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1. Introduction

A general principle on smooth complete-intersection Calabi—Yau threeXokds

P is that the obstruction theory for deforming families of rational curves on or
with X is essentially determined by the Abel-Jacobi map (see [C2]). This prin-
ciple can be generalized to families of nonrational curves as long as the Hilbert
scheme Hill§ of these curves in the underlying projective sp&ds strongly un-
obstructed. However, Voisin has pointed out that this principle fails badly ifHilb

is obstructed. Indeed, she gave a beautiful counterexample for a family of nonra-
tional curves on quintic hypersurfac&sC P = P*. The curveC in question is

just the generic projection of a canonical curve of genus 5ite P4, (As we

shall see, containing such a curve imposes two conditions on the modd)i éfe
propose to examine the deformation theory of Voisifs X), our justification
being the beauty of the geometry and the lack of examples where the deformation
theory is understood in the obstructed case.

Concerning that deformation theory, a specific goal of this paper is the follow-
ing. Given a complete family of curves df, one wishes to associate a refined
Gromov-Witten invariant, which should always be a nonnegative integer. (This
is because the expected dimension of the Hilbert scheme at a CutveX, the
Euler characteristic of the normal bund¥e x, is 0.) Again, this integer is often
computable when Hilf is strongly unobstructed (see [CK]). However, we know
of precious few examples where anything can be said in the obstructed case. Here
we bound this integer for the Voisin example.

This paper is organized as follows. In Section 2 we consider the geometry of the
Hilbert scheme of curves of degree 8 and genusBinin Section 3 we consider
those curves that lie in a hyperplane as well as the geometry of the quintic surfaces
S that contain them. In Section 4 we consideas a hyperplane section of a quin-
tic threefold X and study the structure of Hitbnear the curves is. Finally, in
Section 5 we bound the “refined Gromov-Witten invariant” for the relevant com-
ponent of Hilb*. One word about notation: If’ is a subscheme of the Hilbert
scheme of curves, thary, will denote the universal curve ovér'.
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paper and Aaron Bertram for his help on the geometry of the rank-2 vector bundles
used in our analysis.

2. The Curve

2.1. Canonical Curves of Genus 5
Let C be a reduced, irreducible, nonhyperelliptic curve of (arithmetic) genus 5,
canonically embedded i*.

ProposiTION 2.1.  Either C is a complete intersection of quadrics 6rlies on a
smooth cubic scroll. The latter occurs if and only if the cuévadmits ag3.
Proof. The kernel of the map

Synt H%we) — H (%)
has dimension at least 3, so th@tin contained in &2 of quadrics. If the di-
mension of the base locus of this linear system is greater than 1 (i®isifot
a complete intersection of quadrics) then, siitéoes not lie in a hyperplane,

C must lie in a component of degree 3 that sp&AsThe only such surface is a
smooth cubic scroll. O

COROLLARY 2.2. WithC as before H'(N¢. pa) = 0.

Proof. For C a complete intersection of quadrics, this is elementary. So suppose
C lies on a cubic scrolB. We have an exact sequence

0— Né\é — NC\IP"‘ — Né\]P"‘ ® Op — 0. @
To prove the corollary, we will show that
h*(Negy3) = 0 = i (Nj pa ® Op).
The scrollB is isomorphic to the Hirzebruch surfafe; let E be its exceptional
curve andF afiber. Fromg(C) = 5 and ded” = 8, we conclude that

C = 3E +5F. 2)

Hence n ~
degNe, 3 = C? =21> 8=2g(C) -2

and thushl(N@\é) =0.
Now, if we choose a quadri@ D> B then we have the exact sequence
0—> Njpp® Op — Ni\ps ® Op — No\pa ® Op — 0.
But by (1), degNé\w ® Op = 27 Hence, degNl;\Q ®0s =11 > 8 =
2g(C) — 2, so that
h* (N o ® Op) = 0= h'(Ng\ps ® Op).
Thush'(Np s ® Op) = 0. O

As a consequence of the proof we have the following.
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CoroLLARY 2.3. LetQ > € be aquadric threefold that is smooth alo@g Then
HY(Ng, o) =0.

2.2. Curves irP3

ProposiTION 2.4. |f C C P2isasubcanonically embedded, reduced, irreducible,
l.c.i. curve of genu$, then HX(N¢p3) = 0.

Proof. C must be the isomorphic image of its canonical madet P4 under the
projectionr : P4 --» P3. LetJ andJ be the ideal sheaves of the curve®thand
P4, respectively. Then the natural map: J — J passes to a map of conormal
sheaves and hence to a map of normal bundles

Ty - Né\]}"‘ — NC\]P’3‘ (3)

At the smooth points of , this map is induced by the surjectifips ® Op —
Tps ® O¢, so that the cokernel of (3) is torsion. The desired vanishing is now a
corollary of Corollary 2.2. O

2.3. Submanifolds oflilb®*

From now on, Hil8"* will denote the open subscheme of the Hilbert scheme of 1-
dimensional schemes of degree 8 and arithmetic genu®% that parameterizes
schemes that are reduced, irreducible, and have only singularities with embedding
dimension 2. Lef)’ be the variety of complete irreducible quadric threefolds (i.e.,
the blow-up of the projective space of quadrics along the locus of dé@fisle We

let Q” be the locus of pairs

(€, 0) eHilb®* x

such that is canonically or subcanonically embeddedthand Q is a complete
quadric containing’ in its smooth locus. Le®’ denote the image d” under
the projection

Hilb®* x Q' — Hilb®",

If C € Q’ only spans &3, then all the complete quadrics containifigire double
covers of thé?® branched along a quadric surface tangeit &t each intersection
point. ThusC is the projection of a canonical cur¢g and the set of branching
quadric surfaces for fixed is given by the limiting linear series
lim{PnQ:02C).
CcC—>C
HenceQ” is fibered over)’ and, by Corollary 2.3 and Riemann—Roch, all fibers
are smooth of dimension 24. Then the fiberQdf— Q' are always Zariski open
dense subsets . Thus we have the following proposition.

ProrosiTION 2.5. Q” and Q’ are smooth and of dimensio8 and 36, respec-
tively.
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On the other hand, |g®’ be the locus ofC} € Hilb®* lying in (and therefore
spanning) @3 c P*. ThenP’ is fibered ove(P*)" and, by Proposition 2.4 and
Riemann—Roch, the fibers are smooth of dimension 32. In this case we conclude
as follows.

ProrosITION 2.6. P’ is smooth of dimensioB6.

Let
U :=PuUQ/, R =P NnQ’.

Then we have the following.

ProrosiTION 2.7. The scheme
U -R

is smooth and locally closed HilbF*. At {C} e R’, the embedding dimension of
Hilb?* is 37. The schemd’ is locally open inHilbE, and, near{C} € R’ with

C smooth R’ is a smooth reduced divisor along which the two components$’ of
meet transversely.

Proof. SincehO(NC\HM) = 36 when{C} € (U’ — R’), the first assertion is clear.
SupposgC} € R’. From the sequence

0— NC\]P3 — NC\IP’4 — Oc(l) — 0, (4)

we see that the imbedding dimensil@?(Nc\P4) of Hilb?* at{C} is 37. Suppose
now thatC is smooth. Referring to (4), one component is giverPbwith tangent
space given by the preimage of

W = image H(Opz(D) — H%Oc (D))

in HO(NC\W) and the other byQ’ with tangent space given by the kernel of a
rank-1 map
H(Nc\pe) = HY(Oc), ®)

constructed as follows. D:(O¢ (1)) is the sheaf of first-order differential opera-
tors on sections af¢ (1), then H1(D1(Oc¢(1))) is the tangent space to the defor-
mation space of the paiC, O¢ (1)) (see [AC]). This identification has the prop-
erty that a sectiom € H%O¢ (1)) extends with the first-order deformatidn e
HY(®1(O¢(1))) if and only if

D(x) = 0e HY(O¢(2)).

Since the tangent space@ is characterized by the property thak sections
in H%O¢(1)) extend to first-order deformations along it, the canonically defined
subspace

K1 = ker(HY(®1(Oc (1)) — Hom(H%(Oc (D), HY(Oc (1))

defines the tangent space@. Because)q (1) = wc, this subspace maps iso-
morphically ontoH (% ¢) via the symbol map in the short exact sequence
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0— HYO¢) > HY(®1(0c 1)) — HY(Z ) — 0.
This defines a splitting
HY®D1(Oc(D)) = K1 ® HOc).

Hence (5) is given as the composition

projection
—_—

H%Ne\pa) — HYD1(Oc(D)) HYO¢),

where the first map is induced from the commutative diagram of exact sequences

Oc — D1(Oc(D) — Tc

| l l

OC — OC ® @1(0[{»4(1)) — OC ® T]p4. (6)
Ne\pa —— Ncp#

To see that (5) is of rank 1, note that it maps into the subspalié@1(Oc¢(1)))
on which the sections iW extend—that is, into the nullspace for the pairing

HY®1(OcD)) ® W — HYOc (D).
This imposes dinW = 4 conditions onHY(D1(O¢ (1)) = HY®1(wc)), which
restrict to independent conditions on its summandO,). O

As Voisin pointed out, something of interest occurs along the 35-dimensional sin-
gular locus
R =P NQ. 7

2.4. Equations foC in P3

Suppose now that, fdC} € R, C lies in the base locus of the system of quadrics
in P4 generated by

cjxg +1i(x1, .., xa)x0+ g (x1, ..., x8), j=0,12 (8)

with center of projectiortl, 0, 0, 0, 0) not lying on the base locus. Thaslies on
the cubic surfacel given by the equation

co lo go
C1 ll q1 | = 0 (9)
c2 o g

in the P2 given byxo = 0. We normalize our basis so that= ¢, = 0 andco =
1; then the cubic (9) becomes

l1ig2 — I2q1 = 0. (10)
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LemMa 2.8. Forall {C} R/, (10)is the unique cubic if?* containingC.

Proof. If the base locus of the system (8) is a smooth cubic séothen (10) is
the equation of the projection of that scroll irit§ and

g1 = anl1+ arls, g2 = axli+ azls

for some linear forma;;. Now ¢ — C is an isomorphism onto a curve of degree
8 and genus 5, and we claim that (9) is the unique cubic conta(iifi@ see this,
notice that the intersection of (9) with a second cubic would be of the &#a1.,
whereL is a line meeting_ in six points. The trigonal curv€ is the image of a
plane quintic with a node under a map takin@? blown up atp to the surface
(9), and sd. must be the double line of (9) or come from a line throwgbr from
the exceptional curve. But none of those lines interéesix times.

Also, since the center of projection does not lie ®nthe projection3 — A
is a finite birational morphism that maps a cofién B two-to-one onto the line
l1 = [, = 0 and has inverse

A — P4,

(X1, .y x8) = (g, [ixa, ..., [ixg).
The surface
leO-i-qj', ]:1,2

is the union ofB and the plane containing the corftc

Otherwise, (8) defines the canonical embeddihgf C. Using the Einstein
summation conventiort/ °(J p3(3)) is given by homogeneous formfdg; such
thatg/q; + f7I; = 0. This can be solved fog/ such that

glc;=0 and gl + flc; =0.

In normal form, this is given by’ such that

fil = —g'q1— g%q2,

fO0=—g'h—g%
for some constants! andg?. Hence
i+ 2l = ghlols — q1) + g%(lol2 — q2).

But, in the non—cubic-scroll case, the existence of a common solution of

h=lr=q1=¢g2=0
implies thatC — C is not an isomorphism. O

By a somewhat more elaborate calculation we have the following.

LEmMMA 2.9. Forall {C}eR/,
h*(Jcps(4) = 0.
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Proof. First of all,

W3 ps@) = —x(Tc@) + h°(Tc @) + h*(Ic(4)
= x(Oc(8) = x(Op3(4) +h%(Ic(4)
= 28— 35+ h%(Jc p3(4)).

So, to complete the proof we must show that
W ps@) <7.
If C lies on a smooth cubic scrafi, then the projection
B— A C p3

maps a conick on B two-to-one onto a (double) line oA. Any element of
HOJ¢ p3(4)) must vanish on this line, sina@ meets it in five points. Thus

h(3cpa(®) <4+ h°Te g 5(4).

But R
C=3E+5F and R=E+F,
so that
Jeir 3@ = (4E +8F) — (4E + 6F) = 2F
and

h(3eip 5@) =3.
In the non—cubic-scroll case, the fact that there is no common solution of
h=l=q=q2=0
implies thatA is smooth along the line
lLh=1,=0.
Let A denote the surface ih* given by
Li(xy, ..., xa)x0+qj(x1, ..., x4), j=12

ThenA has a distinguished poipt= (1, 0, ..., 0), which is a smooth point of
sinceC does not lie in a quadric. Then

hO(Jc pa(4) < 4+ hom? ;(2)).
Since

Opa(2)
H%Opa(2 H°<P—>
(Ops(2)) — m 4(2)

is surjective, we conclude that
ho(m? 1(2) =15—2— (1+2+3+4 =3,

Thus, again we have
R3¢ ps(4) < 7. O
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LemMa 2.10. There is a Zariski-open neighborhott of R’ in P” such that, for
any schem@’ C U’ for which there is a cubic surfacér, containingCr/, we
have

T' CR.
Proof. For{C} € R’ with C not trigonal (i.e.C does not lie on a cubic scroll;
lies in a cubicA given by an equation

lig2 — l2g1 =0
such that there is no common solution of
lh=lb=q=¢g>=0.

Thus the map
A — P*,

(11
(X1, .00, x8) = (g, Lixa, ..., [ixs)

is everywhere well-defined. In fact, the morphism (11) has imfiged is an iso-
morphism except that it blows down the lilg= [, = O to the distinguished
point p. Since p does not lie orC, (11) restricts to an isomorphism ah By
Lemma 2.8, any sufficiently small deformation{af} in P’ that lies in a cubic sur-
face gives a deformation of tigandg; and hence a deformation of the map (11)

and thus a deformation @f C P* that projects to the deformation 6t SinceC
is a canonical curve, we conclude that

(C}eR.
If C lies on the cubic scrolB, then the projection map
B— A
is finite and is an isomorphism except o¥ee= I, = 0, over which a coni@ in B

is mapped two-to-one. This map also restricts to an isomorphisﬁ’1 dine map
(11) is given by
l:
()C]_, ey )C4) (g (ajj + aj(jil)jl—jl:l, X1y euny X4>.
J

By Lemma 2.8, any deformatiafiy: € A gives deformations ¢, g; ¢ for j =
1, 2 and so yields a rational map

AT’ — AT’

restricting to an isomorphism af;: — C7» whose inverse is a family of projec-
tions. Thusl'’ C R’. O

Lemma 2.10 immediately implies the following improvement on Proposition 2.7.
CoroLLARY 2.11. P’ andQ’ meet transversely at all points &'.

Later we will also need the following result.
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Lemma 2.12. (i)For {C} € R’ such thatC is not trigonal,C is a Cartier divisor
of the cubicA and
Neva(=1D) = oc.

(i) For {C} € R’ such thatC is trigonal,
h{(Neyps(=1) = 0.
Proof. (i) Again use that
h=l=q=q2=0

has no common solutions. The morphism (11) has im&gad is an isomorphism
except that it blows down the ling = I, = 0 to the distinguished point. Since
p does not lie orC, we have

Ncw = N@\A = 0c(2).
(ii) Consider the finite mag' : B — P2 given by the restriction of the projec-
tion to the cubic scroll. We then have the exact sequence

0— Ngyg = Nevps > Op ® Ny — 0,

where T
Ny = TB
Now referring to (2), it follows that
degNe, 3 = (3E +5F)% = 21
SO thathl(Né\é(—l)) = 0. Since degV\p3 = 40, we also have
degOp ® Ny) = 19,
Also, the natural injection of line bundles
O ® f*N,\ps = Op ® N/’

has cokernel a skyscraper sheaf of length 5 corresponding to the five points of in-
tersection off andC. Sincef is of maximal rank except at two points, the torsion
summand ofd: ® N, has length< 2 and therefore its line bundle summand has
degree> 17, so that

hH(Op ® Ny (1) = 0. O

3. The Surface

3.1. Quintics Containing”

Now fix a smooth curvee € P2 C P* representing a general point in the Bét

of (7). By a fundamental theorem of Gruson-Lazarsfeld—Peskine [GLP], for any
nonrational reduced irreducible curgeof degree 8 spanning?®, the restriction
map
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H%Op3(5)) — HOc(5)) (12)
is surjective. This in turn implies that
dim H%3¢(5)) = 20, (13)
whereJ. is the ideal sheaf of in P3.

ProrosiTioN 3.1. C is contained in a smooth quintic surfadewhose Picard
number is2.

Proof. The proof is based on the following construction.

As before, let denote the canonical embeddingdin P#. Take a 1-parameter
family of projectionst, : ¢ € P4 — P3with C = 71(C) and such that the center
of the projectionrg is the vertex of a quadric cone containié‘g Then(Co)red =
7o(C) is a four-nodal curve, which is @, 4)-curve on a smooth guadric surface
Qo. We write

(Colred= Qo N Wy

for some quartic surfacg, in P2. Thus
h2(J(copea(®) = h%(Op3(3)) + h%(Opa(D) = 24 (14)

The four nodes py, ..., p4} are coplanar because the canonical linear system on
C is given by quadrics ifP® containing thep;; hence, ifp;; denotes the two points
of C abovep; for j =1, 2,

0@(21317) = 0.
However, no three points ¢fx, ..., pa} are collinear, sincé€ is not hyperelliptic.
Thus thep; impose independent conditions on cubic®th So, if we denote by
Co the curve over 0 in the flat family associated#@C ), thenCq has embedded
points at thep; and all members of the linear system

Ao =13¢,(9)] € |0p2(9)]
are singular atpy, ..., pa}; by (14), it follows that
ho(Jcy(5)) = 24— 4 =20.

Now a general member afy is a general member of a general pencil spanned
by the pair of reducible surfaces

Qo U Ko, Vo U Hp,

where Ky is a general cubic containing the and Hy is a hyperplane through
those pointg; at whichVj is smooth. Since dim = 19, the only possibility is
therefore thatH, is a general hyperplane arv is singular at all four pointp;.
In fact, the tangent cone of a general elemenAgfat p; is a general element of
the pencil of conics spanned by two conics of the form

xl(x,y,2z2)), vz + xmo(x, y, z),
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wherel is a general andi is a fixed (unknown) linear form. Thus, the general
quintic surface containing has only ordinary nodes at eaph We also see im-
mediately thali¢,(5) is generated by its global sections.

We are now ready to complete the proof of the Proposition. Let

Ay =3¢, B € [Op2(5)].

Take a generic section of the family,,} neart = 0 and call the family of quin-

tics {S,}. By flatnessJ, (5) is generated by global sections and so, by Bertini’s
theorem,S, is smooth for £ 0. In fact, if P, denotes the blow-up d@?2 alongC,

then the classical Lefschetz argument for hyperplane sections of the embedding

P, — P(H%3Jc,(5)")
§hows that the Picard number of the geneidés equal to the Picard number of
P,, which is 2. O
3.2. C Moves in a Pencil or§

We now have, for generifC} € R’, thatC lies in a smooth quintic surfacg of
Picard number 2. By adjunction,

Ncevs = Oc¢ (15)

so that, since is regular,
ho(Os(C)) = 2. (16)
Let
p:S— 8 =P(HOs(C))")

be the corresponding pencil.
Using Riemann—Roch, Serre duality, standard exact sequences, and the fact that
forno{C’} € |0s(C)| doesC’ lie in a hyperplane, one calculates

hYOs(C) =1 h*(Os(C)) =0; (17)
h%(0s(2C)) =3, hY(0s(2C)) =6, h*(Os(2C)) = 0. (18)
We want the surjectivity of (12) for all fibers gf, so we need the following lemma.

Lemma 3.2. All fibers of p are reduced and irreducible.

Proof. Suppose not; that is, suppose that there exist
D1+ D2€|05(C)|
with D4 reduced and irreducible and that
1<k:=D;-K <4,

whereK is a hyperplane section 6f SinceC moves in a basepoint-free pencil,
it must be that
C-D1=0
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as well. One calculates that the intersection matrix of the divi€grdD1, andK
has determinant64D? and so, since the Picard numberSoi 2,
D2 =0.
Therefore, by the genus formula,
2g(D1) —2=D?+D;-K =k.

Now k = 2 is impossible because there are no curves of genus 2 and degree 2, so
it must be that
k=4 and g:=g(D) =3

in other words D; is a plane quatrtic. It follows that
K=D1+1L

for some lineL in S. Plane quartics are canonically embeddedi @y, (K)) =
1 Thus, using the exact sequence

0— Os(L) - Os(K) = Op,(K) = O,
we conclude via Serre duality that
h%(Os(Dy)) = h*(Os(L)) = 2.

But, sinceh®Os(Cop)) = 2, this would imply that all curve€’ e |Os(C)| are of
the form
C,:D"r‘Dz with D = Dy,

which contradicts the irreducibility of itself. O
By Proposition 2.4 we thus have the following corollary.
CoroLLARY 3.3. If § D C is generic, then
h'(Npps) =0
for every fiberD € |Og(C)]|.
Because the mapping of ideal sheaves
Ioves/ Ip\pa = Tovs/Tbs
is surjective, the mapping
Ti;yS' = Hom(jb\s/jlz)\s, Op) — Hom(jD\Ps/ﬁf,\Ps, Op) € T\;yR’

is injective. We therefore conclude as follows.
ProposiTION 3.4. S’ is a smooth subscheme Bf.
Finally, for fixedP3, we need to understand the local structure of

N :={(C, 5) e Hilb®* x P(H(Os(5))) : C € S},

N”:={(C,S)eN : Oc(d) = wc}
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nearS’. Let
N := {$1 € P(H(Os(5)) : p(S1) = 2}

be the subscheme of quintic surfaces neaith Picard number 2, and let

N2_’w = image(N” — Nby).

ProrosiTION 3.5. Suppose that the infinitesimal period mapping
H%05(5)) — Hom(H %(ws), H(wc))

is surjective at(C, S). ThenN; is a smooth submanifold dP(H °(Os(5))) of
codimensior, andN’ is the blow-up ofN, along the smooth codimensi@sub-
manifoldN, ,, with exceptional locusl”.

Proof. The first assertion is an immediate consequence of the classical Lefshetz
theorem. For the second, first notice that,$pnearby with Picard number 2 and
for the line bundld. that is the deformation afi(Os(C)), we haveyx(L) = 1and,
by (17),h%(L) = 0; henceL has a section. L&f; denote its zero scheme. Then,
by adjunction,
Neps, = w5, ® og,

so that

L) > 1 = O, ® ws, = w¢,.
Thus we locally have a birational morphigdi — N, with fibers isomorphic to
PL A classical theorem of Moishezon characterizing smooth blow-ups then com-
pletes the proof. O

4. The Threefold

4.1. Quintics Containing
For generiaC € R” and generics 2 C as in the previous section, we next let
X>S8§>C

be a generic quintic threefold < P# with hyperplane sectiof. ThenX is given
by an equation

F(x0,...,%4) = G(x1, ..., x4) + x0V(x0, ..., x4) =0, (19)

whereS is given byG = 0. We wish to study Hill¥ in a neighborhood of’, the
parameter space of the basepoint-free pesys!l with generic fiberC. We will
break this study into two parts: the studies of Hila P’ and Hilb* N Q’. In the
next few subsections we will concentrate on Hith P’. Our main tool will be the
identification of two symmetric bilinear forms on

H%Ops(1) = HUQ$) € HUAQP).
Forl,!’e H%(Ops(1)), the first form is
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L1 = / (). (20)
C
wherew € H%(Q2) is the element given bye H%Ops(1)) and where’ € HY(Ts)
is the Kodaira—Spencer class for the deformatios§ of X given by

xo—sl’ =0.

/C 000, (1)

wherew, o’ € H%(QL) are the elements given Byand!’ (respectively) and
0 € Exti(QL, O¢)

is the obstruction to splitting the sequence

The second form is

0— NC\S — NC\X — NS\X|C — 0.

The form (21) of the pairing will later be shown to be nondegenerate. Hence
this identification will allow us to apply Proposition 3.5 to show that our special
surfacesS vary in a (generically) smooth set of codimension &(i# °(Ops(5))).

So the set of € P* with a hyperplane section isomorphic to sofas before
will turn out to be smooth of codimension-64 = 2 in P(H %Oy (5))).

We begin by checking the coincidence of the two pairings (20) and (21). The

pencil of hyperplane sections &f given byxo — ex; has derivative

x;V(xy, ..., x4) (22)

ate = 0, where .
V(xy, ..., xa) = V(O, X1, ..., X4).

LI
Q= <Z)Cj—
i

then the holomorphic 2-forms ahare given by

If

dxl Cen dX4>

Sl(xl, ey )C4)Q

— G
so that the obstruction to extending C) to first order with a first-order deforma-
tion!’V of S in X is given by the quadratic form

nvQ
(l,ﬂ):/;res G2 (23)

re

on H%Opa(1)).
To see that (20) and (21) coincide, we compute as in [G]. Consider the exact
sequences
0— Q2,(5) — Q2%:(5) L @3,(25) —> 0
and
0— NC\S — NC\]pS i OC ® NS\P3 — 0
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giving rise to the commutative diagram

HYQ3,(25)) —=> HYQZ® Ng\ps) —> HYQZ® Neys)

| l |

res

HYQ2,(8) — HYQ}) —  HYQY).
So the pairing (23) is given by
H%Ops(1)) @ H%Ops (1))

Jsov

H%Q%) ® HONg\p2)
l (24)

HO%Q2) ® HY(Nc\s)

l

HY(wc)

and so coincides with (21).

One final remark (that will not be used in what follows): One might envision a
parallel study of the infinitesimal period map for the quadric sectiors af the
complete quadric sectiorﬂ%0 N X, that is, the double cover ¢f branched along

SN {Qo=0} C P>
More precisely, recall the spa®’ of pairs (curve, complete quadric) defined in
Section 2.3. Let
F()Co, ...,X4) = G(xl, ...,X4)
+ xoV(x1, ..., x4) —i—xSK(xl, ey X4) +x8 ..., (25
and let
x5 — e(xoLo(x1, ..., xa) + Qo(x1, ..., X2))
be a path iQ” passing througkcC, ZIF’SO). Taking resultants, we see that the de-

rivative of the corresponding quadric sectionXfits = 0 projects intdP3 with
equation
Q0(V? —2GK) — LoGV = 0. (26)

However, this infinitesimal period map seems harder to deal with, so we will han-
dle the neighborhood &’ in Q’ differently.
4.2. CharacterizingVc\ x as an Element oExtY(wc, O¢)

Again, for§ € X generic and an¢ in the distinguished pencil parameterized by
S’, we consider the short exact sequence
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0 Nc\s Nevy —> Oc® Ngyx — 0

: H : 27)

Oc wc
of normal bundles. This sequence is characterized by an element of
Ext'(wc, Oc) = HY(S ),

which we express in terms of the equation (25) definkhg-rom the Euler exact
sequences

00— Oc = Oc @ D1(Opn (D) »> Oc @ Tpn — 0

for n = 3,4, we obtain two commutative diagrams of exact sequences of left
Oc-modules,
0 0

l l

0 — Oc®D1(0s(1))) —> Oc®@D1(0x() — Oc(h) — 0

| l |

0 —> Oc @ D1(0p:(1)) —> Oc @ D1(Ops(1)) —> Oc() — 0

[ v

Oc ® Ng\p3 ——  Oc ® Nx\ps
0 0 (28)

and

0 — Oc ®91(0s5()) —> Oc ®D1(0x(1) —> Oc(H) — 0

l l |

0 — NC\S e NC\X e Oc(l) — 0.
0 0 (29)

Referring to (28), the vertical maps, are given by

" d T ad G T G
o1 — oAp— = 1 — o —,
3 18)61 48)64 18)(1 43)64

a 0 a aG aG
Yol vo— +o1—+ - Fosa— | =V +or— + - Foag—.
0x0 0x1 0X4 0x1 0x4
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A simple diagram chase, together with the fact that the exact sequence given by
the middle row of (28) is split, yields the following.

ProrosiTION 4.1. The extension class givin@7) is the image ofV under the
composition

Hom(Opz(1), Opa(5)) - Ext(Oc (D), Oc ® D1(Os(1)))
— Eth(OC (1), NC\S) (30)

induced by the diagram(@8) and (29). (Of course Ext! here refers to extensions
with respect to the leftO--module structure o ® D1(Os(1)).)

We next wish to explore which elements of Ex2¢ (1), Nc\s) = Ext{(wc, Oc) =
HY(T¢) occur as we vary € H(Ops(4)).

LemmA 4.2. The dimension of the cokernel (80)is < 1and, for generidC}
S’, the mapping30)is surjective.
Proof. We factor the mapping (30) as follows:

H%Ops(4) — H(Oc(4)) (31)
gives
Hom(Op:(1), Op3(5)) = Hom(Opz(1), Oc(5))
followed by
Hom(Ops(1), Oc(5)) — EXt(Oc(D), Nevs) (32)

coming from the short exact sequence

0 — Hom(Oc(1), Nc\s) — Hom(Oc(D), Ney\p3)
—> HOm(OC(l), OC X NS\]P’?’) — 0.

By Lemma 2.9, the map (31) is surjective.
The cokernel of (32) isHl(NC\]ps(—l)). Recall thatC lies on an irreducible
cubic surfaced € P2 given by (10). IfC is nontrigonal then the exact sequence

0— Neva(=1) — Neypa (=) — Oc(2) - 0
in Lemma 2.12 gives
WY (Neyps(—1) < hY(Neya(=1).
Yet by the same lemma we have
Ncya(=1) = wc.
If C is trigonal, then Lemma 2.12 yields
h*(Neyp3(—1) = 0.

Since the generi§’ must contain some trigonal curves, the proof is complete.
U
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CoroLLARY 4.3. (i) For genericV € Hom(Op3(1), Ops(5)) = H%Ops(4)),
the pairing(23) is of maximal rank.
(i) There is a Zariski open s’ € P’ such thatS’ € Z’, and we have a
scheme-theoretic equality
S’ =Hilb*nNz.
Proof. (i) The image
image( H%(Op3(4)) — HY(T())

of the map (30) in Proposition 4.1 has codimensiorl. However, by (24) the
pairing (23) is given by the map

H%Op:(1) ® H%Op:(1) ® H%Ops(4))
linclusion®(30)

H%wc) ® H%wc) ® HY(Z )

l

H%wg) ® HY(%¢)

l

Hl(a)c) .
Since no quadric ifP® containsC, the mapping
Syn? H%(Ops(1)) — H%w?2)

is injective and so
HY(T¢) — Synt HO(Ops(D)"

takes the image off °(Ops3(4)) onto a subspace of codimensienl. However,
the degenerate quadratic forms in SYyHC(Ops(1))¥ are an irreducible quartic
hypersurface which therefore cannot contain a hyperplane.

(i) Now the cohomological obstruction to deformiag(C) € HY(S) to first
order with a deformation of the hyperplane sectibim X is exactly the pairing
(23) considered as a map

H%0Op:(1)) - Hom(H ws), HXw¢)).

Hence, for generid/, this map is injective. So;(C) is obstructed to first order
for every first-order deformation of in X. So the only first-orders deformations
of curves onS’ staying inside Hil¥ N P’ stay insides. O

Our next step is to recall the analysis in [B] of the structure of the space
P(HYTc)) = P(H(@8)")

of vector bundle extensions afc by O¢. For any effective divisoD on C, we
let
k(D) = kerf(H (%) — HYTc(D))).



On an Example of Voisin 111
The subspace
P(k(D)) € P(H(T¢))
is defined by equations spanning the subsgaen?(— D)) of H %w?).
PropPosITION 4.4. An extension
0—- Oc— N—>wc—0

lies inP(k(D)) if and only if N has a quotient of the forrac(— D).

Proof. Consider the bundl&/’ containingN that is generated by and rational
sectionss of O¢ with div(s) + D > 0. The extension
0— Oc(D)—- N — wc—0
is the image of the extension in the proposition under the map
HY(T¢) — HYTc(D)).

The image extension is split if and only if there is a map

wc(-=D) —> N C N’
for which the composition

wc(=D) - N — oc
has cokerneCD. O
PROPOSITION 4.5.

hO(N) > 1

if and only if there exists & > 0 such thatN has a subbundlec(—D) with
ho%wc(—=D)) > 0.

Proof. Let t denote a nontrivial section @. C N. If h%N) > 1there is a sec-
tion s of N whose saturatiolh = O¢(D) is a sub—line bundlé& of N such that
the natural map

OC + L— N

is generically surjective. (Herb is given by the zeros of) SinceN is nonsplit,
the cokernel of this map is a skyscraper sheaf of positive degree and so, replac-
ing s by a linear combination of and: if necessary, we can assume thdtas a
zero and so defj > 0. The nontrivial section o® gives a nontrivial section of
the quotient line bundl&//L whose divisorD’ is such thatD + D’ is a canonical
divisor. Conversely, if

N — wc(—D)

then the kernel i©)¢ (D) and so has a section. O
The last two propositions tell us that the subvariety
B={NePHYXZ:) : h%N) > 1

is given as follows. Let
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b: C - P(Hw?)") = P(HYZ¢)) = PY

denote the bi-canonical embedding. For each proper sibséa canonical divi-
sor ofC, k(D) defined as before is the linear span of thebgét), andB is simply
the union of thek(D) for all D such that there exists’ > 0 with D + D’ €
|wc|. Thus

dmB <4+ 6=10.

Hence the generity e P(HY(T¢)) hash® N) = 1 and so, by Lemma 4.2, we con-
clude as follows.

ProposITION 4.6. For C C § C X generic, the standard inclusion
HNc\s) = H(Neyx)

is an isomorphism of-dimensional vector spaces.

4.3. HilbX at GenericC

We now consider the diagram

SxXx 1 x

I
S/
and letA C S’ x X denote the incidence variety of the family of cun&on X.

Notice thaty mapsA isomorphically ontaS € X and, under that identification,
p: A — S is simply the fibrationS/S’. From the short exact sequence

0 — Nas'xs = Nas'xx = ¢"Noyx = 0 (33)
we have the map
1y peq*Neyx — R'puNasxs (34)
of bundles, which is given at a poifif'} € S’ as the map
H%Oc ® Ns\x) = HXNc\s),

that is, the map
H%wc) = HY(Oc)
given by the extension data of the exact sequence

0— Oc—>NC\X—)(,()C—>0. (35)

LemMa 4.7. For genericS € X, the following statements hold.

(i) Hilb X is given at generi¢C} by the reduced schense.

(if) The Fitting scheme given by the locus at whicls not of maximal rank has
length2; in fact, it has lengtH at two distinct points of’ that can be taken
to be outside any pre-given finite subsefsof
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Proof. (i) We have by Proposition 4.6 thatcan be made to be fiberwise injective
atany{C}e S'". ThusH%N¢\s) — HO(Nc¢\x) is an isomorphism.
(i) By Porteous’s formula, the desired length is given by

c1(R'p«Naysixs) — c1(peg*Ns\x)-

Now
Nasixs = P*Nansxs = p*Oys(2),
so that
P« Nasxs = Os/(2) ® p,Os,
R'p.Nasixs = Os/(2) ® R'p.Os.
Also,

q*Ns\x = ws = wgs @ p*Og (=2).
Sincep,ws;s = (Rp.Os)Y, we have

P«q*Ns\x = (Rp. Naysixs)”

Now
ho%Rp.Os) + h'(p.Os) = h*(Os) =0
and
h(R'p.Os) = h*(Os) = 4,
SO

5
R'p.0s = P Os:(—a))
j=1

with eacha; > 0 and)_; a; = 9. Henceci(R'p. Nasixs) =5-2—9=1
Since no fiber of§/S’ lies in a hyperplane, we know that

5
pews =P Os(a; — 2)
j=1

can have no global sections with zeros. Thus

4
psws =05/ (1) & @ Os/ (36)

j=1

and so the map given in (34) becomes
4 4
A
wy: Os(-) @ @ 0y = Os () & @ O, 37)
j=1 j=1

h
where a b]_ b2 b3 b4

by c11 c12 c13 c1a

a=(* B b
= =] b2 ca1 c22 c23 C2

‘B C
bz c31 c32 c33 C34

ba ca1 cap ca3 cas
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for some constant symmetric mattix vector B of linear forms, and quadratic
forma. Now detC # O, since it is the determinant of the quadratic form (24). So,
after change of basis @ °(p,ws), the mapA can be rewritten as

A= (g ?) (38)

wherel is the identity matrix. Let
£20s(-1) C p.ws

denote the line bundle summand corresponding to the factdfe then have the
commutative diagram

P«q*Ns\x ® pq*Neyx —> Rp.owgs

Jion |

P+q*Ns\x ® RIp.Nasixs —> Rlp.wgs

Prwsss' ® Rp,Os —> Rlp,wgs

b b

Pxws Rlp*OS — Rlp*wS

a®at

restricts to
a ~
£2 5 RYpwgs = Oy

Finally, by (38) the Fitting divisor o8’ depends linearly on the choice Bfand
corresponds to a linear series of degree 2 without basepoints. O

So, by Lemma 4.7§" is not an isolated subscheme of Hilbut must have at least

two embedded points alon§f and seemingly could have other components of
positive dimension meeting§. Since all nearby (reduced, irreducible) curves are
either canonically embedded or lie ifPd, any other positive-dimensional com-
ponent (as a reduced variety) would have to li®iror Q’. As we will see at the
beginning of the next section, such positive-dimensional components do not exist.

5. Main Theorem and Numerical Invariants

THEOREM 5.1. For genericS C X as before, there is a Zariski open neighbor-
hoodU’ of 5" in Hilb®* such that

Hilb* NU = S"UC12UC2a,

where{C1} and {C>} are (genera) points ofS’ and, at eaclC;, there is an ana-
lytic isomorphism
Clx, y]

(Hilb* NU")c,) = Spec .
i {xy, y?}
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Furthermore,
Hilb*NU' NP ="
Proof. We have already seen in Corollary 4.3 that
Hilb* NP =5,
By Lemma 4.7, we have locally
(Hilb* nU")c) = (5)i¢y
atall{C} € S’ except possibly at two poin{€’;}, {C>} on S’. At each(;,
H%Nc\x) _
HO(N¢\s) '

Again we will argue by specialization. We consider the family of quinkis
in P4 given by

dim (39)

Fs.. = G + 8xoV + ex3K. (40)
Notice thatS C X is stationary under the deformaticfy . of Xo.
The Hilbert scheme oKy o is easy. It is simply given by the sectionsof the

normal bundleH (N, x, ) = H wc) for each{C} € §". The curveC = (C, w)
in X o deforms to first order with the first-order deformati&p o if and only if

4
3G
wVe § H%we) - o
j=1

that is, if and only if (referring now to (34) and (37)) we have
v (@) = 0e€ HY(Neys).

ThusC = C;. Since the Fitting ideal gfiy is reduced at eadC;}, the subscheme
of the Hilbert scheme oK o which deforms to first order in the directiof o is
precisely the (reduced) union §f and a copy of the 1-dimensional kernel of

ny: H%wc,) — HY(Neys)

fori = 1, 2. Denote the families of curves corresponding to these last two com-
ponents ag€’; o,/SpedC[t]. (Notice that their first-order deformations in the di-
rectionX; o liein Q’.) SinceX; o = X5 . modulox3, the subscheme€; ; of C; o
over Spe@C|[t]/{t?}) deforms (and continues to lie @’) over all of
XzS e

—_—. 41

2.7 (41)
The obstruction to deforming the subsche@g of C; », over (41) is the image
of the elemenk3K under the natural map

H%Nyy0p4) = R'pu(Ne, 1 17x x0)s

wherel’ = SpecC[t]/{t%}). By construction, this image vanishes modti@nd
so produces an element of the vector space
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2R (Ncy\1rx xo)
{r3)

= HY(Nci\ xo0)

H%Oc¢, ® Ny q\p4)
= : : HYOc® N
imageH (N, po) + HY(O¢ ® Ns\ xo,)
HOOc, (5))

- imageH %(N¢, p4)

+ HY(Oc ® Ns\ xq0)-

Now, by varying the center of projection (and hence the elemg@nd varying
the choice ofk, it is easy to see that the expressiarfk generate the entire vec-
tor spaceH %(Oc, (5)) so that, for generic (41X ¢, , is obstructed. Setting = ¢
we conclude that, for the first-order deformationXaf in the family

F. = G +¢e(xoV + x3K),
only the scheme
S,UC1,2UC2,2 (42)
deforms (and that this first-order deformation lie€if). Since we know that
ho(Ncpx,,) = 2

for § £ 0 ande # 0, we conclude that (42) must give Hifb: N U’ for generics
ande. (Note, however, that we can not conclude that the first-order deformations
C; 2 of C; continue to lie inQ’ for genericX = X; ..) O

So, for F as in (19), the zero scheme ptq*F|U,ﬂQ, is the smooth (reduced)
curve S’ possibly together with simple embedded points at{thig fori = 1, 2.
By intersection theory as in [F], the normal coéig, associated to the section
p+q*F Uno’ of the vector bundle

Eung = p«q*Ox(5)

is given by a subbundl€ € Eg/ of co-rank 1 possibly together with the entire
fiber E; of Eg at the two pointgC;}.
Referring to the componeni andQ’ of U’ defined in Section 2, let

PCP xP% QcCcQ xP* UcCU xP*

be the universal curves. For the standard map

u -4 p*

I

v/,
the surjectivity of (12) implies that

E = p.q*Opa(5)
is a vector bundle that is generated by the linear space of sections
{P«q*F': F'€ H(Opa(5))).
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Because there is aii’ € H%Op4(5)) nearF such that zerdg.g*F’) g are
given locally by a deformation f’ that meetsS’ transversely affC}, it follows by
Theorem 5.1 and Sard’s theorem that, given any analytic neighborhddd af
P(H%Op4(5))), the general sectiof’ in that neighborhood has the property that
p+q*F’ has reduced simple zeros Bhand reduced simple zeros @1. Since a
simple constant count shows that generically none of these & one have es-
tablished that, for a general deformati&nof X that is sufficiently near t&, the
components of Hil supported inS’ contribute a finite nonnegative numbey
of infinitesimally rigid curves fronP’ as well as a finite nonnegative numbey
of infinitesimally rigid curves fronQ’ to the Hilbert scheme Hilh of X".

THEOREM 5.2.
npr = 1

Proof. This is an immediate concequence of Proposition 3.5 and Corollary 4.3.
More precisely, for generi§ € X we have seen in Corollary 4.3 that the 4-
dimensional set of hyperplane sectionsXofmeetN, transversely atS} € N, .

If G’ is chosen as in the previous proof, the deformation

Fs =G +68G +xoV =0
still has the property that the period map (23)
H?%(S5) — HYY(S;)

is of maximal rank for small. Therefore, all of Hil* nears’ lies in HilbS:. But
as we have seen,
c1(Cs) # ws;

so thath%(Os, (Cs)) = 1. O

The final goal of this paper is to estimatg,. Again by intersection theory; o
is the intersection of the normal codgy associated to the sectigng*F of the
vector bundle

Eq = p.q*Ox(5)

with the zero section. Since the zero schemg,of*F o is the smooth (reduced)
curve S’ possibly together with simple embedded points at{tfi¢ fori = 1, 2,
it follows that the normal con€ o is simply a subbundle

¢ C Eg

of co-rank 1 possibly together with the entire fikgrof Eg at each of the two
points{C;}. Hence, by intersection theory (sg€]) we haveeither

ng = ci(Eg) — ci(€)
if the embedded points at tH€’;} do not lie inQ’ or

ng = ci(Eg) —ci(€) + 2
if they do.
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To computeci(Es) we use that, sinc§’ = P%, Eg is a sum of line bundles.
But
4.5.5

2

h%Es) = h%(Os(5)) = +5 =55,

hY(Es) = h'(Os(5)) = 0,
so that
c1(Eg) =55—rank(Eg) =19,

To computer1(¢), consider the deformation
F5 =G+ (S)C()V

under whichX deforms to the cone overand¢ deforms to the normal corg
of
J' = Q' NHilb*°
in Eq'. Now
S/ g J/

and, neass’, J' is smooth (reduced) of dimension 6 and so, nf¥aK is a sub-
bundle ofE;, of co-rank 6. Thus

c1(€) = c1(Nsne,) = c1(€Co)

Now from the split exact sequence

g T ca(Ngn ).

0 — Nas'xs = Nas'xxo = ¢"Ns\xo = O
and the proof of Lemma 4.7, we have
c1(Nsng) = c1(P« Navs'xxo) — c1(Zs1) = c1(p« Navs'xs) + c1(p«Os (D) — 2

On the other hand,
Co

s/ == N]’\Q’ A

Hence, if we leP{ C P’ denote the curves lying in tHixed P2 given by the equa-
tion xg = 0, then the natural projection map froth O, ..., 0) gives a morphism

Q/ — R,O = P(’)DR’
such that/’ is the inverse image of’. SinceNsn\r;, iS generated by global sec-
tions,hl(NS/\R/o) = 0 and so we have
Cl(NJ’\Q’|S/) = c1(NsnRp)
= h%(NsnR,) — rank(Nsnry)
=(5B5-6)—(31-1 =19
Thus we conclude as follows.

THEOREM 5.3.
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We wish, of course, to compuie,y’ exactly for generid. Yet despite repeated at-
tempts we have not been able to determine whether the entire schemieHilb
remains inside€’.
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