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McMillan’s Area Problem

MicHAEL D. O’NEILL & ROBERT E. THURMAN

1. Introduction

Let A denote the set of ideal accessible boundary points of a simply connected
domain$2. Recall that these are the finite radial limit points of the Riemann map
from the unit disk onta2 and that each radius along which the limit exists gives
a distinct ideal boundary point. In particular, distinct ideal accessible boundary
points may have the same complex coordinate. #gx Q2 and for eachi € A
andr < |wo —allety(a,r) C {z : |z — a| = r} be the circular crosscut @&
separating from wq that can be joined te by a Jordan arc contained§tn {z :
|z — a| < r}. Throughout this paper we will refer to(a, r) as theprincipal sep-
arating arcfor a of radiusr.

Let L(a, r) denote the Euclidean length pfa, r) and let

Ala,r) = f’ L(a, p)dp.
0

In [5], McMillan showed that

lim su A@, 1) > 1
r—0 P 2 T2

almost everywhere o#f2 with respect to harmonic measure (denoted hereafter by
a.e.w).
The purpose of this paper is to prove Theorem A.

THEOREM A.
.. . Ala,r) 1
|Im|nf—2§— a.e.w.
r—0 wr 2

This answers a question raised at the end of [5]. In an earlier paper [7], we proved
the following theorem.

THEOREM B.
.. . L(a,nr) 1
liminf < =

a.e.w.
r—0 2nr T 2

This is also in answer to the last paragraph of [5]. Theorem A implies Theorem B
but the basic idea of the proof is the same as in [7]. Let
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Eni=lacA| A, r) > 1/24+1m)ar? Vr < 1/k}

and consider a Riemann mgp D —  from the unit disk ta2 such thatf(0) =

wo. We will show thatf ~X(E,, ;) has zero Lebesgue measure in the unit ciftle

for eachvn andk. We do this by showing that, if ~*(E,, x) has a point of density

for somem andk, then the image of that point would be surrounded by a closed
curve contained ii®2. Since the union of all such sets then has measure zero, this
completes the proof.

The details of the present argument are more complicated than in [7], so it may
be helpful to read [7] first to get the main idea with fewer technicalities. It may
also be helpful to take an early glance at Figures 1 and 2 near the end of this paper.
For more detailed background on the problem, one can also refer to [4], [5], and
[6]. For the ideas from geometric function theory used here, we refer to [1], [3],
and [8].

2. Proof of Theorem A

In order to construct a curve i€ that will surround a boundary point and thus
give the contradiction proving Theorem A, we will need to know that centered at
almost every point o, ; is a wide-angled annular corridor whose thickness is
bounded from below. That such corridors exist will be a consequence of the accu-
mulation of E,, ; near the image of a point of density ¢f(E,, ;). In fact, the
abundance of points d,, , will allow us to construct a chain of such corridors in
Q that will wrap around a boundary point.

We will require the following lemma. Leb(z, E, 2) denote the harmonic mea-
sure of the seE C 992 from the pointz € Q.

LEMMA 2.1. Let Q be a simply connected domain@hand let f be a Riemann
map f: D — Q. Let E C 9 be a Borel set such thagt~(E) has a point of
density. Then, giveh > 0, there is a pointw € 2 such that

w(w, E,0Q) >1-—46.

Proof. Let 5 be a point of density of ~(E) c T. For any intervall ¢ T cen-
tered aty, there is a unique(Z, §) with 0 < r(Z, §) < 1 such that

o(r(,8)n, I,D)=1-§/2.
Letz; =r(I, 8)n. Given anye > 0, there is an interval centered at such that
11\ f7HE)| < el

where| - | denotes linear measure. Integrating the Poisson kerngl aver
I\ f~YE) then gives

oz, I\ fHE),D) < 8/2
if |11 is sufficiently small. Therefore
oz, 1N f7E), D) >1-3,

and takingw = f(z,) finishes the proof of the lemma. O
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Let dr(z;) denote the Euclidean distance frofiz;) to 9€2. Actually, results of
Beurling [2] imply the existence of a constakitsuch that a disk of radiuSd (z;)
contains all the harmonic measure of thelséund in the lemma (see [8, p. 142]).

Letwo = f(0) and assume thate T is a point of density off “X(E,,x) C T.

The finite number of steps required to obtain a contradiction in the construction to
follow will depend only on the numbe in the definition ofE,, ;. It will be clear

from the construction that f > 0 is sufficiently small and ito (w1, E, &, 2) >

1 — § for some pointw,, then the required number of steps can be completed.
Moreover, the choice of depends only om. We choosé to be this small and
apply Lemma 2.1 wittE = E,, x, thus obtaining the desired point.

Letdg be the Euclidean distance from to 02 and letxg € 92 be a point such
that|xo — wi| = dp. Since f(n) € A we can assuméy < 1/k, wherek is the
integer in the definition of,,, .

We will introduce positive constants, c1, ¢z, ... andCy, C», .... Their values
will be determined in the discussion to follow and will either be purely numeri-
cal or depend only om: (in the definition ofE,, ;). For anyw € C andr > 0, let
D(w, r) denote the set

{zeC:lz—w| <r}.

Let N be a large integer to be determined later. We will see that it can be
chosen so thalv < (const- m¥?). Sincexo is a boundary point nearest to
w1, We may choos&Rq so thatD(wy, dg) N D(xo, 2VRo) has area greater than
(3 — &&)m(2¥Ro)?. Chooserg so that ifx} is any point inD(xo, coRo) then the
area ofD(wy, do) N D(x}, Ro) is greater tharf — ;- )7R3. Later, we will also
needco < 1/+/2m. Itis clear thatR, is proportional tafg in a ratio that depends
only onm.

If § > 0 is sufficiently small, then there exists a set of pointsEpf, of
positive harmonic measure containedlix{xg, coRo). In fact, the circular arc
0D (x0, coRo) N D(w1, dg) extends to a circular crosscut @fthat determines a
unique subdomairt/g, of 2 not containingw:. The midpointw*, of the circular
arcaD(xo, coRo/2) N D(wy, do) is contained irl/y. By the comparison principle
for harmonic measure and the Beurling projection theorem, there exists a constant
C1 > 0 such that

w(w*, U NI N D(xg, coRp), ) > C1 > 0;

by repeated application of Harnack’s inequalityliws, dg) U Uy, there is then
a constantC, such that

w(wy, 0Ug N2 N D(xg, coRp), Q) > Co > 0.
By Lemma 2.1, ifs is sufficiently small then
w(wy, o N 3N D(xg, coRo) N Epy i, Q) = C2/2 > 0, @

as claimed.
Let xj; be an element 0dUg N D(xo, coRo) N E,, . Note that, because] e

E.u.k, We have
/Ro L( B )d - (1 n 1 ) 2
Xp,p)ap =z \ 5T 5 |Tr
Ro/\/ﬂ 0 2 2m
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and, by the choice afy, the area of
[zeC: Ro/v2m < |z — x}| < Ro} N D(wy, do)
is greater tharf3 — 5= )7R2. If
y (xg,7) N D(ws, do) =0
for eachr e [Ro/«/ﬁ, Ro], then the area of the annulus
[z€C: Ro/v2m < |z — x§| < Ro}

I PO v
— — 7T - — — T =TT .
2 ' 2m 0" \2 2m 0 0

This contradiction shows that there exists &g [Ro/~/2m, Ro] such that
y (x§, r) N D(w1, do) # ¥. Simple topological considerations show that circular
crosscuts of smaller radius centeregihat intersecD (w1, do) must be principal
separating arcs fors. Letc; = 1/+/2m. Thus, shrinkingR by a factor no smaller
thanc;/3, we may assume that for each< 3Ry we havey (x5, r) N D (w1, do) #
@. It follows that for each- < 2Ry we havey (xo, r) N D(w1, dg) # 0.

By a slight strengthening of the preceding argument it is clear that there are
constantg, cz > 0 such that, if 0< R < 1/k anda € E,, &, then

[{r €[ciR, R] : L(a,r) > (L4 ca/m)nr}| > c3R. (2)

is greater than

We will now assume without loss of generality thatis the origin and thaiv,
is on the positive imaginary axis. Let

Ao ={z: Ro < |z| < 2Ro}.

Let

0o = inf{0 € (—m/2, ) 1 Jo NI # 0},
where

Jog = {z :argz) = —6, Ry < |z| < 2Rp}.
Let

So={z:Ro<|z|] < 2Ry, —0p < arg(z) < 71/2}

(See Figure 2.)

Choosex; € Jy, N 9Q2. Let Ry = |x1|/2 and consider the annulug = {z :
c1R1 < |z — x1| < R1}. Any circular arcK centered ak; in A; with an angle of
at least(1 + c,/m)x is divided into two or three subarcs by the fay: argz =
—0o}. At least two of the arcs have an angle larger tham/2m. If « > 0 is suf-
ficiently small then the ray.; = {z : argz = —(6p + @)} also dividesK into
two or three subarcs, at least two of which have an angle largeethadm. The
same angle will be used in each step of the construction. It is determined that,
in each new step, newly constructed annular corridors centered at pintsith
argx; 41 = —0; will cross the ray{z : argz = —(6; + «)}. The anglex depends
not on the size oR; (or R; for later j) but only onc; andc,. Specifically, choose
o < o* wherea™ is found by solving the triangle with sides= 1, B = ¢;/2,
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andC and with angles’AB = & — com/2m, /CA = o*, andZBC. The choice
o = c1ca/32m is sufficient for our purposes.

We can further choose a sulfficiently small constgnt- 0 such that any circu-
lar arc centered ate D(x1, c4R1) with an angle of at leagL+ ¢, /m)7 and with
radius betweem;R; and R; will also be divided by the ray.; into at least two
subarcs with angle larger thapr/8m. Notice thatc, depends only on; andc;
and not onR;. We will use the same constantin subsequent similar steps of the
construction with different radir;.

The circular ar@D(x1, c4Rp) N So extends to a crosscut ©f that determines a
subdomairt; not containingw;. Because the width df is greater than consty,
we may argue as before using Harnack’s inequality and the Beurling projection
theorem inD (w1, dg) U Sp U U; to find a constan€3 > 0 depending only om
such that

w(wy, U1 NI N D(x1, caRg), L) > C3 > 0. 3)
Therefore,

o (w1, dU1N AL N D(x1,c4R0) N Ep i, Q) > C3/2>0 4)

by Lemma 2.1 with a sufficiently small initial choice &f> 0.

Foreach point € E,,, , NoU1N D(x1, caRo), let F, C [c1R1, R1] denote the set
of r suchthatl(a, r) > (1+c2/m)nr. By (2), the setF, has|F,| > c3R; and, for
eachr € F,, y(a, r) intersects the ray.;. Letx denote the orthogonal projection
of x1 on the lineL,. For pointsz, w in the plane, legw denote the line segment
with endpoints; andw. ThenL; = xox U x{oo} and we writeF, = F,;t U F~,
whereF* (resp.,F,") is the set of- € F, such thatc{oco} (resp.,xox) divides
y (a, r) into two subarcs, the smaller of which has an angle at least8m. Then
either|F"| > (c3/2)R1 Or |F,”| > (c3/2)R;. Making a choice of+ or — so that
the previous inequality holds, we rename the choserF3et et L} denote the
corresponding side df; with respect to the point and let

G,={LiNy(a,r):reF}.

By (4) and the pigeonhole principle we fiagl a7 in E,, x NdU1N D(x1, caRo)
and constantss > 0 andce > O such thatsRg/2 < |a1 — aj| < csRo and
|Gy N qul > cgR1. Note that heregs « c4. In fact, it will be seen in the follow-
ing paragraph thai; should be chosen to be small compared to the angt¢8m.

There are now two cases to consider.

Case |. For eachp such that Ry < p < R1, we havey (ai, p) N So # @.
Case Il. There is a radiug with c;R; < p < Ry such thaty (ay, p) N So = @.

Assume that we are in Case |. Giverandb in G,, N G, let S(a, b) C Q be
the subdomain of2 between the crosscuigas, la; — a|) andy (as, |a1 — b|). Let
S*(a, b) denote the annular corridor boundedijbly;, (a1 — al), y (a1, |ax — b)),
ab, and3Sy. We claim that there is a constant > 0 and pointsz andb in
Gy NG such thata — b| > ¢7R; andS*(a, b) contains no point 0d2. In fact,
if |la — b| < c3Rq and if there is a point € 92 contained inS*(a, b), then some
piece ofdQ2 must connect toab and then must extend pdst through an angle of
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y(az, laz-al)
y(ai, lai-bJ)
a ;Iv . Ly
1
cp |
8 m 'l - P _—
I —_—
folo}

Figure 1 S*(a, b) can contain no point ai2

atleast,/8m in S(a, b). Sincecs is very small compared @, 7/8m and since
la} —a1| > csRo/2, simple geometric considerations show thatifs sufficiently
small then one of the args(aj, |aj — b|) or y (a], |a7 — a|) would intersecbs2 at
a point too close td., for the pointsz andb to be contained iiG,; (see Figure 1).
BecausgG,, N Gai' > cgR1 and dian{G,, N Ga;) < (1— c1) Ry, we find the de-
sired constant; with ¢ > ¢7 > 0 and the pointa andb with c7R1 < |a — b| <
c3R1. Note that the constart, depends only on previously introduced constants
and thus only om:. We rename this annular corridSt(a, b) C Q asS;.

Now, still assuming Case I, let

Jo ={zargz) = -0, la| < |z| < [bl}

and let
S1={z:lal <lz| < |b|, =01 < argz < —(6o + @)},
where
01 =1Inf{0 € (g + ), ) : JyNIQ # B};
see Figure 2.

Choosex; € Jy, N 9Q2. Let R, = |x2|/2 and letL, be the ray{z : argz =
—(01+a)}. The arcdD(x2, caR2) N SoU S5 U Sy defines a subdomaitk, not con-
tainingw;. Arguing as before (with Harnack’s inequality, the comparison princi-
ple, and the Beurling projection theorem) but nowbitw1, do) U SoU S§U S1UU>
we find, using Lemma 2.1 with a sufficiently small choicesof 0, a constant
C4 > 0 such that

w (w1, U, N2 N D(x2,c4R2) N Em,k, Q) >Cy > 0.
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OD (w; ,dg)

Figure 2 Step 1 of the construction

As in the preceding step, we find pointsanda’ in D(x2, c4aR2) N U2 N E,, &
and setsG,,, Gay C Lo with the same properties as before. Then we again have
Cases | and |l as described previously.

Assume we are again in Case |. We repeat the argument made for thepatint
the new pointr, and find two annular sectors. Fitst is found by the pigeonhole
argument in the same way thi was found in the previous step. The new annular
corridor S is centered at the poiab nearx, and ends on the ray/, after having
passed through the additional anglexaflockwise around,. Now S5 is obtained
in the same manner th&f was previously. That is§, is centered at(, begins
whereS; ends onL,, and is stopped in its clockwise course arougdby a point
x3 € Jo,NORQ. Inthe jth subsequent step, a poiptis found at the end of;_, and
nearby points;, a7 € E,, « are found as before. Case | at tjté step means that
every principal separating arc foy with radiusp betweerc1R; andR; intersects
the union of the previously constructed annular corridirsSg, S1, Sy, ..., Sj—1.

The new annular corridors;” ; andS; are now found as in previous steps. Note
that, after theith step, the union of annular corridors so far constructed has turned
through an angle of at leagt clockwise from the horizontal throughy. A suf-
ficiently small initial choice of > 0 ensures that there is an abundance of points
of E,, x near the poin; at the end ofS;_; so that the construction may continue

to the(j + Dth step.

Assuming that we only encounter Case | in each step, a sufficiently small choice
of § at the beginning of the proof allows us to repeat the argunvent [27/«]
times, and this determines the choiceNofat the beginning of the construction.
Since the union of constructed corridors turns by an additional angle of atdeast
with each step, we will have constructed a connected union of annular corfidors
in © contained in the annulus
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{z:27"Ry < |z — x0| < 2VRy).

The union of” with D (w1, dg) contains a closed curvefasurrounding the bound-
ary pointxg.

If Case Il occurs at any stepbefore theNth then there is a principal separat-
ing arc fora, of radiusp (c1R, < p < R,) that does not interse€p U S5 U S1U
SfU---US,_1. Itfollows that the circular crosscut centerediaiof radiusp that
doesintersecfo U SgUS1US;FU---US,_1 cannot be a separating arc fgrat all.

This means thaig is located in®2 on the concave side of this arc but on the con-
vex side of the arcs that make §p_;. We then continue the construction at the
(n + Dth step with the original annulus, centered akg but now turning in the
counterclockwise direction. Since we have found Case |l in the clockwise direc-
tion, we cannot find Case |l in the counterclockwise direction without repeating
the situation ofwg being on the concave side of the last nonseparating circular arc
yet on the convex side of the arcs in the I8st; from Case |. Simple topolog-
ical considerations rule out this possibility and we thus find a closed curée in
surroundingrg in at mostN more steps.

It follows that there can be no point of density f%(E,, ;) and that the har-
monic measure of,, , is therefore zero. The theorem is proved.
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