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Introduction

The purpose of this note is to establish a “subadditivity” theorem for multiplier
ideals. As an application, we give a new proof of a theorem of Fujita concerning
the volume of a big line bundle.

Let X be a smooth complex quasi-projective variety, anddie an effective
Q-divisor onX. One can associate 1 its multiplier ideal sheaf

J(D)=JX, D) < Ox,

whose zeros are supported on the locus at which the(Faip) fails to have
log-terminal singularities. It is useful to think gf(D) as reflecting in a some-
what subtle way the singularities &f: the “worse” the singularities, the smaller
the ideal. These ideals and their variants have come to play an increasingly impor-
tantrole in higher-dimensional geometry, largely because of their strong vanishing
properties. Among the papers in which they figure prominently, we might mention
[2; 4; 8; 13; 14; 19; 30; 33; 34]; see [6] for a survey.

We establish the following “subadditivity” property of these ideals.

THEOREM. Given any two effectiv@-divisors D; and D, on X, one has the
relation

J(D1+ D2) € J(Dy) - T(D2).

This theorem admits several variants. In the local setting, one can associate a mul-
tiplier ideal 7(a) to any ideakh € Oy, which in effect measures the singularities
of the divisor of a general element @f Then the statement becomes

J(a-b) € J(a)- J(b).

On the other hand, suppose tiais a smooth projective variety and thiats a big
line bundle onX. Then one can define an “asymptotic multiplier ided\|L|) <
Oy that reflects the asymptotic behavior of the base loci of the linear détigs
for largek. In this setting, the theorem shows that
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JImL]) < JALID™.

Finally, there is an analytic analog (which in fact implies the other statements):
one can attach a multiplier ideal to any plurisubharmonic functio® amd then

J@+v) ST - TW)

for any two such functiong and+. The theorem was suggested by a somewhat
weaker statement established in [7]. Esnault and Viehweg had proven some re-
lated statements by similar arguments (see [16]).

We apply the subadditivity relation to give a new proof of a theorem of Fujita
[17]. Consider a smooth projective varietyof dimensior: and a big line bundle
L on X. Thevolumeof L is defined to be the positive real number

I

(L) = lim sup%ho(x, O(kL)).
k—o00

If L is ample then(L) = [, c1(L)", and in general (as we shall see) it measures

asymptotically the top self-intersection of the “moving part”|éf.| (Proposi-

tion 3.6). Fujita has established the following.

THEOREM [17]. Given anye > 0, there exists a birational modification
w:X'=X, — X

and a decompositiopn*L = E, + A, whereE = E, is an effectiveQ-divisor

andA = A, an ampleQ-divisor, such tha{A") > v(L) — &.

This would be clear if. admitted a Zariski decomposition, so one thinks of the
statement as a numerical analog of such a decomposition. Fuijita’s proof of this the-
orem is quite short but rather tricky. We give a new proof using multiplier ideals,
which (to the present authors at least) seems perhaps more transparent. An out-
line of this approach to Fujita’s theorem appears also in [7]. We hope that these
ideas may find other applications in the future.

The paper is divided into three sections. In the first, we review (largely without
proof) the theory of multiplier ideals from the algebro-geometric point of view,
and we discuss the connections between asymptotic algebraic constructions and
their analytic counterparts. The subadditivity theorem is established in Section 2,
via an elementary argument using a “diagonal” trick as in [8]. The application to
Fujita's theorem appears in Section 3, where we deduce as a corollary a geometric
description of the volume of a big line bundle.

We thank E. Mouroukos for valuable discussions. We are especially delighted
to have the opportunity to dedicate this paper to William Fulton on the occasion
of his sixtieth birthday. His many contributions have done much to shape con-
temporary algebraic geometry. The third author in particular—having been first a
student and being now a colleague of Bil's—has learned a great deal from Fulton
over the years.

0. Notation and Conventions

(0.1) We work throughout with nonsingular algebraic varieties defined over the
complex numberg.
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(0.2) Ingeneral, we do not distinguish between line bundles and (linear equiva-
lence classes of) integral divisors. In particular, given a line buhdiee write

Ox (L) for the corresponding invertible sheaf &n and we use additive notation

for the tensor product of line bundles. WhEris a smooth varietyky denotes as
usual the canonical divisor (class) &n

(0.3) We write= for linear equivalence dp-divisors: two such divisor®;, D,
are linear equivalent if and only if there is a nonzero integesuch thatnD; =
mD> in the usual sense.

1. Multiplier Ideals

In this section we review the construction and basic properties of multiplier ideals
from an algebro-geometric perspective. For the most part we do not give proofs;
most can be found in [10; 11; 16, Chap. 7; 19]; a detailed exposition will appear
in the forthcoming book [24]. The algebraic theory closely parallels the analytic
one, for which the reader may consult [5]. We also discuss in some detail the re-
lationship between the algebraically defined asymptotic multiplier id€é|<.|))
associated to a complete linear series and their analytic counterparts.

Let X be a smooth complex quasi-projective variety, andllebe an effec-
tive Q-divisor onX. Recall that dog resolutionof (X, D) is a proper birational
mapping

w: X' — X

from a smooth varietyk’ to X having the property thai*D + Exc(u) has sim-
ple normal crossing support, where Exg is the sum of the exceptional divisors
of u.

DeriniTION 1.1.  Themultiplier ideal of D is defined to be
J(D) = J (X, D) = n..Ox (Kxyx — [1*DD). @)

HereKy x denotes the relative canonical diviskix: — n*Kx and, as usual A]

is the integer part or round-down of@divisor F. That 7(D) is indeed an ideal
sheaf follows from the observation th&i(D) € u.Ox (Kxyx) = Ox. Anim-
portant point is that this definition is independent of the choice of resolution. This
can be verified directly, but it also follows from the fact tatD) has an analytic
interpretation.

Using the same notation as in [7], we take a plurisubharmonic fungtiand
denote by 7(¢) the sheaf of germs of holomorphic functiogison X such that
f|f|2e*2¢ dV converges on a neighborhood of the given point. By a well-known
result of Nadel [30],7(¢) is always a coherent analytic sheaf, whatever the sin-
gularities of¢ might be. In fact, this follows from Hérmanderls® estimates [1;

18; 20] for thed operator, combined with some elementary arguments of local al-
gebra (Artin—Rees lemma). We need here a slightly more precise statement that
can be inferred directly from the proof given in [30] (see also [4]).

ProrosiTION 1.2. Let ¢ be a plurisubharmonic function on a complex manifold
X, and letU C X be a relatively compact Stein open suliséth a basis of Stein
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neighborhoods ot/). Then the restrictio7 (¢) | v Is generated as a@;-module
by a Hilbert basig f) e Of the Hilbert spacé{?(U, ¢, dV') of holomorphic func-
tions f on U such that

/|f|2ef2<l5 dV < +oo
U

(with respect to any Kéhler volume fort¥ on a neighborhood ot/).

Returning to the case of an effecti@divisor D = > a;D;, let g; be a local
defining equation foD;. Then, if ¢ denotes the plurisubharmonic functign=
> a;log|g;|, one has

J(D) = J(@),

and in particulat7 (D) is intrinsically defined. The stated equality is established
in [5, (5.9)]; the essential point is that the algebro-geometric multiplier ideals sat-
isfy the same transformation rule under birational modifications as do their ana-
lytic counterparts, so that one is reduced to the case whdras normal crossing
support.

We mention two variants. First, suppose we are given an ideal sheaDy.
By a log resolution oft we understand a mapping: X’ — X as before with the
property thatn - Oy, = Ox/(—E), whereE + Exc(u) has simple normal cross-
ing support. Given a rational number> 0, we take such a resolution and then
define

J(c-a) = u.Ox (Kxyx — [cE]);

again, thisis independent of the choice of resolution. (More generally, given ideals
a, b € Oy andrational numbers d > 0, one can defingZ((c-a) - (d - b)) by tak-

ing a common log resolution: X’ — X of a andb, with ;1 ta = Ox/(—E;) and

wb = Ox/(—E»), and setting7((c-a)-(d- b)) = 1. Ox' (Kxyx —[cE1+dE3]).)

If m € Z is a positive integer thel(m - a) = J(a™), and in this case these multi-
plierideals were defined and studied in a more general setting by Lipman [26] (who
called them “adjoint ideals”). They admit the following geometric interpretation.
Working locally, assume th& is affine, viewa as an ideal in its coordinate ring,
and takek > ¢ generalC-linear combinations of a set of generatgss..., g, €

a, yielding divisorsAy, ..., Ay C X. If D = £(A1+--- + Ay), then

J(c-a)=J(D). 2

In the analytic setting, wher& is an open subset df”, one has7(c - a) =
J(c-¢), whereg = log(|gil + - + |gp])-

The second variant involves linear series. Supposétlisa line bundle orX
and thatv ¢ HO(X, L) is a finite-dimensional vector space of sectiong ofjiv-
ing rise to a linear serig¥ | of divisors onX. We now require of our log resolution
w: X' — X that

wVI=IW|+E,

where|W| is a free linear series ok’ and whereE + Exc(u) has simple nor-
mal crossing support. In other words, we ask that the fixed locys'|0f| be a
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divisor E with simple normal crossing support (which, in addition, meets(lzxc
nicely). Given such a log resolution and a rational number0, we define

J(c-|V]) = u.Ox(Kxyx — [cE]),

where this is once again independent of the choice.df b = b(|V|) € Oy is
the base ideal ofV| then evidently7(c - |V]) = J(c - b), and in particular the
analog of equation (2) holds for these ideals.

We now outline the main properties of these ideals that we shall require. The
first is a local statement comparing a multiplier ideal with its restriction to a hy-
perplane. Specifically, consider an effecti@edivisor D on a quasi-projective
complex manifoldX, and a smooth effective divisdi c X that does not ap-
pear in the support ab. Then one can form two ideals dt. In the first place,
the restrictionD| 4 is an effectiveQ-divisor on H and so one can form its mul-
tiplier ideal 7(H, D|,,) € Oy. On the other hand, one can take the multiplier
ideal 7(X, D) of D on X and restrict it toH to obtain an ideal

J(X,D)-Oy € Oy.

Avery basic fact—due in the algebro-geometric setting to Esnault-Viehweg [16]—
is that one can compare these sheaves as follows.

REsTRICTION THEOREM. In the setting just described, there is an inclusion
J(H,D|,) S J(X,D) Oy.

One may think of this as asserting that “multiplier ideals can only get worse” upon
restricting a divisor to a hyperplane. For the proof, see [16, (7.5)] or [10, (2.1)].
The essential point is that the line bundlg: (Kx,x —[*D]) appearing in equa-
tion (1) has vanishing higher directimages undeiThe same result holds true in
the analytic case; namely,

J(H,¢|,) S T(X.¢) Oy

for every plurisubharmonic functiop on X (if ¢\H happens to be identically
equal to—oo on some component @f, one agrees thaf(H, ¢| H) is identically
zero on that component). In that case, the proof is completely different; it is, in
fact, a direct qualitative consequence of the (deep) Ohsawa—Takegoskien-
sion theorem [31; 32].

As a immediate consequence, one obtains an analogous statement for restric-
tions to submanifolds of higher codimension.

CoroLLARY 1.3. LetY C X be a smooth subvariety that is not contained in the
support of D. Then
J(Y.D|,) € J(X,D) - Oy,

whereD|, denotes the restriction ob to Y.

Of course, the analogous statement is still true in the analytic case, as well as for
the multiplier ideals associated to linear series or ideal sheaves.
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The most important global property of multiplier ideals is the following.

NADEL VANISHING THEOREM. LetX be a smooth complex projective variely,
an effectiveQ-divisor, andL a line bundle onX. Assume that. — D is big and
nef. Then

H'(X,0x(Kx +L)® J(D)) =0 fori>0.

This follows quickly from the Kawamata-Viehweg vanishing theorem applied on
a log resolution: X' — X of (X, D). Similarly, if V. c H%X, B) is a linear
series onX, with B a line bundle such thdt — ¢ - B is big and nef, then

H'(X,Ox(Kx +L)® J(c-|V])) =0 fori>0.

Under the same hypothesesy i€ Oy is an ideal sheaf such thBt® a is globally
generated, theW (X, Ox(Kx + L) ® J(c - a)) = 0 wheni > 0.

Nadel vanishing yields a simple criterion for a multiplier ideal sheaf to be glob-
ally generated. The essential pointis the following elementary lemma of Mumford,
which forms the basis of the theory of Castelnuovo—Mumford regularity. (We beg
the reader’s indulgence for the fact that we prefer to state the lemma using mul-
tiplicative notation for tensor products of line bundles, rather than working addi-
tively as we do elsewhere in the paper.)

LeEMMA 1.4 [29, Lecture 14]. Let X be a projective varietyB a very ample line
bundle onX, and F any coherent sheaf ok satisfying the vanishing
H(X,F® B®*)=0 fori >0 andk > 0.
ThenF is globally generated.
Although this lemma is quite standard, it seems not to be as well known as one

might expect in connection with vanishing theorems (Remark 1.6). Thus we feel
it is worthwhile to write out the argument.

Proof. Evaluation of sections determines a surjective mapl °(B) @c Ox —

B of vector bundles otX. The corresponding Koszul complex takes the form
o —> A°HYB)® B® 2 — A’H%B) @ B®!

— HB)® Ox — B — 0. (%)

Tensoring through by and then applying the hypothesis witk= 0 as one chases
through the resulting complex, one sees first of all that the multiplication map

HYB)® HYF) — HY%F ® B)

is surjective. Next tensdg) by F ® B and apply the vanishing hypothesis with
k = 1; it follows that H°(B) ® H°(F ® B) maps ontaH °(F ® B®?) and hence
that HO(B®?) @ HY%(F) — H%F @ B®?) is also onto. Continuing, one finds
that

HOX, F)® H(X, B®™") — H%X, F @ B®™) (%)
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is surjective for alln > 0. But sinceB is very ample,F @ B®" is globally gen-
erated forn >> 0. It then follows from the surjectivity ofxx) thatF itself must
already be generated by its global sections. (A similar argument shows that the
casek = 0 of the vanishing hypothesis actually implies the cdses1, but for
present purposes we don’t need this.) O

CoroLLARY 1.5. In the setting of the Nadel vanishing theorem,Bebe a very
ample line bundle oX. Then

Ox(Kx + L +mB) ® J(D)
is globally generated for aliz > dim X.

Proof. In fact, thanks to Nadel vanishing, the hypothesis of Mumford’s lemma
applies taF = Ox(Kx + L + mB) ® J(D) as soon as: > dim X. O

ReEMARK 1.6. This corollary was used by Siu in the course of his spectacular proof
of the deformation invariance of plurigenera [34], where the statement was estab-
lished by analytic methods. Analogous applications of Lemma 1.4 in the context
of vanishing theorems have appeared implicitly or explicitly in a number of papers
over the years (e.g. [12; 16; 21; 37], to name a few).

We next turn to the construction of the asymptotic multiplier ideal associated to a
big linear series. In the algebro-geometric setting, the theory is due to the second
author [9] and Kawamata [19]. Suppose tiat a smooth complex projective va-
riety and thatL is a big line bundle orX. Then H%(X, Ox (kL)) # 0 fork > 0

and therefore, given any rationat- 0, the multiplier ideal7(£|kL]|) is defined

for largek. One checks easily that

J(%'UCLI)EJ(ﬁ-kaLD (%)

for every integerp > 0. We assert that then the family of ideglg’( - |kL|)}

(k > 0) has auniqguemaximal element. In fact, the existence of at least one max-
imal member follows from the ascending chain condition on ideals. On the other
hand, if 7(£ - 1kL|) and.7 (% - [¢L]) are each maximal, then it follows tty) that

they must both coincide with’ (5 - [(k€)L]).

DEerINITION 1.7.  Theasymptotic multiplier ideal sheadssociated to and|L|,
J(e- L) = TX, c- LD,

is defined to be the unique maximal member of the family of idg&lé: - |kL|)}
(k large).

One can show that there exists a positive intégesuch that7(c - |[L|) =
J(£-1kL]) foreveryk > ko. Itfollows easily from the definition thaf (m-|| L)) =
J(|lmL]) for every positive integer: > 0. (In fact, fixm > 0; then, forp > 0
we have7(|mL|) = J(% - ImpLl) = J(2 - ImpLl) = J(m - |IL]).)

The basic facts about these asymptotic multiplier ideals are summarized in the

following theorem.
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THEOREM 1.8. LetX be a nonsingular complex projective variety of dimension
n, and letL be a big line bundle oX.

(i) The natural inclusion
HO(X, Ox(L) ® J(ILI)) — H°(X, Ox(L))

is an isomorphismthat is, 7 (|| L||) contains the base ide#l(|L|) ¢ Oy of
the linear seriesL|.
(if) For any nef and big divisoP, one has the vanishing

H'(X,0x(Kx + L+ P)® J(I|LI)) =0 for i >D0.

(iii) If Bisvery ample, the@x(Kx + L+ (n+1)B)® J(||L|) is generated by
its global sections.

Of course, the analogous statements hold witteplaced byn L.

Proof. The first statement follows easily from the definition. For (ii) and (iii),
note that7(||L|) = J(D) for a suitableQ-divisor D numerically equivalent to

L. This being said, (ii) is a consequence of the Nadel vanishing theorem while
(iii) follows from Corollary 1.5. O

ReEMARK 1.9. The definition of the asymptotic multiplier idedl||L||) requires
only thatx (X, L) > 0, wherex (X, L) is the Kodaira—litaka dimension df;
Theorem 1.8 remains true in this setting. Whens big—as we assumed for
simplicity—the proof of Nadel vanishing shows that it suffices in statement (ii)
that P be nef, and hence in (iii) one can replace the fattot 1) by n. However

we do not need these improvements here.

Finally we discuss the relation between these asymptotic multiplier ideals and
their analytic counterparts. In the analytic setting, there is a concept of singu-
lar hermitian metridz i, with minimal singularities (see e.qg. [6]), defined when-
ever the first Chern clags(L) lies in the closure of the cone of effective divisors
(“pseudoeffective cone™); it is therefore not even necessaryti®at L) > O for

hmin to be defined, but only thdt be pseudoeffective. The metrig,, is defined

by taking any smooth hermitian metrig, on L and puttingiimin = h e ¥mex,
where

Ymax(x) = SUP{Y(x); Y usG ¢ <0, i(3d10g/a + ) > O}
For arbitrary sectionsy, ..., oy € Ho(X, kL), we can take
1
() = 7log Y _lloy(lii, — €
J
as an admissiblg function. We infer from this that the associated multiplier ideal

sheaf7(hmin) satisfies the inclusion

JAUILD € T (hmin) 3)
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whenk (X, L) > 0. The inclusion is strict in general. In fact, let us takeo be a
unitary flat vector bundle on a smooth vari€tysuch that no nontrivial symmet-
ric power of E or E* has sections (such vector bundles exist already whena
curve of genus> 1), and sety = O¢ & E. We take as our examplg = P(U)
andL = Op)(D). Then, for everyn > 1, Ox(mL) has a unique nontrivial sec-
tion that vanishes to ordet along the “divisor at infinity’H c P(U) = X, and
hence7(||L||) = Ox(—H). However,L has a smooth semipositive metric in-
duced by the flat metric of, so that7 (hmin) = Ox. Itis somewhat strange (but
very interesting) that the analytic setting yields “virtual sections” that do not have
algebraic counterparts.

Note that, in the example just presented, the line bundias litaka dimenson
0. We conjecture that if. is big then equality should hold in (3). We will prove
here a slightly weaker statement by means of an analytic analog of Theorem 1.8.
If ¢ is a plurisubharmonic function then the ideal shea¥¢€l + ¢)¢) increase
ase decreases to 0; hence there must be a maximal element, which we denote
by J. (¢). This ideal always satisfieg, (¢) € J(¢). Wheng has algebraic sin-
gularities, standard semicontinuity arguments show thai) = J7(¢), but we
do not know if equality always holds in the analytic case.

THeorEM 1.10. Let X be a nonsingular complex projective variety of dimension
n, and letL be a pseudoeffective line bundle ¥n(Recall that the pseudoeffective
cone is the closure of the cone of effective divisor¥orFix a singular hermitian
metrich on L with nonnegative curvature current.

(i) For any big and nef divisoP, one has the vanishing
H'(X,Ox(Kx + L+ P)® Jy(h)) =0 fori > 0.

(i) If B is very ample, then the sheav@s(Ky + L + (n + )B) ® J(h) and
Ox(Kx + L + (n+1B) ® J.(h) are generated by their global sections.

Proof. (i) is a slight variation of Nadel's vanishing theorem in its analytic form. If
P is ample, the result is true withi (k) as well as with7, (k) (the latter case being
obtained by replacing with 217¢ ® h_¢, whereh , is an arbitrary smooth metric
on L; the defect of positivity oh ., can be compensated by the strict positivity of
P). If Pisbigand nef, we can write = A+ E with an ample)-divisor A and an
effectiveQ-divisor E, andE can be taken arbitrarily small. We then have vanish-
ingwith 7, (h®hg), wherehg is the singular metric of curvature curret]on E.
However, ifE is so small thaU(hg) =0Ox (N > 1),wedohave7, (h®hg) =
J.(h), as follows from an elementary argument using Holder’s inequality.
Statement (ii) follows from (i), Nadel vanishing, and Lemma1.4. Alternatively,
one can argue via a straightforward adaptation of the proof given in [34], based on
Skoda’sL? estimates for ideals of holomorphic functions [35]. O

THeoreM 1.11. Let X be a projective nonsingular algebraic variety,a big nef
line bundle onX, andhn, its singular hermitian metric with minimal singularity.
Then

j+(hmin) - j(“L”) - j(hmin)~
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Proof. The strong version of the Ohsawa-Takegdshextension theorem proved
by Manivel [27] shows that, for every singular hermitian line bundleh) with
nonnegative curvature and for every smooth complete intersection subvardety
X (actually, the hypothesis th&tis a complete intersection could probably be re-
moved), there exists a sufficiently ample line bun8lland a surjective restriction
morphism

HO(X, Ox(L + B) ® J(h)) — HO(Y, Oy(L + B) ® J(h|,))

with the following additional property: For every section Birthere exists an ex-
tension satisfying arL.? estimate with a constant depending only Br{hence,
independent ol.). We takeY equal to a smooth 0-dimensional scheme obtained
as a complete intersection of hyperplane sections of a very ample linear system
|A|, observing thatB depends only oA in that case (and hence can be taken
independent of the choice of the particular 0-dimensional scheme). Fix an inte-
gerko so large thatt := koL — B is effective. We apply the extension theo-
rem to the line bundle” = (k — ko)L + E equipped with the hermitian metric
h’r‘,{i,fo ® hg with curv(hg) = [E] (and a smooth metrikg of positive curvature on

B). Then, fork > ko and a prescribed pointe X, we select a 0-dimensional sub-
scheme containingx and in this way obtain a global sectiepof Ho(X, kL) =
HOX, L'+ E + B) such that

2 .
‘/;(”O—X(Z)”hi‘;"{‘OQQhE@hB < C while ”o'x(x)“h’r‘n_"{‘0®hE®hB =1

From this we infer that locallif i, = e=2¢ with | (x)|%e2k—k0)¢()+26£+00) —
1, hence
1

k —ko

HV) + —— i < ——logloy(1)| + C < log) "lgj(x)| +C

X Oyx(X = (X )
Kk F Sk ko 0 g/_ &

where(g;) is an orthonormal basis of sections BP(X, kL). This implies that
J(||k])) contains the ideall (hmin ® hé/(kfk")). Again, Holder’s inequality shows
that this ideal containg’, (hmin) for sufficiently largek. O

2. Subadditivity

The present section is devoted to the subadditivity theorem stated in the Introduc-
tion as well as some variants.

Let X; and X, be smooth complex quasi-projective varieties, andigtD, be
effectiveQ-divisors onXi, X,, respectively. Fix a log resolution; : X — X;
of the pair(X;, D;), i =1, 2. We consider the product diagram

;o a , ;92 ,
X «— XixX;, — X;

}Lll lulxltz l/tz

X]_ <« X]_XXZ —_—> Xz,
p1 p2

where the horizontal maps are projections.
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LeEmMA 2.1. The productus x po: X{ x X; — X1 x X is a log resolution of
the pair
(X1 x X2, p1D1+ p3D2).

Proof. Since the exceptional set Exe¢; x ) is the divisor where the derivative
d(pu1x ) drops rank, one sees that Exg x p2) = g3 EXc(p1) +¢q5 EXc(u2).
Similarly,
(n1 x p2)*(piD1+ p3D2) = qipiD1+ g5 u5Da.
Therefore,
Exc(uy x p2) + (1 x w2)*(piD1+ p5D2)
= q7(Exc(uy) + u1D1) + g5(Exc(uz) + pnrD2);
this has normal crossing support because(xg+ i D1 and Exquz) + u3Do
do. O

ProposITION 2.2. One has
J(X1 % Xz, piD1+ p3D2) = pi~J(X1, D1) - p;~T(X2, D2).

Proof. To lighten notation we will writeD, B D, for the exterior direct sum
piD1+ p3D», so that the formula to be established is

J(X1 x X2, D18 D3) = pi*J (X1, D1) - p; T (X2, D2).

The plan is to compute the multiplier ideal on the left using the log resolution
w1 X uo. Specifically,

J (X1 x Xz, D1H D)
= (u1 X Hz)*oxl’xxé (le/xxé/xlxxz —[(n1 x p2)* (DL B D2)])~
To begin, observe that
[(11 x u2)" (D18 D2)] = [qin1D1] + [g3143D2]

because;uiD1 andgs ub D, have no common components. Furthermore, since
g1 andg, are smooth,

lginiD1] = qi[wiD1] and  [g5u5D2] = g5[n5D2].
Sincerl/X Xé/Xlx X, = C]I(le//xl) + q;(KXé/XZ)’ it then follows that

Ox;xx;, (le/xxé/xlxxg —[(p1 x n2)*(piD1+ p3D2)])
= q10x;(Kx;/x, — [111D1]) ® q530x,(Kx;/x, — [13D2]).
Therefore,
J(X1x Xp, D1H D)
= (u1 X MZ)*(C]ikoxl’(le’/xl —[uiD1]) ® qzoxé(Kxé/xz - [M;Dzl))
= pIMl*OXI’(KX{/Xl — [u1D1) ® P;Mz*oxé(Kxé/xz —[u5D2])
= piJ(X, D1) ® p5J(X, D2),
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thanks to the Kiinneth formula. But
piJ (X1, D1) = p;'J (X1, D1) and p3J(Xz, D2) = p3 T (X2, D2),
sincep; andp, are flat. Finally,
P T (X1, D1) ® p;" T (X2, D) = p1 T (X1, D1) - p5 T (X2, D2)

by virtue of the fact thapl‘lj(xl, D,) is flat for p, (cf. [28]). This completes the
proof of Proposition 2.2. O

The subadditivity property of multiplier ideals now follows immediately.

THEOREM 2.3. Let X be a smooth complex quasi-projective variety, andlet
and D be effective)-divisors onX. Then

J(X, D1+ D3) € J(X, D1) - (X, D2).

Proof. We apply Corollary 1.3 to the diagonal = X € X x X. Keeping the
notation of the previous proof (with; = X, = X andui = u2 = n), one has

J(X, D1+ D2) = J(A, (piD1+ p3D2)| )
C J(X x X, piD1+ p3D2) - Oa.
But it follows from Proposition 2.2 that
J(X x X, piD1+ p3D2) - O = J(X, D1) - J(X, D2),

as required. O

VARIANT 2.4. Let L be a big line bundle on a nonsingular complex projective
variety X. Then, for allm > 0,

JX, [ImLl) € JX, ILID™.
Proof. Givenm, fix p > 0 and a general divisaD € [mpL|. Then
JAILI = J(pimD) and J(|lmLll) = J(%D),
so the assertion follows from Theorem 2.3. O
VARIANT 2.5. Leta, b € Oy be ideals, and fix rational numbersd > 0. Then

Jc-a)-(d-b) ST -a)-Td-b).

Proof. This does not follow directly from the statement of Theorem 2.3 because
the divisor of a general element @f b is not the sum of divisors of elementsdn
andb. However, the proof Proposition 2.2 goes through to show that

J(X x X, (c-pra)-(d- py'0) = pi T (X, c-a) - p;J(X,d - b),

and then, as before, one restricts to the diagonal. O
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The corresponding properties of analytic multiplier ideals are proven in an analo-
gous manner. The result is the following theorem.

THEOREM 2.6 (Analogous analytic statements).

(i) LetX;, X, be complex manifolds and lét be a plurisubharmonic function
onX;. Then

T(@10 p1+¢20 p2) = pr T (¢1) - p3"T (¢2).
(i) LetX be a complex manifold and lét, v be plurisubharmonic functions on

X. Then
J@+v) S T@) - TW).

Proof. Only (i) requires a proof, since (ii) follows again from (i) by the restriction
principle and the diagonal trick. Let us fix two relatively compact Stein open sub-
sets,U; C X;andU, C Xo. ThenHZ(le Uz, p1op1+do0po, p1dVi® p5dV>)

is the Hilbert tensor product §¢2(Us, ¢1, dV1) andH2(U,, ¢, dV>), and it ad-
mits (f; X f;") as a Hilbert basis, wheref]) and (f;") are respective Hilbert
bases. Sincg (¢p10 p1+ P20 pz)|leL,2 is generated as afly, .y, module by the

(fi X £, we conclude that (i) holds true. O

3. Fujita’s Theorem

Now let X be a smooth irreducible complex projective variety of dimensicemnd
let L be a line bundle oX. We recall the following.

DerINITION 3.1. Thevolumeof L is the real number

|
v(L) = v(X, L) = lim sup%hO(X, O(kL)).
k— 00

(This was called thdegreeof the graded linear seri€p) H°(X, Ox (kL)) in [15],
but the present terminology is more natural and seems to be becoming standard.)

Thus, L is big if and only ifu(L) > 0. If L is ample, or merely nef and big, then
asymptotic Riemann—Roch shows that

kn
ho(X, Ox (kL)) = (L") + ok,

so that in this case(L) = (L") is the top self-intersection number bf If D is a
Q-divisor onX then the volume (D) is defined analogously, with the limit taken
overk so thatkD is an integral divisor.

Fujita’'s theorem asserts that “most of” the volumelo€an be accounted for
by the volume an ampl@-divisor on a modification.

THEOREM 3.2 [17]. LetL be a big line bundle orX, and fixe > 0. Then there
exists a birational modification

w: X' — X



150 J.-P. DEmMAILLY, L. EIN, & R. LAZARSFELD

(depending om) and a decompositiop*L = E + A (also depending os), with
E an effectiveQ-divisor andA an ampleQ-divisor onS’, such that

v(X',A) = (A" > v(X,L) —e.

Conversely, given a decompositipiiL = E + A asin Theorem 3.2, one evidently
hasv(X’, A) = (A") < v(X, L). So the essential content of Fujita’s theorem is
that the volume of any big line bundle can be approximated arbitrarily closely by
the volume of an ampl&-divisor (on a modification). This statement initially
arose in connection with alegbro-geometric analogs of the work [4] of the first au-
thor (cf. [15; 23, Sec. 7]). A geometric reinterpretation appears in Proposition 3.6.

REMARK 3.3. Suppose that admits aZariski decompositionThat is, assume
there exists a birational modificatign: X’ — X as well as a decomposition
w*L = P+ N, whereP andN areQ-divisors and withP nef, having the property
that

HO(X, Ox (kL)) = HO(X', Ox/([kP]))

forallk > 0. Thenv(X, L) = v(X’, P) = (P"); that s, the volume of. is com-
puted by the volume of a nef divisor on a modification. Although it is known that
such decompositions do not exist in general [3], Fujita’s theorem shows that an
approximate asymptotic statement does hold.

Fujita’s proof is quite short but rather tricky: it is an argument by contradiction
revolving around the Hodge index theorem. The purpose of this section is to use
the subadditivity property of multiplier ideals to give a new proof that may seem
a bit more transparent. (To a certain extent, one can see the present argument as
extending to all dimensions the proof for surfaces, due to Fernandez del Busto,
appearing in [23, Sec. 7]).

We begin with two lemmas. The first, due to Kodaira, is a standard consequence
of asymptotic Riemann—Roch (cf. [22, (VI1.2.16)]).

LemMma 3.4 (Kodaira’s Lemma). Given a big line bundlé&. and any ample bun-
dle A on X, there is a positive integer > 0 such thatngL = A 4+ E for some
effective divisolE.

The second (somewhat technical) lemma shows that one can pérsliphtly
without greatly affecting its volume.

LemMa 3.5. LetG be an arbitrary line bundle. For every > 0, there exists a
positive integern and a sequencg, 1 +oo such that

£"m

WX, t,(mL — G)) > -~

| (v(L) —¢).
n!

In other words,
v(mL — G) > m"(v(L) — ¢)

for m sufficiently large.
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Proof. Clearly,v(mL — G) > v(mL — (G + E)) for every effective divisolE.

We can takeE so large thatG + E is very ample, and we are thus reduced to the
case wheré itself is very ample by replacing with G + E. By definition of
v(L), there exists a sequenkg 1 +oo such that

HO(X, Ox (k,L)) = k—f(v(L) - 5).
n! 2

We now fix an integem > 1 (to be chosen precisely later) and put= [k, /m],
sothatt, = ¢,m +r,, 0 <r, <m. Then

¢,(mL — G) = k,L — (r,L + £,G).

Now fix a constant: € N such thazG — rL is an effective divisor for each &
r <m. ThenmaG — r, L is effective, and hence

h°(X, Ox(€,(mL — G))) = h°(X, Ox (k,L — (£, + am)G)).

We select a smooth divisdp in the very ample linear systeft|. By looking at
global sections associated with the exact sequences of sheaves

0 — Ox(=(j +1)D) ® Ox(k,L) —> Ox(—jD) ® Ox(k,L)
— Op(k,L — jD) —> 0
for 0 < j < s, we infer inductively that
ho(X, Ox(kyL — sD)) = h%(X, Ox (k,L)) — Y h%D, Op(k,L — jD))
O<j<s
> h%X, Ox(k,L)) — sh®D, Op(k,L))

>kv L € Cknfl
_Ev()_z —S v

whereC depends only o, andG. Hence, putting = ¢, + am yields

n

hO(X, Ox(£,(mL — G))) > k—“1<v(L) - g) —C(Ly 4+ am)k™!
n:

en n
> 20 (v(L) - g) — C(t, +am)(C, + D" m" ™,
n:
and the desired conclusion follows by takibg> m > 1. O

Proof of Fujita’s Theorem Note to begin with that it is enough to produce a big and
nef divisor A satisfying the conclusion of the theorem. For by Kodaira's lemma
one can writeA = E + A’, whereE is an effectiveQ-divisor andA’ is an ample
Q-divisor. Then

E+A=E4+8E+(1—8A+84A,

wherea” &' (1-68)A+38A’ is ample and the top self-intersection numgier”)")

approachegA™) as closely as we want.
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Fix now a very ample bundIB on X, setG = Ky + (n + 1) B, and form > 0
put
M,, =mL — G.

We can suppose thét is very ample, and we choose a divisbre |G|. Then
multiplication by ¢D determines, for every > 0, an inclusionOx((M,,,) —
Ox (¢mL) of sheaves and therefore an injection

HO(X, Ox({M,,)) € H%X, Ox(¢mL)).
Givene > 0, we use Lemma 3.5 to fim > 0 such that
v(Mm) Z mn(U(L) - 8)~ (4)

We further assume that is sufficiently large so tha¥,, is big.
Having fixedm > 0 satisfying (4), we will produce an ideal sheaf= 7, C
Oy (depending om:) such that

Ox(mL) ® J is globally generated; (5)
HOX, Ox(tM,,)) € HUX, Ox(tmL) @ J°) forall ¢ > 1 (6)

Granting for the time being the existence gf we complete the proof. Let
w: X' — X be a log resolution of7, so thatu™7 = Oy (—E,) for some
effective divisorE,, on X'. It follows from (5) that

Aw & u¥mL) — E,,

is globally generated and hence nef. Using (6), we find
HO(X, Ox(tM,,)) € H(X, Ox(tmL) ® J*)
C HOX', Ox/(*(tmL) — LE,))
= HYX', Ox' (LA )
(which shows in particular that,, is big). This implies that
(An)") = v(X', Ay)
> v(X, My)
> m"(v(L) — &),

so Fuijita’s theorem follows upon settizg= £ A,, andE = 1E,.
Turning to the construction qf, set
J =JX, |Mul).

SincemL = M, + (Kx + (n + 1) B), (5) follows from Theorem 1.8(iii) applied
to M,,. As for (6), we first apply Theorem 1.8(i) tV,,, together with the sub-
additivity property in the form of Variant 2.4, to conclude that
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HOX, Ox(tM,)) = HY(X, Ox(EM,,) @ T (LM, 1))
C HYX, Ox(tM,,) @ T(IIM,, D). (7

Now the sheaf homomorphism

Ox(UM,) ® T(IMl)' -3 Ox(mL) ® J(| M)’
evidently remains injective for all, and consequently
HY%X, Ox(EM,,) ® T(IM, D)%) € HYX, Ox(¢mL) @ T(IM,1)Y).  (8)

The required inclusion (6) follows by combining (7) and (8). This completes the
proof of Fujita’s theorem. O

We conclude by using Fujita’s theorem to establish a geometric interpretation of
the volumev(L). Suppose as before th&tis a smooth projective variety of di-
mensiom and thatL is a big line bundle oX. Given a large integer > 0, denote

by B, C X the base locus of the linear serig&d.|. The moving self-intersection
number(kL)!"! of |kL| is defined by choosing general divisorsDs, ..., D, €

|kL| and putting

(kL) = #(DyN---N D, N (X — By)).

In other words, we simply count the number of intersection points away from the
base locus of: general divisors in the linear serigsl|. This notion arises, for
example, in Matsusaka’s proof of his “big theorem” (cf. [25]).

We show that the volume(L) of L measures the rate of growth with respect
to k of these moving self-intersection numbers. The following result is implicit in
[36] and was undoubtably known also to Fujita.

ProrosiTiON 3.6. Assume as before thétis a big line bundle on a smooth pro-
jective varietyX. Then one has

(kL)[”]

kn

v(L) = limsup

k— 00

Proof. We start by interpretingkL)!"] geometrically. Leju;: X, — X be alog
resolution of|kL| with u;|kL| = |Vi| + Fy, where

P E kL) — F

is free andH (X, Ox (kL)) = Vi = HOX;, Ox,(Py)), SO thatB, = i (Fp).
Then evidently(kL)["! counts the number of intersection pointsiageneral divi-
sors inP;, and consequently

(kDM = ((P)™).

We have((Py)") = v(Xk, Pr) for k > 0 since thenP; is big (and nef), and
v(X, kL) > v(X, Px) sinceP, embeds inu;(kL). Hence
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v(X, kL) > (kL)1 for k> 0.

On the other hand, an argument in the spirit of Lemma 3.5 shows tiakL) =
k" -v(X, L) [15, Lemma 3.4], so we conclude that
(kL)[”]

v(L) > T M

for everyk > 0.

For the reverse inequality we use Fuijita’s theorem.d=ix 0, and consider the
decompositionu*L = A + E onu: X' — X constructed in (3.2). Lét be any
positive integer such that is integral and globally generated. By taking a com-
mon resolution we can assume thgtdominatesX’, and hence we can write

Uikl = Ay + E
with A, globally generated and
(A" = k" - (v(X, L) — ).

But thenH °(X,, A;) gives rise to a free linear subseriesf(X;, P;), and con-
sequently
((AD™") < (PO™) = (kL)

Therefore .

kL)

¢ kz > v(X, L) —e. ®
But (1) holds for any sufficiently large and divisible and in view of (1) the
proposition follows. O

Note added in proofThe subadditivity theorem has recently been used to estab-

lish some surprising results concerning symbolic powers of radical ideals on a
smooth variety. See L. Ein, R. Lazarsfeld, and K. E. Smith, “Uniform bounds and

symbolic powers on smooth varieties” (to appear).
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