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The Bergman Metric in the Normal Direction:
A Counterexample

K. DiEDERICH & G. HERBORT

1. Introduction

Let D cc C”" be a bounded domain. By (z; X) we denote its Bergman met-
ric and bydg(z, w) the distance function associatedRg. The question of the
completeness ob with respect tadg has found much interest. Kobayashi [13;
14] proved criteria for the Bergman completeness of a bounded daintiat are
based on a representationdagfby means of the Fubini—Study metric in the projec-
tive spaceP(H?(D)) over the Hilbert spacé&/?(D) of all holomorphic functions
on D that are square integrable with respect to Lebesgue measure. Almost all qual-
itative completeness results for the Bergman metric were obtained by means of
this criterion (see e.g. [1; 11; 12; 16]).

Another interesting (yet more refined) method for studying the Bergman com-
pleteness o consists of looking for quantitative estimates & and Bp im-
plying it. In this direction, a very general result was obtained by Diederich and
Ohsawa [8], who proved that—for those hyperconvex domains admitting a pluri-
subharmonic exhaustion functignsatisfying

cdist(-, 9D)™ < |p| < C dist(-, aD)¥™

with suitable constants, C, m > 0—the Bergman distance grows at least like a
constant times log la@/dist(z, aD)) for z sufficiently close t@D. This result ap-
plies in particular to all finite intersections 67-smooth pseudoconvex domains.

LetnowD = {r < 0} be a bounded pseudoconvex domain with smooth bound-
ary and letz® € aD. In this paper we study the following related question on the
boundary behavior of the Bergman met#g nearz?:

Does there exist a constaat > 0 and an open neighborhood > z°
such that, for all directions( € C", one has the lower bound
ar(z), X
By(z: x) = @@ X M
[r(2)]
onDNU?

Here(0r(z), X) = Y__; X;0r/0z;(2).
The inequality (1) has long been known to be true under certain additional hy-
potheses on the domali. It holds for example wher? is strongly pseudoconvex
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(shown for the first time in [5]) or if there exists an open neighborhidag:° and
a continuous functio¥: V x (V N aD) — C such thatF(-, ¢) is holomorphic,
F(z,¢) =0, and ReF(-,¢) <0onD NV forany¢ € V N aD. (This condition
is, for instance, trivially satisfied on convex domains.)

If the boundary point° is supposed to be of finite type in the sense of DAngelo,

a situation where local holomorphic supporting surfaces need not exist in general,
then the question of whether (1) is satisfied is settled only in some cases: for ex-
ample, ifn = 2 (see [3]); or forn > 3 if the Levi form of 3D has at most one
degenerate eigenvaluet[4; 10]. If, however, the approach of the poine D

to z° is restricted to be nontangential, then positive results are obtain€dsibf

finite semiregular type (see [2; 6; 9]).

Many people have asked whether (1) holds on any bounded smooth pseudo-
convex domain, and it is often conjectured that an affirmative answer should be
possible. However, by the following theorem, the estimate (1) does not hold, in
general, on a smooth bounded pseudoconvex domainC”.

1.1. THEOREM. Letl > a > 0 be arbitrary. Then there exists a pseudoconvex
domainD cc C?, having smooth boundary withe dD, that is described by a
defining function of the form

r(z, w) = Rew + blw|* + p(2), )
wherep denotes a subharmonic function wijtli0) = 0 and whereb > 0 is suit-
ably chosen, such that

(i) aD is regular, as the weakly pseudoconvex points are of the i@ m),
wherew lies on a circle and
(ii) thereis no constant > 0 such that
|(9r(z), X)|
Ir(2)|(log /|r (z)[)V/*+2a

holds forz € D N U with any open neighborhoad of 0.

Bp(z; X) = C 3

The construction of the counterexample given in Section 2 is inspired by ideas of
Krantz, who indicated in [15] how to construct a smooth bounded pseudoconvex
domain inC? for which the corresponding lower bound
ad , X
FX (e x) = 1P X1 (4)
Ir(2)]

does not hold for the infinitesimal Kobayashi metfi§ of D.

2. Construction of the Example

We start with the construction of the functiprappearing in Theorethl. Forthis

we will modify the ingredients going into the construction of the corresponding
function p from [15, pp. 8, 9] in order to be able to control the Bergman kernel
function. For the reader’s convenience, we give all main details.
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2.1. ProposITION. There exists oiC, for any number0 < a < 1, a subhar-
monic smooth functiop and sequences,,),, and (r,),, tending to zero such that

(i) foranyz e C with |z| < r,,

a né,
p(z) < L+ coaH(n +1)3%™)8, +

rl‘l

Rez (5)

with an unimportant constant > 0; and
(i) the Laplacian o is positive outside the origin, and all derivativeswban-
ish at the origin.

Proof. Forv > 100 andx < 1/48, let
|22

1
wy(2) 1= E—4W+Rez+a—+f|09(|2| + e %)

with
C, =2log(v +1). (6)

We proceed in five steps as follows.

Step 1: Definition of certain auxiliary function§Ve define the functions
maxw,(z), 0} if Rez > —%,

w, (2) if Rez < —1%,

and we claim thaR, has the following properties:

(@) R, is subharmonic;

(b) Ry(z) =0for|z| < 2e=C;

(c) R,(z) <1+ RezforzeCwith|z| <v+ 1.

For the proof of (a), we observe at first that is subharmonic. Hence we need
only show that the definition aR, is consistent. This follows from the fact that
w,(z) > 0 for anyz € C with Rez = —1. Namely, for Ret = — we have

R,(2) = {

log4 1 log 2

c, 4 " Tlogw+y -~

(@>5-4
va)_Z o

since Iog 2

log(v+1) >log64=61log2=> T

i

For the proof of (b), let € C and|z| < ge‘cv. Then, in particular, Re > —
hencer,(z) = max{w,(z), 0}. We check thatv, (z) < 0. Namely:

1.
4>

1 2
wy(z) = > —4a+Rez+a| | 2C + o720

1 3 9e2Cv 1 9

Z_4 = -G | 1 -2C,
sS At et st o og(( + ) )

9 log13/4

< = —4 -1+ —=—7
=2 Tt o0 12 T 10220 1 1 4logv + 1))
<0,

sincev was chosen sufficiently large.
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In order to prove (c), we chooses C such thatz| < v + 1. Then we have
2 2C

—2Cv)

(¢

1 1 (v+1)? 1
__§+4|og(v+1) <(”+1) (( +1)2 * (v+1)6)>
_ (( +%)2<v+1>4+1>

"~ 4log(v + 1) (v+ 16

<0,

<
- 2 2C,

2+2CV

because
v+ D’0+D +1=(v+1- 2’0+ +1
=+ - w+D3+iw+D*+1
=w+D+ v +D'A-4wv+D)+1
<Ww+1°

forv > 2.

This proves (c) for alk with Rez < —;11 and for allz with Rez > —;11 and
w,(z) > 0. IfRez > —% andw, (z) < 0, then one has trivially that + Rez >
0 = maxw,(z), 0} = R,(z). Hence, (c) holds in each case.

Step 2: Smoothing of the functioRs. We fix a radially symmetric nonnega-
tive smooth functiorps, with support in the unit dis® in C, such that|¢4] ;1 =
1 Fore > 0 we putg,(z) = ¢ %¢1(z/¢). Then we define smooth subharmonic
functionsu, by

1 1 _.
u, =R, x¢,,, Whereeg, = —— = ¢

4v+12 4 %

Our claim is now that
uy(2) =0 if |z <e . (8)

Indeed, for such pointswe have
0@ = [ RE-08.©d% =0,
[¢]<ey

since for¢ € supf¢.,) = A(0, 3¢) and|z| < e~ we have that — ¢ €
A(0, 2¢=¢), whereR, is identically zero.



Bergman Metric in Normal Direction 519

Furthermore, we have
uy(@) <1+Rez if 7] <v. (9)
Namely, one can estimate

uyG) = /| RG- 00,00 d%
l<ey

< / L+ ReG — £)) ¢, (0) d%¢
4B
(since|z — ¢| < v+ 3 for ¢ e supf¢.,))
=1+ Rez,

owing to the harmonicity of — Rez.
Next we estimate the derivatives of the functienis For an integek > 0, let
D® denote sométh-order derivative. Then one has

D®u,(2) = R, » DV, (2);

this vanishes fofz| < e=¢v.
For any pointw, we have

IRy (w)] < |wy (w)]

- 1 w4+ @ N 2C, + log(1+ |w|2);
2 V2 2C,
this follows because, faw|?> < 1 — e~2¢v, the log term can be estimated by
—2C, < log(jw|* + ¢ %) < 0.
Hencellog(|w|? + ¢2¢")| < 2C, and, for|w|?> > 1 — ¢2C",
0 < log(|w|® +¢72“") < logL+ |[w?).
If now ¢ € C is arbitrarily chosen and € supf¢., (¢ — ), then
IRyl = 5+ [l + “:’—2'2 L2t 'Ozgc(ﬁ ol

3 |¢]? + e72C log(2 + 1¢1?)
<= p A Wi S LA
=g+l — =

and therefore

IR, » DV, ()| = ’ R,(w)DP¢, (¢ —w) dzw‘

‘§7w|<5v
< IR, (w)||IDPg, (¢ — w)|d?w
—wl<ey
2 Jog(2 + [¢]?
24 |¢ + 250 L 9 HIEDN hwg, s
v 2C,

1712 1og(2 + [21%)
24+ ¢+ 2? + Z—CV

¥
«

—k k
)sv ID® 1]l 2.
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Step 3: Scaling of the,. For numbers O< s, < 1to be chosen later, we put
vy (2) = uy(z/s0).
From the considerations in Step 2, we obtain immediately that
v,(z) =0 for |z] <e Cs, (10)
and

2 log@+Iz/s.%)
DOy (2 < (2 Iz] 5 |z| /Sy
DT, @) = ( * Sy + v2s2 * 2C,

)(svev)—kuD(%nLl (11)

for anykth-order derivativeD® .
If, furthermore,|z| < r, ;= vs,, then|z/s,| < v and hence

1
v() <1+ —Rez=1+ - Rez. (12)
S r

v v

With the functionsy, just constructed, we can now come to the decisive step.

Step 4: Definition of the functiop. With positive humbers, (to be chosen
shortly and depending o), we put

p(D) =) 80
v=100
Assume now that the, ands, have been chosen such that the following require-
ments (13)—(15) are satisfied (we will show that this is indeed possible):

1
s, <= min s,e”® for n>101 13)
n 100<v<n-1

For any integek, the following series converges:

[o¢]
3, .
> g < oo (14)
v=100 'V v

furthermore, there is a constatit > 0 such that, for any > 100,

[e¢]

S, 1 a8y

E — <c'—(n+De" — 15)
st a st

v=n+1 "V n

forl =0,1, 2.

Claim: The series with the terndsv, converges together with all its derivatives
uniformly on compact subsets @f

In order to show this, we choose an arbitrary radtus 0. Then, from (11) we
obtain

sup|D®v,(2)]
|z|<R

R 2R? 1 R?
—k (k)
< (evs) D ¢1||L1<2+ S ot Iog<2 + Tz)) (112)
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From (14), we conclude that the series

Z 8, sup|D®v, (2)]
v=100 ZI=R
converges. In particular, it now follows thais smooth and subharmonic through-
outC.
Next we prove property (5). Suppose thdt< r, for somen > 100. We split
the serie into

n—1
PR =Y 8,0+ 8ua(2) + Z 8yvy(2).
v=100 v=n+1

Because of (13), for the terms of the first sum we have

|Z| I nsy _
i < e Cv:

Sy Sy Sy
hence, by (10)y,(z) = 0 forv < n. From (12) forv = n we obtain

nd,
Spvn(z) <6, + Rez.

n
Assume now that > n. Then, for|z| < r,, using first (11a) withR = r,, and then
(15) for/ = 0, 1, 2, we can estimate

00 00 r 2 2
Yo sun@< Y8 (2+l 5. <2+ ))

v=n+1 v=n+1 v
S DIL R WA SRR SR
v=n+1 v=n+1 Sv v=n+1 S v=n+1

, 00 9] 5,

ca( Lo Y 2oz y

v=n+1 v=n+1 Sv v=n+1 Sy

1 a
<co=(n+D3s,,
a

because, = ns, by definition. This implies (5).

Also, Proposition 2.1(ii) holds fop. By construction, all the derivatives @f
vanish at the origin. If now € C \ {0}, then there exists an indexfor which
R, = w, in a disc with centet /s, and radius,. Because of the appearance of
the termw (1/v?)|z|2 in the definition ofw,, this implies that also the Laplacian of
v, IS positive neat.

We still have to show that the parameters going into the construction of the func-
tion p can indeed be chosen such that the inequalities (13)—(15) are satisfied.

Step 5: Choice of the parameteidle puts, = 1/(v!)® andr, = vs,. Further-
more, for a positive number @ a < 1, let

8, = sZexp(—vttT) (16)
We will now check that (13)—(15) are satisfied.
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The proof of (13) is easy:

. _c 1 . Sy

~ min se == mn ——

n 100<v<n-—-1 n 100<v<n—-1 (l) =+ 1)2
= min 1
T n100<v<n-1 (V)3(v + 1)2

1 1

> - @@
“n((n—=21DH32
=5,.

The proof of (14) is also not difficult:

8y k 2k 1\3k,—vtt
W=4(U+l) (UI) e’
vov

< 4k exp(—v**t + 2k log(v + 1) + 3kv logv).

The latter terms belong to a convergent majorant of the sgries, /X sk+2.
Inequality (15) also holds. In fact, le€ {0, 1, 2}. Then, forv > n + 1 we have

1) Sl N 2 1 1 1 1
+ay ,l+a +ay ,l+a
\]} . on ( U) —yltay, < V4 ]
Sy 8” Sn

We now estimate the differeneevlt 4 plte;

e e (08 @) oy — gy
< —v(@w*—n* —n*
< —v((n+D*—-n") —n"
n+1
< —av/ xLdx — n®
< —a(n+2D v —ne.

Altogether, these estimates give

b & Sy P 1

=z — <e™" exp(—a(n + D% v

5 2 g =¢ 2 exptan+ D)
v=n+1 "V v=n+1

- exp(—a(n +1)*Y(n + 1)
N 1—exp(—a(n + 1)1

A

e—n“a—l(n + l)l—a

A

1 _aa
—(n+De™,
a

showing (15).
Together with the arguments from Step 4, Proposition 2.1 is now proved]
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We now can define the pseudoconvex dom@irwhich will serve as a counter-
example to (3).

2.2. LEMmA. Let
2

1
2f —4—b+p(z)

wherep is as in Proposition 2.1 and > 0is such thatl/4b is not a critical value
of p. Then the pseudoconvex domain

D ={(z,w)eC?:r(z,w) <0}

r(z, w) = Rew + blw|? + p(z) = ‘\/_w-l-

is smoothly bounded and is regular néarThe Levi degeneracy set is given by

{(o w) | 'JEw +

1
2Jb zﬁ}'

Proof. This can be seen immediately from the propertiep .of he boundedness
of D follows from the observation that(z) > |z|? for large |z|. Furthermore,
if r,(z, w) = 0 andr(z, w) = 0, thenp(z) = 1/4b; hencep,(z, w) # 0. This
proves the smoothness @b. The Levi function ofdD is

- 12
Ap = |rw|2pzZ +b|rz|2 = ’% +bw’ Pzz +b|pz|2-

If (z, w) € 3D andz # 0, thenp_z(z) > 0. If now 1 + bw = 0, thenp(z) = 1/4b
and hencep.(z)|? > 0. The only weakly pseudoconvex pointsdf must there-
fore be of the form0, w). This proves the claim. O

2.3. LEmMma. Let (r,),, (8,), be as defined ifl6) and letp, = (0, —55,/4).
Then the Bergman kerné&l, of D (on the diagona) at p, can be estimated by

1 -2 -2
E((Snrn) < KD(pn) =< C(Snrn)
with some unimportant consta@t

Proof. We denote byf, the following change of coordinates:

fulz, w) = (z w2 ) 17)

n

Its inverse is given by
—1,_7 / / / na" /
f;1 (Z,w): Z,W—r—z .
The mappingf, leavesp, fixed and transform® into the domainD,, = f,,(D) =
{¥, < 0}, with
Yz w') = r(f,7 N w")

nd,
=Rew’'+p(z) —

n

2

n _y

Rez’ + b‘w’ - n—z

(18)

n
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The upper bound foK, then can be deduced as follows. The bidisc

4°8
is, for sufficiently large:, contained inD,,. This follows from property (5) of the
function o. Namely, for(z’, w’) € A, we have

A, = A, 1) X A(— Sl 5”) (19)

ns, |? 95 11 2 17
Rew’ + blw — —27’ b= 82 <——5, |if 1
w + ‘w r,,z < 8 + (8+n> n < 16 n >
Moreover,
S, .
p(2) — 2 Rez’ < (14 coa H(n + 1% )5,

n

Inserting this, we obtain,(z’, w’) < 0; henceA, C D, if n > 1
The Bergman kernel increases if the domain is shrunk. This gives us the upper
bound:

1 64
- ((Sn rn) .

KD(pn) = KDn(p”) = KA”(pn) - VOl(A ) - T

We now come to the proof of the lower bound .

Let us first recall a result of Ohsawa from [17]: ¥ c C¢ is a pseudocon-
vex domain, ifE ¢ C¢ is a hyperplane witl2’ = QN E # ¢, and ifg: Q —
R U {—o0} is a plurisubharmonic function such that

C, :=supp(z) + 2logdistz, E)) < +00
Q
(these weights are callatbgligiblg, then any holomorphic functioyi satisfying
1,(f) = / | f12¢™% dhg_1 < +00
Q/

admits a holomorphic extensigft & — C with anL2-norm controlled by, (f),
namely,

/Q | FRdrg < CaeS1,(f)

with an unimportant constant,. (Here, byd, we denote the Lebesgue measure
in complex dimensiot.)
If we apply this to the Bergman kernel (see [7]), we obtain

Ko(p) = Cle Ko, (p) (20)

for p € Q'. HereKgq ,(p) denotes the weighted Bergman kernekufat p for
the space of all holomorphic functiorfson ' with 1,(f) < +o0.
We want to apply this t® = D, andE = {7’ = 0}, in which case we have

ol <)

If ¢ is plurisubharmonic o,,, then we obtain (using [7, Thm. 3.5]) that

D;,:DnmE:{w’
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Kp »(p) = (dist(p, 3D,)) %e?? (21)
foranyp e D,.
What we need to find is, for each sufficiently largea negligible weighty =
¢, on D, (with C,, < 0) for which

1
@n(pn) = C +2log— (22)

with some unimportant constaat If we have found this then, combining and
applying (20) and (21) tp = p,, we are done (note that digi,, dD,) ~ §,).

Choice of a suitable negligible weightetn > 100 be arbitrary. From the def-
inition of the functionx,, we haveu,, > R,,, SO

, 7/ 7/ 7/
Un(Z ) = un<_> = Rn<_) = wn<_>
Sn Sn Sn

and (noting that logz’|? + e=2“") > —2C,)

12 2

7’ 1 z
wyl —)>—=—4a+Re—+u«
2 K

Sn n

Z

I'n

We choose a smooth functign: R — (—o0, 1] with x(¢) = ¢ forz < 1/2 and
x(t) = 1fort > 3/4. Then, for a small enough constant> 0, the function
7+ |72 + c1log x(|z’|?) becomes subharmonic. This implies the subharmon-

icity of the functions
2 |Zq2
+ c1log x 2
rn

5,(2') i= Da(z') — ac1loglz’|2.

From the choice of, it also follows that

!/

1 !
0,(z") = —5 4+ Re= +a<

Sn

n

and

v, > Uy
We now claim that

on(z', w")

n—1 00
1 ~ 12 811 I /7
= <Rew’—|— > 8@ +8,5,) — “ERe + Y 8wz ))

ac1d, o . oo

is the desired negligible weight. In fact, for aty, w’) € D, one has
n—1
ac18u(a(z, w') + 2l0giz') = Rew’ + > 8,v,(z")
v=100

né,

S
Rez’ + Z Suvv(z/)

+ an ﬁn(z/) -
——
v=n+1

<vn(z')

I'n

ns,

<Rew’' +p() — Rez’

n

<Yz, w") <0.
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We therefore obtaid’,, < 0. The functiony, is obviously plurisubharmonic and
has the right behavior at,, namely,

1 5
(pn(Pn) = <__ + Un(0)>
acy 4

1 5 1
e 4a + acilogr;?) > C +logr; 2
ac1\ 4 2

with an unimportant constadt.
Lemma 2.3 is thus proved. O

3. Final Proof of Theorem 1.1

For a vectorX e C?, we compute
1 0 X1
(p)X = X = .
ro= (s 2)0= ()

From the Bergman theory we recall that, far w) € D andX e C?, the func-
tional

bp((z, w); X) := v Kp((z, w)) Bp((z, w); X)
increases ifD is replaced by a subdomain 6f. Let us now assume that a lower
bound of the form (3) would exist with a suitable constént- 0. This would
yield
|(0r (py), X)I
[r(pa)|lloglr (p)||¥/E+2a

< Bp(pn; X)

= BDn(pn; fr:(pn)x)

_ bDn(pn; fn/(pn)X)
v KDn(pn)

_ ba(pus lp)X)
A% KD(pn)

vV KAn(pn)

= ~———Bna,(p; f1(p)X)

V KD(pn)
< C'Ba,(pn; fi(p1)X) (by Lemma 2.3)
n 2 1/2
’ |Xl|2 | r5n X1+X2}
= gm - 7
c'l2 g +12 2

Now we choose

) 1
I'n

and insert this into the previous estimate. Then
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3r (). Xon) = =3
With some new constar*, we obtain
n <c* 1
in particular,
1 \Y+2a
n < C*(Iog a) . (23)

On the other hand, by the definition &f (see (16)) we have

_plta _plta_ | _pl+a_ _o,1+a
(Sn :sfe n —e " 6 logn! >e n 6nlogn >e 2n

for n > 1; hence log, > —2n*** and

1 1 1/1+a
> | =log—
"= <2 96n> ’
which contradicts (23).

This proves the theorem. O
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