 1. Infact, a com-
plete presentation at*(M,) has been conjectured in [F3] from these low-genus
studies. Such calculations become much more difficuk foM) and R*(M )
because of the inclusion of nodal curves. It is known m“c‘(tM ) and R*(M )

are Gorenstein algebras fgr< 3. It would be very interesting to find further evi-
dence for or against Speculations 2 and 3.

A stronger version of Conjecture 1 was made in [HL]. Also, Speculation 3 was
raised as a question in [HL].

The tautological rin®R*([ X,]) = Qs obviously Gorenstein. While this case of
fixed moduli appears trivial in the present context, interesting geometry emerges
when marked points are considered. An extension of the perspective on the tauto-
logical ring presented here Mg,,, and fiber products of the universal curve will
be discussed in [FP3].

The moduli space of stable curvag, , may be viewed as a special case of the
moduli space of stable mapé, , (X, B), so itis natural to investigate tautological
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rings in the more general setting of stable maps. The first obstacle is finding the
appropriate definitions in the context of the virtual class. However, in the case of

genus-0 maps to homogeneous varieties, it is straightforward to define the tauto-
logical ring because the moduli space is a nonsingular Deligne—Mumford stack. In

[P1], the tautological rindR*(Mo.o(P", d)) is proven to be a Gorenstein algebra.

0.6. SocLE RANK AND HIGHER VANISHING PREDICTIONS. The Gorenstein con-
jectures and speculations of Section 0.5 imply the ranks of the tautological rings
are 1 in the expected socle codimension. Moreover, vanishing above the socle
codimension is implied in each case. The socle and vanishing results

RE2(M) =Q and R™$3(M,) =0

are a direct consequence of Looijenga’s theorem [L] and the nonvanishing (8)
proven in Section 1. Looijenga’s theorem states the tautological ring aftblel
fiber produciC) of C, = M, ; overM, isat mostrank 1in codimensiog — 2+ n
and vanishes in all codimensions greater than2 + n.

It is natural to ask whether the tautological rings satisfy the usual exact se-
guences via restriction:

R*(0M,) — R*(M,) — R*(M,) — O. (10)

Here, R*(dM,) C A*(dM,) is generated by tautological classes pushed forward
to the boundaryaMg of the moduli space of curves. Pointed generalizations of the
restriction sequences (10) together with Looijenga'’s theorem and the nonvanish-
ings (6) and (7) imply the socle and vanishing results®o(M;) and R*(Mg).
However, at present, the exactness of sequence (10) is not proven.

We note the socle dimension proof fBr*(Mg) in [HL, Sec. 5.1] is incomplete
as it stands since (10) is assumed there (the error is repeated in [FL]).

0.7. Virasoro CoNSTRAINTS. _The tautological rings (4) each have an associ-
ated Virasoro conjecture. Faf,, the original Virasoro constraints (conjectured
by Witten and proven by Kontsevich [K1]) compute all the integrals

R SRR (1)

Mg n
These integrals determine thevaluations in the ring?*(Mg). The methods for
calculatings evaluations from the integrals (11) are effective but quite complicated
(see [F3; HL; W1).

Eguchi, Hori, and Xiong (and S. Katz) have conjectured Virasoro constraints
in Gromov—Witten theory for general target varietiéshat specialize to Witten's
conjectures in casg is a point [EHX]. In [GP], these general constraints are ap-
plied tocollapsedmaps to target curves, surfaces, and threefolds in order to study
integrals of the Chern classes of the Hodge bundle. The Virasoro constraints for
curves then imply:

o N 2¢+n—-3 -
/_ 1,011' o wn n)“g = (al a ) _ Ipfg 2)\‘8 (12)

My, Mg
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wherew; > 0. Equation (12) determines (up to scalars) ¢hevaluations in the
ring R*(Mg). This Virasoro conjecture fak/; has been proven in [FP1].

The Virasoro constraints for surfaces imply a formula previously conjectured in
[F3] determining evaluations iR*(M,):

N 2g +n—3)!(2g — D!
_ w ' 1//” " )\‘g_l = 2 | n " _
Mo (2g = D' [[21Ra; =11 Jiz,,
wherew; > 0 (see [GP]). Formula (13) is currently still conjectural.

Finally, the Virasoro constraints for threefolds yield relations among the inte-
grals

i k1, (13)

wfl cee I/I:”Ag)\.g_l)\g_z. (14)

Mg.n
In fact, all integrals (14) are determined in terms/gf A,4,_14,_> by the string
8

and dilaton equations (which leads to a proof of the Virasoro constraints in this
case [G]).

We note that the ring structure of a finite-dimensional Gorenstein algetiea is
terminedby the socle evaluation of polynomials in the generators. Hence, if the
Gorenstein properties of Section 0.5 hold for any of the tautological rings, the
Virasoro constraints then determine the ring structure. This concludes our general
discussion of the tautological rings of the moduli space of curves.

0.8. ResuLTs. A basic generating series for 1-pointed Hodge integrals was com-
puted in[FP2]:

1+ Z le‘gk / ng 2+l L ( t/2 >k+1 (15)
7 & sin(z/2))

g>1 i=0

Equation (15) may be interpreted as determirdrgyaluations of the monomials
k3g-3-ihi € R¥73(My).

The main result of this paper is a determination of related evaluatigt&if(M, ).
First, the basic series for the nontriviality @bn R*(M,) is calculated.

THEOREM 1. FOr genusg > 2,

1 |Ba,|
f, Kg—2hghg-1= * (16)
Mg

22812 — DIt 2g

Two proofs of Theorem 1 are given in the paper. The first uses Mumford’s
Grothendieck—Riemann—Roch formulas for the Chern characté ahd the
Witten—Kontsevich theorem in KdV form. The derivation appears in Section 1,
following a discussion of the context of this calculation. The second proof appears
in Section 5 as a combinatorial consequence of Theorem 3 below. The required
combinatorics is explained in the Appendix by D. Zagier.

Next, integrals encoding the values of all the monomials

Ke 2 ihi € RE2(M,)
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are studied. For positive integegsandk, let

1-M+2r2—--- 4+ (=DsA
(g, k) = / 1+ 2 .—i-( ) £ kgt
Mg1 Hi:l(l_ ”/fl)

The integrald (g, k) arise geometrically in the following manner. Let

M1 —> M,

be the universal curve. Leif, denote the rank- vector bundle with fiber
HOC, wc/wc(—kp)) at the moduli point €, p]; Ji is a bundle ofr-vertical
(k — 1)-jets ofw,. There is a canonical (dualized) evaluation map

JF = E* 17)

onM,,. Forg > 2,
I(g, k) = 8(7[*Cg—1(E*/Jk*))’

where thes evaluation is taken iR *(M,).
Fork = 1 we have that’; = w, and the map (17) is a bundle injection. Then
I(g, 1) is the evaluation of the -push-forward of the Euler class of the quotient:

1(g, D) = e(mucg1(E¥/0})).

The integrals/ (g, 2) are easily related to the (stack) classes of the hyperelliptic
loci [H,] € R$~2(M,) by the equation

1(g,2) = (2 +2) - e([H)]) (18)

(see [Mu]). Fork > 2, I(g, k) does not admit such simple interpretations. How-
ever, the generating series of these integrals appear to be the best-behaved analogs
of (15) in R*(M,). The search for such an analog was motivated by the parallel
structure view of these tautological rings.

For each positive integét, define

Gty =Y 1% (g, k).

g=1

These generating series are uniquely determined as follows.

THEOREM 2. For all integersk > 1, the seriesG,(¢) satisfies

A6, & etk jt)2
i) Rt — — ). 19
e~ Y ( ) g(Sin(jt/Z)) 49)
In casek = 1 we obtain the following corollary, first encountered in the study of

degenerate threefold contributions in Gromov-Witten theory [P2].

COROLLARY 1.

g2
i t/2
thg /Mg(Z(—l) KgZi)\i)}‘g)‘gl = IOg(sin(t/Z))

g>1 i=0
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In casek = 2, we find

2sin(t/2
(Go) = Iog(%) = - Iog(cos(%)).

The generating series for the evaluations of the hyperelliptic logi{d/,) (with
an appropriate genus-1 term) is

12 2
H(it) = —+ H,]).
@) 9% g§>2t e([H,])
By Mumford’s calculation (18),

(t°H) = G,.
Theorem 2 then yields the following result.

CoroLLARY 2. The hyperelliptic evaluations are determined by
(t?H)" = —log(cod1/2)). (20)

Equation (20) was conjectured previously in an equivalent Bernoulli number form
in [F3]: forg > 2,

(2% — 1)| By

Qg +2)!2¢g -

Theorem 2 is derived here from relations obtained by virtual localization in
Gromov-Witten theory (see [FP1; FP2; GrP]). In addition to the cohomology
classes on the moduli space of stable r’rvﬁgg(Pl, d) considered in [FP1], new
classes obtained from the ramification map of [FanP] play an essential role. The
Hodge integral series (15) and Virasoro constraints (12)fpare also used. This
derivation appears in Sections 2 and 3.

In casek = 2, the integrald (g, 2) may be computed by reduction to the mod-
uli space of hyperelliptic curves. This classical derivation provides a contrast to
the more formal Gromov-Witten arguments. Section 4 contains these hyperellip-
tic computations.

In Section 5, the standard 1-point Hodge integral serieRfgn,) is studied,
and the following consequence of Theorem 2 is found.

8([Hg]) =

THEOREM 3. FoOr positive integerg andk,

g—1 k @)

. 4 1 B k—=n' 1l 6,
Z(_l)lkgflfl wf 1 l)Li)\g)Lg—lZ | 2g| Z( ) L 2g—1+1 )
P Mg4 2g = (k—D'k!' g —1+1)!

Here,&), is the Stirling number of the second kin€}, equals the number of
partitions of a set ofi + [ elements intd honempty subsets.

Theorem 3 and the Appendix together provide proofs of all previously conjec-
tured formulas for 1-point integrals in the tautological ring. In particular, closed

forms for the evaluations iR*(M,) of

Kg—2, Kg—3A1, KiAg_3, Ag_2 (21)
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are found, providing an alternate derivation of Theorem 1 and settling conjectures
of [F3; F4]. Alist of these formulas is provided in Section 5.2. In fact, the combi-
natorial results of the Appendix lead to proofs of natural extensions of the formulas
for (21).
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cially for the results provenin the Appendix. Also, conversations with R. Dijkgraaf,
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by National Science Foundation grants DMS-9801257 and DMS-9801574. C.F.
was partially supported by the Max-Planck-Institut fir Mathematik, Bonn; R.P.
was patrtially supported by an A.P. Sloan foundation fellowship.

1. Theorem 1

1.1. ConTEXT. Looijenga proved in [L] that the tautological rirgy*(M,) van-
ishes in degrees greater than- 2 and is at most 1-dimensional in degeee- 2,
generated by the class of the hyperelliptic locus. Theorem 1 shows that

g(kg_2) = /_ Kg—2hghg_1
8

is nonzero, where is the evaluation oR*(M,) (see Section 0.4). Hence,_» is
nonzero inRg‘Z(Mg). In Section 1.2 we present the first proof of Theorem 1, re-
lying upon an explicit calculation using the Witten—Kontsevich theorem in KdV
form. The resulting nonvanishing of the tautological riR(M,) in degreeg — 2
completed the verification for 5 g < 15 of the conjectural description &f(M,)
given in [F3]. A second, more geometric proof of this nonvanishing appears in
Section 4 using the defining property of hyperelliptic curves. Later proofs may
be found |n[FP2] and [P2], sheing the nonvanishing i®¢~2(M,) of A,_, and
Zg O( —1)'k;iXg—o_;, respectively. Theorem1isre-derived in Section 5 from The-
orem 3 (together with the Appendix), providing an alternative to the KdV deriva-
tion here.

1.2. FirsT PrOOF OF THEOREM 1. Using Mumford’s expression [Mu] for the
Chern character of the Hodge bundle and the resulting identity

hghg-1= (=1)¥(2g — D! chy, 1(E)
[FP2,(4.3)], Theorem 1is reduced to the identity

2g—-2
1 .
S = (T2,Te—1) — (T3g—2) + = E (=D (r25—2—jTjTo—1)
a1 _ gTg g g—2—jTjTg
22124 — DI 2 &

-1
(D" (tan—gTg—1){T3—31-2)
1
+ (=D (tan_2) (T2—3nTg-1)) (22)

o

+

N
X
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(see[FP2, (16)]).Here, the second sum equals

- pet

hZ:l m(rfﬁhfgtgfl%

since(ra_2) = 1/(24%k!) by Equation (0.7). Hence, it suffices to prove the two
identities

g —h

(=D 1

T 23
h:1243‘h(g—h)‘<3h gTe—1) = 245g1 (23)
and

2g—2

D/ (t TiTe 1) = g—l (24)
,Xc‘:( AR T 2 2g

Both are consequences of the following equation for coefficients resulting from
Witten’s KdV equation for power series [W, (2.33) and (2.19)]. For any monomial

T = l_[ tjd’,
the coefficient equation holds:
@n+ (e, 7gT) = 3(ta-1707T)

+ (]‘[(})) ((ta_170T1) (3T2)

0<a;<d;
+ 2(t,1thT1) (18 T2)).  (25)
where the sum is over factorizatiof’s= 7,7, with T, = ]—[’;ZO rj“f.
ForT = 1, andn = a, this gives
(2a +)(tit,TH)
= 3(T4-170Th) + (Ta1T0TH)(T3)
+ (Tae170)(T§Th) + 2(Tu1Td TH) (TE) + 2(T4—178) (T5Th).  (26)
Consider now the two-point functioP (w, z) = Za,b20<fora.’:b)wazb' Equa-
tion (26) is equivalent to the differential equation

<2wi +1)(<w +2)D(w, 2))
ow

= %(w + 2)%wD(w, z) + wD(w, 2)
+ D(w,0)zD(0, z) + 2wD(w, 0)D(O, z). 27)

It is easy to verify that the unique solution of this equation satisfyiig), 0) =
exp(w?®/24) andD(0, z) = exp(z3/24) is given by
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3 3 1
D(w,z) = exp<(w 2—21 )) Z (Znn—;_ ik [ wz(w + z)]

We learned this formula from Dijkgraaf [Dij]. Consequently, for/al- 1,
(=1s"
S st =0, @)

since this is the coefficient af2s+*z¢=* in
3 nl

(ToT ()T (2)) - (T (~w)To) = exp(2 4> Zm[ wz(w +2)]",

in which all terms of total degreeg3have degree at leagtin z. Therefore, by
applications of the string equation to (28), we find:

8 —h 8 —h
3 (=D¢ Z (-D*
e 207 (g — )l \Toh-gTe-1) = = 2 24s=h(g — ) et

(=ps"
Z 245 h(g /’l)|( 3h—g+277g—3>

(=Ds"
= (=D*" lZ 205(g — )] (Tan-170)
B 1 (_1)h+1
N ; 24h ) 243=h(g — )|

— 1 Zg:(_l)h+1 8 _ 1
- 24sg! — h))  24sg!’
which proves (23) fog > 1

To prove (24), we use (25) fof = 1,7, andn = a. This is equivalent
to a differential equation for the general three-point functbx, y,z) =
> apeolTaToTe)x“yPz¢ that specializes to the following differential equation
for the special three-point functiof(w, z) = E(w, z, —2):

4w2F(w, 7) + 2w38—F(w, Z) — }wSF(w, 2)
ow 4
=ww + z)D(w, z)D(0, —2) + w(2w — z) D(w, —z)D(0, 2).

It is clear that it has a unique solution. One verifies easily that the solution is

- (a+b)! a+b+1
F(w,2) —exp( )(lgo(w Y (wz?) 2“+b—1(2a+2b+2)!( 2a+1 )

The coefficient ofw$z2¢ equals(g + 1)!/2¢71(2¢g + 2)!, which gives (24). This
finishes the (first) proof of Theorem 1. O
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2. Localization Relations

2.1 ResuLts. In this section we use the localization method to find relations
among Hodge integrals [FP1; FP2]. Define the Hodge inte@fdbr g, ¢ > 1 by

Qe—/ 1—k1+)»2—~"+(—1)g)»g
& Mg,l 1—6'(//1

The first step in the proof of Theorem 2 is the computatio®¢f
To state the relations determinif, we will need the following combinatorial
coefficients. For any formal seriegc) = 3 ¢, x/, define

C(xi t(x)) = 1.

Let t(x) be the series inverse o~

Aehgot. (29)

r—1

T(x) = Z rr! x".

r>1

Ford > e, define f,q by

L E (2 +d -1 -1 ),

fgde =
e! e 2g = I)! I

(x?7¢, ' (x)). (30)

ProrosiTioN 1. Ford > 1,

d oo

dt/2
05 =t o 12
pur s sin(dt/2)
The proof of Proposition 1 depends upon almost all of the main results of [FP1,;
FP2; FanP; GrP]. Theorem 2 will be derived as a consequence of Proposition 1 in

Section 3.

2.2. THE Torus AcTION. LetP! = P(V), whereV = C @ C. Let C* act diag-
onally onV:

£ (v1,v2) = (vy, & - v2). (31)

Let p1, p2 be the fixed points [10], [0, 1] of the corresponding action d(V).
An equivariant lifting ofC* to a line bundlel. overP(V) is uniquely determined
by the weights#, 7] of the fiber representations at the fixed points

Li=L|,, La=L],

The canonical lifting ofC* to the tangent bundl&: has weights [1-1]. We
will utilize the equivariant liftings ofC* to Op(y)(1) andOp(y)(—1) with weights
[0, —1] and [Q 1], respectively.

Let Mg,,,(P(V), d) be the moduli stack of stable, gengisdegreed maps to
P! (see [FuP; K2]). There are canonical maps

iU — My, (P(V),d), p:U—P(V),
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whereU is the universal curve over the moduli stack. The representation (31)
canonically induce€*-actions onU and M, ,(P(V),d) compatible with the
mapst andu (see [GrP]).

2.3. THE BraNcH MorpHISM. In [FanP], a canonical branch divisor morphism
y is constructed using derived category techniques:

Y Mg, (P(V),d) — Sym(P(V)) = P(Synf(V*)), (32)
wherer = 2d + 2g — 2. We review the point-theoretic descriptionf Let
[f:C—PWV)]

be a moduli point, Wheré?~ is a possibly singular curve. L&t c C be the cycle
of nodes ofC, and~letv: C — C be the normalization of. Let A4, ..., A, be
the components of that dominateD, and let

{a;: A; —> D}

denote the natural maps. Singds a surjective map between nonsingular curves,
the classical branch divisor tr;) is well-defined. LetBy, ..., B, be the compo-
nents ofC contracted oveD, and letf(B;) = p; € D; then the following formula
holds:

y([fD) =br(f) =Y bria) + Y (2g(B) — 2)[p;] + 2£.(N).  (33)
i J

We note thaty commutes with the forgetful maps
Mg o (P(V),d) — My(P(V),d)

and thaty is equivariant with respect to the canonical actioCdfdefined by the
representation (31).

2.4. EQuIVARIANT CycLE CrLAsses. We now describe the equivariant Chow
classes that arise in the proof of Proposition 1.

First consider th&€*-action onP(SynT(V*)). There are exactly + 1 distinct
C*-fixed points. For 0< a < r, let g, denote the fixed point};”~“v3¢. The
canonicalC*-linearization onS = O(1) has weightw, atg, equal toa. Let S;
denote the uniqu€*-linearization ofS for which the weightw; atq; equals zero.
We note the weight at, of S; isa —i. The first equivariant Chow classes consid-
ered are

si =y (ca(S)
forallO<i <r. .
Second, there is a natural rasiki- ¢ — 1 bundle o/, ,(P(V), d):
R = R, (1 Opv)(—1). (34)

The linearization [01] on Opy(—1) defines an equivariardi*-action onR. We
will require the equivariant top Chern clagg,(R).
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Third, there is a canonical lifting of th€*-action onMg,n(P(V),d) to the
Hodge bundl& oveng,n(P(V), d). Hence, the Chern classksyield equivari-
ant cycle classes.

Finally, let

ev: M, ,(P(V),d) — P(V)

denote theth evaluation morphism, and let
pi = c1(eV' Op)(D),
where we fix theC*-linearization [Q —1] on Op(y)(D).

2.5. VANISHING INTEGRALs.  We will obtain relations amon@y from a sequence
of vanishing integrals. Le¢, d > 1, and letP(g, d) denote the integral

d-2
P(g.d) = / hg-1cop(R)pZ [ s = 0.
Mg 1(PLd) is0

Since the virtual dimension oﬂg,l(Pl, d) equals 2Z + 2g — 1 and since the total
dimension of the integrand is

(g-D+@d+g-D+2+d-1)=2d+2g—1,

it follows that the integralP(g, d) is well-defined. Sinceo? = 0, we have
P(g.d)=0.

2.6. LocarizatioNn TerMs. Because all the integrand terms Rig, d) have
been defined witlC*-equivariant lifts, the virtual localization formula of [GrP]
yields a computation of these integrals in terms of Hodge integrals over moduli
spaces of stable curves.

The integralsP(g, d) are expressed via localization as a sum over connected
decorated graphs (see [GrP; K2]) indexing th€*-fixed loci of M, ,(P(V), d).

The vertices of these graphs lie over the fixed pointy, € P(V) and are labeled

with genera (which sum over the graphgte- #(I")). The edges of the graphs lie
overP! and are labeled with degrees (which sum over the gragh.tBinally, the
graphs carry a single marking on one of the vertices. The edge valence of a vertex
is the number of incident edges (markings excluded).

The equivariant integrand df(g, d) has been chosen to force vanishing con-
tributions for most graphs (see [FP1; FP2]). By the linearization choice on the
bundleR, we find: If a graphl’ contains a vertex lying over; of edge valence
greater than 1, then the contributionIoto P(g, d) vanishes. This basic vanish-
ing was first used ik = 0 by Manin in [M]. Additional applications have been
pursued in [FP1; FP2; GrP].

By this vanishing, onlycombgraphsI’ contribute toP(g, d). Comb graphs
containk < d vertices lying ovelp;, each connected by a distinct edge to a unique
vertex lying overp,. These graphs carry the usual vertex genus and marking data.

If the (unigue) marking of" lies overp,, then the contribution of" to P(g, d)
vanishes by the linearization choice for. We may thus assume the marking of
I" lies overp,.
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A comb grapH is defined to have complexity > 0 if exactlyn vertices lying
over p1 have positive genus. A vertexof positive genug (v) over p; yields the
moduli spacdﬂg(v),l occurring as a factor in the fixed point locus corresponding
toTl. Letwy, ..., v denote the positive genus vertices opgr The fixed point
locus corresponding tb is a quotient of

Y

1_[ Mg(v,-),l X Mg’,k+l- (35)

i=1
Here, the unique vertex over, is of genusg’, the comb consists df total ver-
tices overp,, and the marking lies over,. The restriction of the integrand term
cop(R) to the fixed locus yields the class

k/
[ 1w
i=1

as a factor. The integrand teny_, contributes the sum

k' k'
H)Lg(vi))‘g/—l_i_ Z)‘g(vi)—ll_[)‘g(vj))‘g" (36)
i=1 i=1 j#i

By (36) and the basic vanishing = 0 € A*(My,,) for b > 0, we easily see
that graphd™ of complexity greater than 1 contribute O Rgg, d). We have now
shown that only graphs of complexity O or 1 may contribut@®tg, d).

Consider first a graph of complexity 0. As before, let be the total number of
vertices overp;. The image undey of the fixed point locus corresponding o
is the pointg,;_;. By the term]'[j’;o2 s; in the integrand, all such graphs contribute
0 unlesst = 1. Therefore there is a unique complexity-0 grdpthat contributes
to P(g, d). The contribution of this graph is

— (=P 2% |y, (37)
Mg 1
The contribution is computed via a direct application of the virtual localization
formula [GrP]. The string equation and the ideniyE)c(E*) = 1 are used as
well. Only one Hodge integral (occurring at the vertex lying opgy appears.

Next, consider a graph of complexity 1. Letv; denote the unique positive
genus vertex. Lek = g(v1), and lete be the degree of the unique edge incident
tovy. Letm = {mq, ..., m;} be the degrees of remaining edgedofThe triple
(h, e, m) satisfiesh < g ande < d, andm is a partition ofd — e. The set of such
triples is in bijective correspondence to the set of complexity-1 graphs

(h,e,m) < I'(h, e, m).

The contribution ofl'(k, e, m) to P(g, d) contains two Hodge integrals: at the
vertexv, and at the vertex lying over p,. The Hodge integral at; is Q; (up

to signs). The Hodge integral atis a, integral (see [FP1]) and may be inte-
grated by the Virasoro constraints (12). A direct computation then yields that the
contribution ofT is
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(—1)01*8 eeeJrl 2h+d—-1-1)! (—d)l ﬁ m{ni—l
d h gl (2h — D)! |Aut(m)| ey

i
mi!

N /M e (38)
g—h1l

Here, Auiim) is the group that permutes equal partsmofThe contribution van-
ishes unless 2 > [. Finally, the integralfM01¢{zko occurring in (38) in case
g = h is defined to be 1. ’

The integralP(g, d) equals the sum of all graph contributions from (37) and
(38). SinceP(g,d) = 0, we have found a relation among the Hodge integrals,
including theQ integrals.

2.7. Proor of ProrosiTION 1. The Hodge relation found in Section 2.6 can be
rewritten using the following observations.

The Hodge integrals other than tigeintegrals appearing in (37) and (38) are
determined irfFP 2] asfollows:

gd 8428 [\;[g,lwl Ag_(Siﬂ(dt/Z))’ (39)
2g.2 2g—-1 _ d[—/z . dt—/Z
;d 8128 s Vi Ago1= <sin(dt/2)) Iog(sin(dt/2)>‘ (40)

Let Parta, b) denote the set of partitions ofof lengths. The equality

m;—1

eV Qh4d—1-1)! (—d)! m
fhde=72— > I,E

=0 (2h —1)! mePard—e,1) |Aut(m) m;!

follows directly from the definition (30).
Letd > 1 be fixed. The Hodge integral relations obtained from the vanishing
of P(g, d) for all g > 1 may then be expressed as a series equality:

d 00
. 2 dt/2 g dt)2 ' dt/2
(2 2, Oifut g) ' (sin(dr/a) ¢ (sin(dr/a) '°g<sin<dr/2>>‘

Proposition 1 follows from cancelling the invertible series (39). O

3. Theorem 2

3.1. RepucTtioN. The derivation of Theorem 2 from Proposition 1 requires some
knowledge ofr (x) and a significant amount of binomial combinatorics.

Let k be a fixed positive integer. We start by summing the right side of (19)
using Proposition 1:
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k ck—1 .
k—id (K Jjt/2
2T () sl s
00 k k Ajk_j k
=ZngZQ;Z<—1)k—JT<j>fgje. (41)
j=e

g=1 e=1

A direct partial fraction expansion shows the equality

k e ek [k
6. = 3 05D E(e)

Hence, Theorem 2 is a direct consequence of (41) and the following proposition.

PrOPOSITION 2. Letk > e. Then
k k—j k
_i k 2g +k-1)! _ef [k
k=il - s A 5 N L .
2V <j)fg/ eor TP e
3.2. Powers oF 7. In order to prove Proposition 2, we will need a formula for
the coefficients ot '(x) appearing in the definition (30) of;..

LEmMA 1. Letr,l > 0. Then

1 . r—1\r"!
pee T = (z_1>7-

Proof. This is a direct application of the Lagrange inversion formula (see [dB,
(2.2.4)]). Solvingx = z/f(z) with f(z) = e* gives

o0
z=1(x) = Zc,x’,
r=1

Arfd\ . ot
¢ —ﬁKd—z) (fle) Lo— N

IS

This is simply the well-known formula stated in Section 2.1. More generally,

g(2)=g0) + Y drx",

r=1
1 d r—1 )
d, = —,[(—) {g (Z)(f(Z))’}} :
r. dZ 7=0
Applying this withg(z) = 7! yields the result. O

3.3. Proor oF ProrosiTioN 2. Using definition (30), Lemma 1, and simple ma-
nipulations, we find that Proposition 2 is equivalent to the equation
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i N e(2g +j—1 —1) </§><j - 1) (j —e —1>J.k,+,(e et
Parfear j/\e—1 -1
:ekE(k><(2g+k_l>_<2g+e_1)). (42)
e k—1 e—1

To proceed, we may write the left and right sides of the above equation canonically

in terms of the binomials
2g+e—1
t+e—1
for0 <t < k — e, using the relations
2¢+j—1—1 _”i j—e—1\[2g+e—1
j—1 _t:l t—1 t+e—1)
2g+k-1 _ki k—e\[(2g+e—1
k—1 _t=0 t t+e—1)
Then it suffices to match the coefficients
| —e — 1 i —1 j—e—1\ .,_. e
351 ()[4 [ G PSR
j=e+1 1=1 J)\e
k\ [k —
= ()() @
e t

forl <t <k — e (the matching at = 0 is trivial). Equation (43) simplifies to

k—e—1

—e—1 tr—1 k— =141 N\ j—e—1-1 __ €
ZZ(1—e—t>(l 1>] o T

j=e+1 [=1

and summing overyields

k—e—t

K (k—e—t e
- e k—je, _ ayji—e—t=1 _ _
Z( . t)] (e—J) t

—e
j=e+t J

Substitutez = k — e ands = j — e — r. Then we must prove that

z—t

> (Z ; t) (e+s+D)7" (s —1)t= et 44)

s=0 !

forall1l <t < z. If the left side of (44) is viewed as a polynomial énthen the
coefficient ofe*~! clearly matches the right side. Hence, it suffices to show that
the coefficient ok? vanishes forO< g < z — ¢:

Z47(]1—1‘ z—t—s s 1
Z ( )( )(S + 1) Y (—s -1 =0
s q

s=0
which is equivalent to
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z—t

Nz —t—q Z—1—s5— —1
2 (s + 07 U= =0
s=0 s

Substituting: = z — r — ¢ and simplifying, we must prove that

3 (-1’ (:l)(s +n"t=0 (45)

s=0

for all » > 0. Finally, the proof of Proposition 2 (and hence of Theorem 2) is
completed by observing that (45) follows from the well-known relation

Z(—1)5<n>s7’ =0
s=0 §

foralO<y <n-—1 O

4. Hyperelliptic Hodge Integrals

In this section we compute, for gl the M,-evaluation of the class of the hyper-
elliptic locus H,. As explained in Section 0, this provides an alternative proof of
Theorem 1in the cade= 2 and its Corollary 2.

As in Section 1, the starting point is the identity

Aghgo1 = (=1)*"(2g — D! chy,_1(E). (46)

Mumford’s calculation [Mu] of the Chern character of the Hodge bundle then
gives an expression far, A, in terms ofc andy classes. This expression lends
itself very well to a direct evaluation on the hyperelliptic locus: in the usual model
of hyperelliptic curves as double covers of rational curves, all relevant classes are
pull-backs from the moduli of rational curves, where evaluation is straightforward.
In the process one finds simple expressions (in the rational model) for all com-
ponents of the restriction of €R) to the hyperelliptic locus. This generalizes the
formula of Cornalba and Harris [CH] for; on H,. It seems plausible that these
expressions will allow the evaluation of other hyperelliptic Hodge integrals.

We may viewM 2¢+2 as the coarse moduli space of stable hyperelliptic curves
of genusg with an ordering of the Weierstrass points (see [HM, 6CJRP2,
Sec. 3.2]). The universal hyperelliptic curve is then the (stack) double cover of
Mo 2,3 branched oveB, the disjoint union of the 2 + 2 sections:

f -
C —— Mooei3

| |

r7ord
Hg —

Mo 2442

We havey, = f*(¥2,4+3 — B/2). Writing h; for the genusg classk; viewed
0N Mo 2412, We obtain
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hi = it = @ (f*(Yoge3 — B/2) ™ = mu fu f (Y2043 — B/2)'™)
= 21, ((Y2g13 — B/ = 2w, (Yhits + (—B/2)'*H)

2g+2 - 2g+2
=2 +2) (=3) Tyt =2 —27 >yl
j=1 j=1

(Here the genus-0 class in the last line is th(_a generalization T/Iz_lg,n by
Arbarello—Cornalba [AC] of Mumford’s class favf,.) Writing x; = ch;(E),
we have computed the first term in Mumford’s formula,

-1 2k—1 2k—1

(2k)! 1. &t +yd
X2k-1=K2k—1+ = hos——,

Boy 2 hX::O T o)

in the rational model; it remains to evaluate the boundary terms. (Recagtighat
0 for positivek.)

Boundary divisors 0M0,2g+2 come in two types: odd boundary divisors, with
an underlying partition of 2 4+ 2 in two odd numberg> 3); and even boundary
divisors. As described in [CH] and [HM], the hyperelliptic curves corresponding
to an odd boundary divisor generically have one disconnecting node and four auto-
morphisms, whereas those corresponding to an even boundary divisor generically
have two nondisconnecting nodes and two automorphisms.

As a result, Mumford’s formula in codimension 1 reads on the rational model
as follows:

1251 = 2k1 — %‘/f + %aodd + 28even

with evident notations. Sinog = v — § in genus 0, this simplifies to
8x1 =¥ — Sodd = k1 + Seven

The higher-codimension case is very similar. The terms withAd < g —1in
Mumford’s formula correspond to the odd boundary divisors; in the rational model,
they appear with an extra factér Now y1 = f,*(Yant3— B/ 2); since this is here

a cotangent line at a Weierstrass point, we must evaliagte; — B/2 on a Weier-
strass point divisor inl?lo,gh+3. It is easy to check that the result, as a class on a
boundary divisor oﬂ710'2g+2 with underlying partition [ + 1, 2(g — h) + 1], is

%z/f*, wherey, is the cotangent line in the node to the branch with21 marked
points. Analogously, foty, and genug — h, we find%w., wheret. is the cotan-
gentline in the node to the other branch. Therefore the odd boundary contribution
to (2k)!/B2;) x2k—1 €quals

>3 G 4 Gu)™ | 1 By
) 1 1 — 92k-1
2 saab 2+ 39 24 Vet

Theh = 0termin Mumford’s formula breaks up into terms corresponding to the
even boundary divisors; each of these appears with an extra factor 2. To identify
the classeg; andy,, we need to construct the family of hyperelliptic curves cor-
responding to an even boundary divisor with underlying partitigrdf2, 2k + 2]

)Zkfl

D
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(henceh + k = g — 1). The base of the family i€, x C;. The idea is to glue

Cn xg, Cn andCy x5, C; along two sections on either side, the diagonand

its imageA’ = {(p, p’)} under the hyperelliptic involution on the second factor.
However,A and A’ intersect along\ (W), whereW is the Weierstrass divisor in

C. HenceC xg; C must be blown up along\(W), on either side. The relative
canonical divisor induced on the second factor after the blow-up can be identi-
fied with the class/; + W on the second factor before blowing up. Therefore,
the classeg; andy, in Mumford’s formula correspond on the rational model
to f (Want3) and f* (¥ar43), respectively, and the even boundary contribution to

((2k)")/Bax) x2¢—1 €quals simply
1'//2k 1+1//2k 1
2
DD

evenD D

We have proven the following.

ProposITION 3. In the coarse rational modeé¥o o4 = I-_Ig"’d, the Chern char-
acter of the genug-Hodge bundle equals
2g+2

1
ch(E) —g—i-z 20! [2 K2k-1~ o3rg Z Yt

j=1
1 1/}31( 1+ w.Zkfl
22k-1 1//* + Vf-
)

oddD
2k—1 2k—1
12 Z W + !
(The vanishing of ctiE) in degrees> 2g—here, trivial—holds om71g as well; see
e.g.[FP2,(4.3)].)

Vi + Y
In fact, these formulas can be simplified, just as in codimension 1.

2/)! 22 _ 2g+2 2k— 1+ 2k—1
(2k) opt = 22k : <Zw2k 1 Z 14 I,/f D)

Ba oddD
22k -1 2k71+ .2k71
<K2k I el e )
D

281 e+

+

D

evenD

evenD

This follows from the identity

n _ 1//*2k—1+ l'/f‘Zk—l
= LT

)
on My, a consequence of Proposition [P 2)].

COROLLARY. OnH gord,

B
Chee-a(B) = 5 5 (2% = 2.



236 C. FABER & R. PANDHARIPANDE

Hence, on the stacK,,

(2% — 1)|Bzg|
Aghg1=
(2g + 2)! 2g

Proof. By the foregoing we have

(29)! 228 — 2g+2 228 -1 _, —_—
Gy KL= 22“ 22 = =2,

whence the first formula. The second formula follows by using (46) and dividing
by 2. (2g + 2)!. The factor of 2 is required to account for the hyperelliptic auto-
morphism groups in the stad¥,. O

5. Theorem 2 Revisited

5.1. REFORMULATION. In this section we present a reformulation of Theorem 2
that reduces all known (and several conjectured) nonvanishing results to combi-
natorial identities. Fog > 1, consider the polynomiaP,(k) in k of degreeg — 1

(with zero constant term fqgy > 2) defined by

|BZg

Py(k) = Z( DI g kA

Mg.l
Note that the right-hand side equ@§ as in (29) for positive integers

THEOREM 3. For positive integerg andk,

2g+1-1

(k-1 1 ., m
o= IZ )'k’Z(_)l <)<2g+l—1>'

m=1

Proof. This follows directly from Theorem 2. By expanding the logarithmic series
as in [FP2Lemma 3], one obtains

(k—=1! |Byl i (=D jkt
2g+k—D! 2g & (k=) ]!

1(g, k) =

Since

Nk
_Zwl( y Z( 1)]k+n<)

1_[1 1(1 lwl) n=0 '
we also have

I(g’k)Z/M hohg— 1c(E*)ZI//1kI Z( 1yk—ijk= l< ) +1

gl

Now observe that the resulting identity can be writterBas= DBV, whereA is
the infinite vector with entries
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g—1
A(j) = / hghgo1c(B*) Y j"
M, n=0

g1

(for a fixedg), B is the infinite lower-triangular matrix with entries
B, j) = (—1)"”]'"-1(’.)
J

forl < j < i, D isthe infinite diagonal matrix with entries

(k=D!  |Byl

Dk,k == 9
k0= Gerr—11 2

andV is the infinite vector with entrie¥ () = j2¢
One easily shows that the inverse Bfhas entriesB~(i, j) = (’j) 1-
for 1 < j < i. The theorem follows by writing ou#t = B~DBV and using

(I1B2g1/28) Py(k) = A(k)/k. O

The connection to the Stirling number formula in Section 0.8 is obtained from the
equation

(1) m -
2g 1+[ l| Z( 1)1 ( ) 2g+1 l.

m=1

5.2. NoNvaNISHING REsuLTs.  We present here the reformulations of four non-
vanishing results. All four are proved (from Theorem 3) by D. Zagier in the Appen-
dix. Equivalently, these are identities in the socle of the tautologicalRifig/,).
First, the leading coefficient iR, (k) is

1

C(kgfl’ Pg(k)) = m

(47)
Equation (47) is equivalent to Theorem 1 (providing an alternate proof that avoids
the KdV equations). The next highest coefficient is

-g(g—2)
322212 — NI’

in agreement with the prediction feg_s, in [F3]. Zagier has found generaliza-
tions of these combinatorial formulas for the coefficienk®&f' in P, (k) (for
fixed codegree).

Similarly, Bernoulli number formulas are found in the Appendix for the coeffi-
cient ofk’ in P,(k) for fixed degreé. The coefficient of the linear term iR, (k) is

(48)

C(k872, P(k)) =

Boy—
C(kY, Py(k)) = ﬁ (49)

in agreement with (9) and as previously calculatefHR2]. The quadratic coef-
ficient in Py(k) is



238 C. FABER & R. PANDHARIPANDE

—8 Bog2
k2, Py(k)) = ————5—=_ 50
CU2, Pyb) = 55— (50)
Equation (50) determines the evaluatiorwef,_3 for g > 3, and so it implies
Conjecture 2 in [F4].
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Appendix: Polynomials Arising from
the Tautological Ring

DoN Z AGIER

1. Statement of Results

For positive integerg andk, define

2g+1—1

(k=D!'1 m
= ;: DW’EX_V ( )@g+w—w @

(the inner sum here is a Stirling number). For examplekfer3 we have

1 228714 ¢
(2" 2g+D!
2(3% 1 4 22642 4+ 6g2 + g)

92g + 2)! '

A property of the functiorP, which is far from obvious—and which is false if the
number 2 — 1 on the right-hand side of (1) is replaced by an even number—is
that it is a polynomial irk for each fixedg; the first values are

3k —k %3 — 8k? + 2k

2’ o P30 = g BB 120960

This fact was discovered and proved by Faber and Pandharipande [FP] using an
indirect argument in which the coefficients of the polynomiBjék) were inter-
preted as intersection numbers of certain cycles in the moduli space of curves of
genusg. Here we will give a more direct combinatorial proof and will also ob-
tain alternative expressions for the polynomfalk) and explicit formulas for its
highest and lowest coefficients. The formulas for the coefficientsof, k=2,

k? andk® were quoted in Section 5.2 of [FP].

P,(D) = Py(2) =

P,(3) =

Py(k) = Pa(k) =

THeoreM 1. (i) For each integerg > 1, the functionP,(k) defined by(1) is a
polynomial of degreg — 1in k.
(ii) Write P,(k) = Y% ¢ c,.;k'. Then, for fixedj > Oandg > j, we have

(g—D!

Cog—j—1= mcj(é’), 2

where

g(g—2 g(g—3)(B5g?—9% +1)

Co(®) =1 Cu(g) =- g Cl)= 310
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and in generalC;(g) is a polynomial of degre; with leading coefficient
(—=1/9)7%j". ,

(iii) Forfixedi > Oandg > i +1we haver, ; = } ' _ovi j(g) B2, j—1, Where
Bn = By,/n! (B, = nth Bernoulli numbe) and y; ;(g) is a polynomial of degree
i — j. In particular (for g > 2),

8
c0=0, cp1= EﬂZg—Zv Cg2 = —Eﬂzg—z,

_8(g+2
-6

Parts (i) and (ii) of Theorem 1 are equivalent to the following amusing result. Let
us define numbera(g,n) (¢ > 1, n > 0) by

00 00 xk
X;A(g, nx" =e " kZO Pk)

1
Cg.3 Bog—2+ 2—4,32g—4-

or, equivalently, by
k

(=Dt k!
A(g,n)=;m&(k), Pg<k>=§(k_n)!A(g,n>. 3

THEOREM 2. The numbersi(g, n) vanish forn > g. Forn < ¢ — 1we have

A(g,n) = mcg—n—l(g —n—1, 4)
where
7h? + 5h 245h* + 594h3 + 28312 — 42h
Cih) =1 Cih) =—— Cith)= )
o(h) 1(h) 18 2(h) 3240

and in generalC(h) is a polynomial of degre@r in 4 with leading coefficient
(7/18)"/r!.

This theorem, as well as more general results concerning the numbers

n

(=" *
A,(g,n) = ————k7"P,(k > 0),
(g,n) ;k!(n_k)! (k) (v=0)
that are related to part (iii) of Theorem 1, will be proved in Section 3. For instance,
we have

2n! k=1 k

n—1 n
Ai(g,n) = ¢ﬂ2g—2 and Ax(g,n) = A(g, n)(g - Z 1-> %)
forn+2>g> 2
To state the remaining results, and for the proofs, we will need some more no-
tation. As in [FP], we writ&® (x", f(x)) to denote the coefficient af* in a power
seriesf(x) andh, (ay, ..., a;) = C(x", ]_[i:l(l— a;x)b) for the full symmetric
function of degree in variablesxy, ..., «;. FoOr any integen > 0, we define
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Sp(l) = C(x”, <exx— 1>1). (6)

For! € N we have the formulas

(”“) s(z)—l,Z( 1)/~ '"( ) L2, 0) = 6,

where@fﬁ, denotes the Stirling number of the second kirdnumber of parti-

tions of a set of: 41 elements intd nonempty subsets). In particular, equation (1)
can be written as

(k=D'1
P, (k) = E —_— l 7
(k) = 2 (k- DK S2g-1(0). (7)
However,S, (1) is a polynomial (of degree) in / whose first values are
! 32 +1 13 +12
So) =1 Si() > S2(0) T S3() 28

so it makes sense for any complex valué.dfor! = 0 we clearly haves, (1) =
Oforalln > 0. Forl = —1 we haveS, (/) = B, by definition, wheres, = B, /n!
as in Theorem 1; more generally, (1) for fixed negativéd is a finite combination
of Bernoulli numbers (Lemma 3), where the first three cases tmtd are

Spe-1(—1) =0, Spe1(—2) = —Pog-2, Se-1(—3) = 3(2g — 3)Poy-2

for g > 3. Using these numbers, we can now state a formulaPfar) as a power
series irv.

THeoReM 3. Define the functior$, (!) by equation(6). Then, for each integer
g > 1, we have

[e.0]

Sog_1(—r)t" 1
P(t)y=—) ———— eQ|[7]]. 8
o (1) §<1+r>---<r+t) i) ®)
In particular, the power series on the right-hand sidg(8f is in fact a polynomial
int.

This theorem gives an alternative definition of the polynomils). As with (1),
however, the polynomial property is not clear from this definition, and itis not true
if the index Z — 1 on the right-hand side of (8) is replaced by an even number.

The next result gives a closed-form expression for the generating function of
the P,(r) as an integral. This looks less elementary than the preceding results but
has the advantage of making it obvious ti®ats a polynomial.

THEOREM 4. Define a power serieg(x) by

_ sinhx/2 x/2 _ “n+1 "
Fx) = x/2 eXp(tanh)c/Z _1) N eXp<Z n Pux )

1 7 61
-1 LA 64 ... 9
+8x t 152" tamare T ©)
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Then theP,(r) are given by the generating function identity
o0 1 X
> pa = Sre’ [ Fo) . (10)
-1 0

The polynomiality of the functiong,(¢) follows immediately because we can
rewrite the generating series identity (10) in the form

$2 pecin (O pa(—1)

P = 22n+1)

n=0

wherep, () denotes the coefficient @? in F(x)’, which is clearly a polynomial
in ¢+ of degree:. Equation (10) is also equivalent to the following recursion for the
polynomialsP,.

THEOREM 5. The polynomialg,(¢) can be given recursively by the formulas

1 Gl
Py(t) = > Py(t) = 2;—_1 Z(Zn + DB Pn(t) (g=2). (1)
n=1

The final result describes the coefficients (which are actually the numbers of
interest, since it is they—and not the values of the polynomjat)—that occur

in [FP] as intersection humbers) via a generating series with respect to the vari-
able g rather than. We begin with the well-known fact that the inverse power
series oft = ye™ is given byy = Y_,_, k*"x*/k!. A simple generalization of

this states that the power series -

k—1—i
(ye )k (12)

Qi =D
k=1
is in fact a polynomial iny for every integei > 0; the first few values are

Oo(y) =y, 01(y) = —y -,
1n

3, 1 7
02(y) = —y —Zy +, Q3(y) = —y —%y +8y -

The polynomialsQ;(y) can also be defined and computed using the recursion

Yx —1
Qo(y) =, Qi+a(y) = / XTQ,'(X) dx (i >=0) (13)
0
or the generating function identity

tr—lyr

ZQ()’)f _Zm 14)

The following theorem provides yet another characterization of these polynomials
and a new generating function for the rational numlgrs
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THEOREM 6. (i) The polynomialQ; is, up to a constant, the unique polynomial
with constant tern®) and degree< i + 1 satisfying

Qi( a ) - Q’(exx—_l) = 0(x2i+l) (x — 0). (15)

l—e>*

(i) For all integersg > 1andi > 0, we have

The proof of this theorem will be given in Section 5.

2. Polynomials Defined by Functional Equations

We begin by giving two simple (and well-known) lemmas that will be used several
times in the sequel.

LemMma 1. Letr be a nonnegative integer and kebe a variable. Then

r

1 B Z (_1)r—m 1
2z—=1-(z—r) — m! (r—m)!z—m’
Proof. Compare residues on the two sides. O
LEmMA 2. Letz andy be two free variables. Then

o r o m
Z Y — e »_1
—iz=D--- (=0 m:Om!z—m'

Proof. The equality of the coefficients of is Lemma 1. Alternatively, we can
prove the identity directly by observing that it holds foe= 0 and that

9 . oo ( eyyrfz eyyrfzfl )
—(y"%e? - LHS) = —
8y(y ¢ ) ; z-+-(z=r) z---(z—r+2

d
=’y "= —(y 7%’ - RHY. 0
dy

We now prove several results showing that certain generating functions that are
a priori power series are in fact polynomials. We denotg.by, the ascending
Pochhammer symbal(x + 1) --- (x +n —1).

ProrosiTiION 1. Foreachn > 0, there is a unique polynomid, (z, y, ¢) in three
variables of degree — 1 satisfying the identity

n

(Z - t)Bn(Z’ yv t) - an(Z - 17 yv t) = (Z)n - Z(Z)ym(t)n—nr (17)

m=0
ExampLES. For 0<n < 3, the polynomialsB, are given by
Bo=0, Bi=1 By=z+y+t+1
B3=+Dz+2D+(y+t)z+y+1)+y+3t.
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Proof of Proposition 1.The recursion is equivalent to the functional equation
(z—0B,y,t,u) —yBz—Ly,t,uy)=A—u)*—eAL—-u)"" (18)

for the generating functioB(z, y, t,u) = Y -, B.(z, y, t)(u"/n!). The solution
of this is

B(Z,y,tyu)=(1_“)7IBO(Z_I’)’,”)» (19)
whereBo(z, v, u) (= B(z, y, 0, u)) satisfies the simpler functional equation
ZBo(z, y,u) —yBo(z =L y,u) = L—u)™* — . (20)
Write Bo(z, y, u) as)_,.o B-(z, w)y". Then (20) is equivalent to
[ A=-wT -1 if r=0,
b2 = Br_1(z—=Lu)—u"/r! if r >0,
which can be solved by induction erto give the closed formula
(1_ M) z+r u'"s
r\<, = - . 21
Br(z, u) P oS p— Zz(z—l) PR — (21)
Using Lemma 1, we can rewrite (21) as
B r (_1)r—m (1_ M)_Z+r _ (1_ u)r—m
'Br(z’u)_r;m!(r—m)! z—m
or, going back to the generating functi, as
1—w)y=sm 1
B =y —( : 22
0z y.u) =e¢ Z - (22)

Substituting this into (19) gives the generating seBiés y, ¢, ) in the form

_ z+m _ —t
Bz, y, t,u) =e’“ Z Y dow (1' “) . (23)
Z—m—

To see that the coefficients of this with respect:tare polynomials, we rewrite
(22) as

% m u
Boz, y.u) =’y y_|/ A—v) "
m—0 m: Jo

= / L—v)y e ay
0

_S S gy
0

parpar: plq!
B i i (z + 1), yturta+l .
N (p+q+1)!

p=0 ¢=0
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(the last equality by Euler’s beta integral). Now substituting this into (19) and us-
ing the binomial expansion @1 — «)~’ yields the explicit polynomial expression

n
Bu(z,y,1) = E <l)(z—l+1)p(t)zyqEZ[z,y,t]- (25)
p.q.1=0
p+q+i+l=n U

Of course, we could have simply written down (25) and checked that it satisfies
the identity (17); we gave the full derivation for clarity and because some of the
formulas found along the way will be needed in what follows. In particular, from
(24) and (19) we obtain the integral representation

Bz, vy, t,u) = (1— u)—f/O (1 — v) T LY gy (26)

and from (21) and (19) (or (23) and Lemma 2) we have the generating function
identity

i @A —u)~tryr

B(Z’y,f,u)zz(Z_t)...(z—l‘—r)

—1—-u)" e“YZ —— z—t—r) (27)

This can also be obtained from (26) by writirfg = — fu +f01 (for Rz — 1) <
0).
We now consider the specialization of these functions to the gase-¢.

ProrosiTION 2. For eachn > 0 there is a unique polynomizﬁ,, (z, 1), inzand
t, of degred (n — 1)/2] in ¢, satisfying the identity

(= 0By(z. ) +tBy(z = 1.1) = (1) — Z(Z)(—r)"’(mm. (28)

m=0
ExampLES. For 0<n < 4 we have
Bo=0, Bi=1 Bo=z+1 B3=2+@c+D2 Bs=3+3)t+(z+Ds.

Proof. Since (28) is just the specialization of (17) o= —¢, its solution is of
course given simply bﬁn(z, t) = B,(z, —t, t); what we have to show is that the
degree with respect todrops by a factor of 2 under this specialization. To do this
we expandl— v)~¢~Lin the integral representation (26) by the binomial theorem
and change to uv to obtain

1—
B(z, —t,t,u) = E <Z —: r)ur"’l/ vr|: 1 uuv e”v_”:| dv.
0 _

r=0

The expression in square brackets has a power series expansiopeiin-
ning 1+ O(u?), so the integrand is a power seriestirf andu. It follows that
B(z, —t, t, u) is u times a power series i? andu and hence that the coefficient
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B,(z, 1) of u" has degree< (n —1)/2 int for everyn, as claimed. Specifically,
from the expansion

1-wv ,,_, 2, um m
— =exp(2?(1—v ))

m=2

we find the closed form
B,(z,1)

2+ phatha+ 1 - -
= | va—vdka— ¥k au,
Z“zo ( r )2k2k2!3k3k3!"'/0 vATERA T

rk2, k3, .
r+2ko+3k3z+--=n—1
from which the coefficients of, can be computed explicitly. In particular, we
see thal 4+ 2m < n — 1 for all monomials;‘+™ occurring inén and that, in the
case of equality, the coefficient of this monomial comes only from the tesm
I, ko = m, k3 = k4 = --- = 0in the above sum and equals the beta integral
[3ul@ = vd)™ dv/2m 1t m). O

Now comes the second point. The specializatiea —r had the effectin the above
proof of making the linear term in the power series expansiofEgf )'e—@-v
vanish, but it also has a second, less obvious effect: if we denoté(by the
power series
Ulx) =1 x X x? x4
S el R TR 7T R

then we have
e et —1 X X

= ex ——1) = F(x), 29
1—u  xe¥/? p(ex—l+2 ) ) (29)

whereF(x) is the power series defined in Theorem 4 and is\a@nfunction ofx.
This leads immediately to the following definition and proposition.

u=Ux) =

ProrosiTioN 3. For each positive integeg, the function

Py(z, 1) == C(x*7 B(z, —t,1, U(x)) (30)
is a polynomial of degreBg — 2in z andg — 1in ¢, and it satisfies the identities
(2 =) Py(z,1) + 1Py(z — 1, 1) = S2,_1(2) (31)

and

P = 3 I DCD e ol (32)

G- (z—t=1)

Proof. Equation (31) follows by substituting= — andu = U(x) into the gen-
erating series identity (18), since the second terfi(1 — u)~' on the right is an
even power series in by virtue of equation (29), while the coefficient.ofs—tin
the first term(1 — u)~° is Sz,—1(z) by definition. Similarly, equation (32) is ob-
tained by substituting = —r andu = U(x) into (27) and noting that the second
term is an even power seriesin O
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3. Proof of Theorems 2-5

We begin with Theorem 2. From (3) and (7) we have

(_1)n—kk—l—l
A(g,n) = Z mSzg,l(l).

1<I<k=<n

For fixed!, the coefficient of§,,_1(7) can be rewritten as

n

=D -1 R (=pr* 1
Z(n—k)!(k—l)!k _C<I’Z(n—k)!(k—l)!k—t>

k=l k=I

_1\n—!
¢+ (-1
m—t)n—t-=1D---(I—1)
(the latter by Lemma 1 with = n —/ andz = n —t); so, replacingbyr =n — [,
we have

n—1

_ n Szé’—l(n - r)(_t)r
A(g’”)_c<t’;(n—z)(n—z—l)-.-(n—r—t)>‘ 33)

The key observation is now that, if we replace the summation on the right by one
fromr = 0tooo, thenits value does not change: the termsn andr = n+1con-
tribute nothing becaus®,_1(0) = S,_1(—1) = 0, and the terms with > n + 2
contribute nothing because the rational functigtet-#)(n —t —1) - - - (n—t —r)

has only a simple pole at= 0 and hence its product witli has no coefficient of

t". Hence equation (32) gives

A(g.n) = C(1", Py(n, 1)).

This proves the vanishing of(g, n) for n > g (sinceP,(z, t) is a polynomial of
degree< g — 1lin¢ for all z) and hence also tha, (k) is a polynomial ink of de-
greeg — 1. The statement (4) about the values of the numbégs »n) for g — n
fixed can be proved by using the integral representation of the generating function
B(z, —t, t, u), but since the argument is similar to the one we shall give for equa-
tion (2) (to which (4) is in fact equivalent), and since the statement about the form
of the A(g, n) was included only for amusement, we omit the derivation.

We now turn toA, (g, n). The same argument as used to derive (33) gives

n—1

s S2g—1(n — 1) (=1)’
Au(g’”)—c(t ’g(n—t)(n—t—l)“'(n—r—t))

for anyv > 0, but now changing the sum to one overat- 0 does change the
right-hand side, since the terms= n + 1 + 1 of the sum have nonzero coeffi-
cients oft” for 1 < u < v. Equation (32) therefore now gives

Ay(g,n) = C"™, Py(n, 1))
_of (=" \ Spea(—pu —Dr* )
C<t’(n—l‘)~'~(1—t)Z(1+t)...(u+l+t) :

u=1
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Again the first term vanishes farsufficiently large(n > g — v), so for smallv

we obtain explicit formulas for; two examples were given by equation (5). By
analyzing these formulas we could deduce the statement in part (iii) of Theorem 1
about the lowest coefficients @ (k). But it will be easier to work directly with
P,(k), using the following result.

ProposITION 4.  For each positive integet, the polynomialsP,(z, 1) defined by
(30) satisfy the identity

k

k—1)!
=1 ’

In particular, the functionp, (k) defined byl) is equal to the polynomia®, (0, k).

Proof. We prove this by induction ok: settingz = ¢ in (31) gives the case=1
of (34), and setting = ¢ — k in (31) gives the induction step fromto k +1. [

The remaining results stated in Section 1 follow easily from the last statement of
Proposition 4. Theorem 3 is obtained immediately by taking O in equation
(32). For Theorem 4, we first use the integral representation (26) to write

e\ 4 e '\ dv
B(O’_t’t’”)=<1—u>/o(1—v> T

Now making the substitutions = U(x) andv = U(y) and using equation (29),
we have

ey U
B, —t,t,U(x)) = F sz UGN
( (x)) (x) 5 (y) 0 y
But Vo) -
y) e’ 1.1 o
1-U(y) e -1 y 2 + (odd power series iry),
o)

B, —t,t,U(x)) = %F(x)t/ F(y)~"dy + (even power series im).
0

Equation (10) now follows from the equalit),(r) = P,(0, ¢) and the definition

of P,(z, t). Finally, the recursion (11) is, as already stated in Section 1, equivalent
to equation (10): If we denote B} (x, 7) the generating function occurring on the
left-hand side of (10), then

P, 1)  F'(x)
o F P, x), (35)
and this is seen to be equivalent to (11) by substituting
F'(x)
F(x) —

1 a
10 5= F(x)’—8 (F(x)™'B(t, x)) =
X

> @n+ DB xt

n>1

from (9) and comparing the coefficients.of¢~2 on both sides.
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4. Proof of Theorem 1

We now know, from Proposition 4 or from Theorem 4 or 5, tRgtk) is a polyno-

mial. It remains to prove the statements made in Theorem 1 about the coefficients
Cq.0—j—1 (J fixed) ande, ; (i fixed). We start with the “top” coefficients, ,— ;1.
Writing y = vx in (10) we find

o0 1 00
Z Py(t)x%72 = % / exp(ZA,tx’(l— v’)) dv,
g=1 0 r=1

wherei, = C(x?", log F(x)) = (1+ 1/2r)B,,. Expanding the integral as in the
proof of Proposition 2 and comparing the coefficientstéf~2¢~/~1 on both
sides, we find that

Cg.g—j-1
1 29 )\‘/5 )\}’ 1
== 217278 | - v)*A—vHPA— O - dv
2 T TR
Ol,ﬂ, >
wr 2B 3 g1
B+2y+-=j
1 3 I PR 2
=5 ———— | A=v)*TH; 4(v) dv
2. (g—d -1 /0 '
j<d<2j
with
25 A5 )
Hjqa(x) = Z F;"'(l-l-x)ﬁ(l—i-x—i-x)”o-o.
wpyazo PV
,f;_;.zy};_...:j
2p+3y+-=d

This can now be computed by expandifig,; as a polynomial and computing
each termfol(l— v2)¢~7~1y?" 4y as a beta integral, and can easily be seen to have
the form (2) for some polynomial’;(g). The highest power of occurs for the
maximal valuel = 2j, corresponding to taking = j andy = --- = 0. Also, to
compute the coefficient of the highest powergolve may replaced; ,(x) by its
constanttern#; ;(0), since the main contribution to the integral folarge comes
from v near 0 and since the asymptotic valuefétl— v2)¢ I ldy is C(g) =
2252(g — 1)!1?/(2g — 1)! (independent ofj) by the beta integral formula. It fol-
lows that the asymptotic formula fog ,_;_1 is

Cle M7 @) @M, @h/1)

2 @-2j-l 1 22e-m® T
and this agrees with the result stated in Theorem 1 bedausel/8 and 2., /A2 =
—2/9. One can also prove equation (2), and obtain explicit recursion relations for
the polynomialsC;(g), from the recursion relation given in Theorem 5. The de-
tails are left to the reader.

Forthe “bottom” coefficients, ; (i fixed) we use the expansion (8) together with
the following lemma, which expresses the “negative Stirling numbgys™r) for
r fixed as finite linear combinations of Bernoulli numbers.

Cgg—j—17
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LemMma 3. Forn > r > 1we have the identity
r—1 n— j _1
Su(=r) =Y (= Sj(—1) B
(=r) j=0( ) (r_]._l) i (—1)Bn—j

Proof. One sees by induction that the powers of the functj@a“l— 1) are linear
combinations of its derivatives. From the formulas

1 ’ d 1
( 1) = ;Sr—d—r)x—s +01) (x—0)

eX_

(_l)sfl dsfl 1 B 1 1 > 1 -1 s
(s — 1! dxsl<ex - 1) = tED ;<s - 1)’3““ ’

we deduce that

< ) Zsr o= r)( + (=D 12( )ﬂzx’—f>;

the desired result follows by comparing coefficientstf” on both sides. O

and

Part (iii) of Theorem 1 follows immediately from (8) and Lemma 3. Explicitly,
we have

i i+1 "y ] _ 2

j=0 *r=j+1
where
1 (=" 1 1
n = " 5 = hn ey — 36
) C<t (l+t)~~(r+t)) r! <L2 r) (36)
and the coefficient of»,_;_1 is a polynomial of degree— j in g. O

5. The PolynomialsQ;(y) and the Second
Generating Function for the ¢y ;

In this section we will discuss the polynomials defined by equations (12)—(14) and
prove Theorem 6. We must first check that the power series in (12) is indeed a
polynomial of degreé+ 1 and that the three definitions are indeed equivalent. For
the first statement, note thatif> i 4+ 2 then

n - kk_l_i ( k)n - n—k n—1—i
O 0N =3 ~—k),=—Z< 1) ()k o

k=1

(thenth difference of a polynomial of degree n vanishes). For the second, note
that the system of integral recursions (13) is equivalent to the system of differential
recursions

Qo) =y, Y0 a(M=G-D0i(y) (=0 (37)
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(no initial values are needed here because(ihe 1)th equation in this system
implies thatQ;,1(0) = 0, which is the needed initial condition to solve tié
equation). It is easy to check that the functions satisfied by (12) or by (14) both
satisfy the system (37), so they are all equal. We can write out (14) more explic-
itly as

i+1

Qi(y) =Y iy, (MY, (38)
r=1

with «, (r) defined by (36). It is obvious that these numbers satigfy — 1) =
ra, (r)+a,-1(r), and this is equivalent to the statement that the polynomials given
in (38) satisfy (37).

Now setY(x) = x/(1—e*) and 0i(x) = 0;(Y(x)). Then (37) gives

~ Y -1~
0} () = Y’(x)%@(x) =y (1) Qi(). (39)

Yet an easy calculation shows that the functiqn) is nothing other than the log-
arithmic derivativeF'(x)/F(x) of the function defined in (9). In particular it is an
odd function ofx, so that from (39) we deduce that also

d = ~ ~ ~
7 (Qi(x) = Qiga(=x)) = ¥ (x)(Qi(x) — Qi(=x)). (40)

This equation and the fact th@t(x) — Q;(—x) vanishes at = 0 imply by induc-

tion oni thatQ;(x) — Q:(—x) vanishes to orderi2+ 1 at the origin for ali > 0,

which is the first assertion of Theorem 6. (The uniqueness statement follows im-
mediately from the existence, since the polynom@és Q;, ..., Q; form a basis

for the space of polynomials of degreei + 1 with no constant term.) Equation
(16), which can be written as the generating function identity

23 Pt)x*7 =) " (Qi(x) — Qi(—x)t, (41)
g=1 i=0

follows at the same time, since the differential equation (40) is equivalent to the
differential equation in (35) for the generating serf€sP,(t)x2~1 or to the re-
cursion (11) for its coefficients. O
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