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On Elliptic K3 Surfaces

ICHIRO SHIMADA

1. Introduction

By virtue of Torelli’s theorem for the period map on the moduli of compkeX
surfaces [4; 13; 18], we can study many aspect& 8fsurfaces from the lattice-
theoretic point of view. In this paper, we determine all possil¥: -types of sin-
gular fibers of elliptick 3 surfaces using Nikulin’s theory of discriminant forms of
even integral lattices. We also determine, for eA€NE -type of singular fibers, all
possible torsion parts of the Mordell-Weil groups. Throughout this paper, we use
the term “an elliptick 3 surface” for “a complex ellipti& 3 surface with a distin-
guished zero section” and the term “an elliptic fibration” for “a complex Jacobian
elliptic fibration”.

A finite formal sum of the symbold; (I > 1), D,, (m > 4), andE, (n =
6, 7, 8) with nonnegative integer coefficients is calledAabDE-type. For anA DE-

type
> = ZG]A[ + deDm + ZenEnv

we denote by (X)~ the negative definite root lattice generated by a root system
of type X, and by rankX) the rank ofZ(X)~. By definition, we have rani&) =
Sal + ) dym+ ) e,n.

Let f: X — P! be an elliptick 3 surface, and le® : P! — X be the zero sec-
tion of f. Let MW, be the Mordell-\Weil group of. The torsion part of MWis
a finite abelian group, which we shall denote®y. We put

Rf = {peP'| fX(p) isreduciblg

and, for eaclp € R;, we denote byf ~*(p)* the union of irreducible components
of £~(p) that are disjoint from the zero section. It is known that the cohomol-
ogy classes of irreducible components fof'(p)* span a negative definite root
lattice generated by an indecomposable root system of typ®,,, or E,,. Let

1/, be the type. The type of singular fibgr'( p) in the list of Kodaira’s classifi-
cation [7] is related tay, , in an almost one-to-one way (cf. Table 2.8). We define
the ADE-type X, of f: X — Plby

Y= Z Tf.p-
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The Néron—-Severi lattice NSof X contains the sublattic§, generated by the
cohomology classes of the irreducible component@)gng £ X(p)*, which is
isomorphic toL(Xy)~.

Through computer-aided calculation, we have made the complete list of pairs
(2, G) ofanADE-type ¥ and a finite abelian grou@ that can be realized as the
data(Zy, Gy) of an elliptic K 3 surfacef : X — P This listP consists of 3693
pairs. In this paper, we present the IBf deduce some geometric facts from it,
and explain the algorithm for obtaining it.

The list P is too large to be included here in a naive way. We therefore de-
scribeP by giving a subse of P and a set of transformation rules AfDE-
types that generat® from S (see Section 2). The reader can obtAreasily
using this description (the list can also be retrieved from the author’s homepage:
http: //www. math.sci.hokudai.ac.jpghimada/K3.html).

An elliptic K3 surfacef: X — P! is said to beextremalif the sublattice
Sy attains the maximal rank 18. After the work of Miranda and Persson [10]—
supplemented by Artal-Bartolo, Tokunaga, and Zhang [1] and Ye [23]-ADE-
types of singular fibers of extremal ellipti¢3 surfaces and their Mordell-Weil
groups were completely determined in [16]. The list consists of 336 pairs.

One of the remarkable facts that can be read off from thélistthat anA DE -
type T is anA DE-type of an elliptick 3 surface with trivial Mordell-Weil torsion
if and only if X is obtained from am DE-type of an extremal ellipti& 3 surface
with trivial Mordell-Weil torsion byelementary transformatiorhat is, by delet-
ing vertices from the corresponding Dynkin graph (see Theorem 2.3). However,
in order to describe the list of DE-types of elliptickK 3 surfaces with nontrivial
Mordell-Weil torsion, we must forbid the use of some types of elementary trans-
formation (Theorems 2.4-2.7).

By Nishiyama [12] and Besser [2], the technique of discriminant forms was
used to find out all possible elliptic fibrations on spedd surfaces. In [19; 20],
Urabe investigated possible configurations of singular point& 8rsurfaces and
suggested the existence of a set of simple rules that generates all possible config-
urations. In [21; 22], Yang made the complete list of all possible configurations
of singularities ofA DE-type on plane sextic curves and quartic surfaces using the
technique of discriminant forms and a computer.

This paper is organized as follows. In Section 2 we desdplaand state some
facts about elliptik 3 surfaces that can be derived from thestn Section 3 we
recall the definition and properties of local invariants of lattices @according
to Conway and Sloane [6, Chap. 15]. In Sections 4 and 5, we review Nikulin's the-
ory [11] of discriminant forms of even lattices ov&r A criterion for establishing
whether there exists an even integral lattice of a given signature and a discrim-
inant form is described in detail in Section 5; this criterion is slightly different
from [11, Thm.1.10.1] and ismore suited to machine calculation. In Section 6 we
recall the properties of root lattices. In Section 7, we show that it is possible to
determine by a purely lattice-theoretic calculation whether a given(paiG)
can be realized a&, Gy) of an elliptic K 3 surfacef: X — PL Here we use
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Table 2.1 Cardinalities ofP¢

G A 2 (38 [ (8] 6 [71 8 [2.2] [42] [6.2] [3.3] [4.4] | Total

|PC| | 2746 732 85 41 6 10 1 1 61 5 1 3 1| 3693

Kondo-Nishiyama’s lemma on the Néron—Severi lattice of an elligBcsurface.
In Section 8, we explain our algorithm.

The program for making® was written by Maple V. The author would like
to thank Waterloo Maple, Inc. for developing the nice software. The author also
would like to thank the referee for suggesting some improvements on the first ver-
sion of this paper.

2. Main Results

All results in this section are obtained simply by looking at the7ist

2.1. Torsion Parts of Mordell-Weil Groups

TueoreM 2.1. The torsion part of the Mordell-\Weil group of an ellipth€3 sur-
face is isomorphic to one of the following

). Z/(2), Z/(3), Z/H), Z/(5), Z/6), Z/(T), Z/(8),
L/(2) x L/(2), LZ/(4) x L/(2), 7[(6) x Z[(2), (2.1)
Z/(3) x Z/(3), Z/(4) x L[(4).

For a groupG in (2.1), we denote b ¢ the set of alld DE-typesX. such that there
exists an elliptick 3 surfacef : X — P! with £; = ¥ andG,; = G. The cardi-
nalities of P¢ are given in Table 2.1. Hereg] denotes the cyclic groui/(a),
and [, b] denotesZ/(a) x Z/(b). In particular, [1] denotes the trivial group.

For a positive integer, let P.¢ be the subset @ ¢ that consists o € P ¢ with
rank(X) =r. Let f: X — P! be an elliptick 3 surface. Since the Néron—Severi
lattice NS of X contains the orthogonal direct sum §f = L(X;)~ and the
lattice of rank 2 generated by the cohomology classes of the zero section and a
general fiber, and since the Néron—Severi rank @ at most 20we always have

rank(X,) <18

HencePC is empty forr > 18,

2.2. ADE-Types of Singular Fibers

Next we describe the ligP ¢ for each abelian grou@ in (2.1). We carry out this
task by three different methods according to the size 6f
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Table 2.2 Substitutions

A= Ap+ Ay 0<1I'<1/2);
Ap_1, 2A1+ A3, Az+ Ap,a,
D, + Ap_1p (4 =< m’' =m-— 1)7

Ayt Dypa, Ai+Au 2, Ai+ A2+ Ay, Ag+ Ay s,
Ds+A,e, Ev+ A1y (6 =< n’ <n-— 1)

Dmr—>{

E,,r—>{

Case 1:G € {[1],[21, [3], [4]. [2, 2]}. We describéP S by giving asubsef ¢ c
P6 and a set of transformation rules dDE-types that generate the whaR®
from the subsef ¢.

Let I'(X) be the Dynkin graph of thd DE-type X. If we remove a vertexP
of ['(¥) and the edges emitting froi, we obtain the Dynkin graph(X’) of an-
otherADE-type X’ with rank(Z’) = rank(X) — 1 In this case, we say that’ is
obtained fromx by deleting a vertex. In other words, AlDE-type ¥’ is obtained
from X by deleting a vertex if and only i£’ is obtained by applying t& one of
the substitutions listed in Table 2.2. In this table, we understanddtfhat O.

DErFINITION 2.2.  When we can obtain anDE-type X’ from anADE-type X by
applying substitutions in Table 2.2 several times, we sayXha obtained from
% by elementary transformation.

THEOREM 2.3. (1)The IistPl[é] consists ofl99elements as follows.

2Eg + Ay, 2Eg+ 2Ay, Eg+ E7+ Az, Eg+ E7+ Ao+ Ay, Eg+ Eg+ Dg,

Eg+ E¢+ Aa, Eg+ E¢ + A3+ A1, Eg+ D10, Eg+ Do+ A1, Eg+ D7+ Az + Ay,
Eg+ Dg+ A4, Eg+ Ds+ 2A3, Eg+2Ds, Eg+ Ds + As, Eg+ Ds + Ag+ Ay,

Eg+ Aj0, Eg+ Ag + A1, Eg+ Ag+ Az, Eg+ Ag +2A;, Eg+ A7+ Az + Ay,

Eg+ Ag+ A4, Eg+ Ag+ A3+ A1, Eg+ Ag + 245, Eg+ Ag+ Ao+ 2A1, Eg+ 2As,
Eg+ As+ A4+ Ay, Eg+ As+ Az + Ap, Eg+2A4+ 2Aq, Eg+ Ag+ Az + Ar + Aq,
Eg+2A3+2A3, 2E7+ Ay, 2E7+2A3, E7+ Es+ Ds, E7+ Eg + As,
E7+Ee+ As+ A1, E7+ Es+ As+ Az, E7+ Du, E7+ Do+ Az, E7+ D7+ Ay,
E7+ Ds+ Ag, E7+ Ds+ Ag+ Az, E7+ An, E7+ Ao+ A1, E7+ Ag + Ay,

E7+ Ag+ A3z, E7+Ag+ Ax+ A1, E7+ A7+ Ay, E7+ A7+ 242, E7+ As + As,
E7+Ag+As+ Ay, E7+Ag+ Az + Az, Ev+ Ac+2A2+ A1, E7+ As+ Ag+ Az,
E7+ Aa+ A3+ 2A3, 2E¢ + D¢, 2E6 + As, 2E6 + 2A3, Eg + D12, Ee + D+ Ay,
Es+ Do+ A3, Eg+ D9+ Az + Ay, Es + Dg+ Ay, Eg+ D7+ Ds, Eg + D7+ As+ Ay,
E¢+ De+ As, E6+ Do+ As+ Az, Eg+ Ds+ A7, Es + Ds + Ag + Ag,

E¢+ Ds+ As+ Az, Ee+ A1z, E6 + A+ A1, E6 + Ao+ A2, Ee+ Ao+ 24y,

Eg+ Ag+ A3z, Ee+ Ag+ A+ A1, Ee+ Ag+ Ay, Ec+ Ag+ A3z + A1, Eg+ A7 + As,
Eo+ A7+ As+ Ay, Eg+ Ag+ As+ Ay, Eg+ Ag—+ Aa+ Ag, Eg+ Ag+ As+ 241,
Ee+ Ag+ As+ A2+ A1, Ee+ As+ Ag+ Az, Ee+2A4 + Ag + A1, Dig, D17+ Ay,
Dis+ Az + A1, Dia+ Ag, Dia+2Az, D13+ Ds, D13+ As, Diz+ Ag+ Ay,
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D1+ Ag+ A1, Du+ As+ Az, Din+ Ag+ Az + A1, Du+ Az +2A3, Do+ As,
D1o+ Ag+ Az, D1o+ 2A4, 2Dg, D9+ Ds + Aa, Do+ Ag, Do+ Ag+ Ay,

Do+ Ag+ Aa+ A1, Do+ As+ Ay, Do+ As+ 2A2 + A1, Dg+ Ag+ 2A5,

2D7+ 2A5, D7+ Ao+ A1, D7+ Ag+ Az, D7+ Ag+ As, D7+ Ag+ As+ A,

D7+ A+ Az + Az, D7+ 2A4+ Az + A1, De + A1z, Do+ Aro+ Az, Ds + Ag+ Ay,
D¢ +2Aq, De+ Ag+ As+ Az, Do+ 2A4+2A3, 2Ds+ Ag, 2Ds + 2A,,

Ds + A3, Ds+ A12+ A1, Ds+ Ao+ Az + A1, Ds + Ag+ Ag, Ds+ Ag+ 24,

Ds+ Ag+ As, Ds+ Ag+ Ag+ A1, Ds+ 2A6+ A1, Ds+ Ag+ As + Ag,

Ds+ Ag+ Ag+ A+ Ay, Ds+ Ag+ Az + 2A,, Ds+ As+ 2A4, Aig, A17+ Ag,
A1e+ Az, A1s+ 241, A1s+ Az + A1, Awa+ Ay, Ara+ Az + Az, Awg+ Az + 24,
A1z + As, A1z + Ag+ Ar, A1z + Az + Az, A1z + 242 + A1, A1z + Ae, A1z + As + Ay,
A2+ Ag+ Az, Ao+ Ag + 2A1, A1z + Az + Az + A, Ao+ 2A2 4+ 2A1, An+ Ae + As,
An+ Ag+ Az + Ay, Ao+ A, Ao+ A7 + A1, Ao+ As + Az, Ao+ Ag + 244,
Ao+ As+ Az, Ajg+ As+ Ap + Ay, Ao+ 244, A1g+ Ag+ Az + Ay, Ao+ Ag+ 2A5,
Ao+ Ag+ Az + 2A1, Ao+ 2A3+ Az, Ao+ Az +2A2 + Ay, 2Ag, A9+ Ag + Ay,
Ag+ A7+ Az, Ag+ Ag+ Az, Ag+ Ag+ Az + A1, Ag+ As+ Ay, 2Ag + 24,

Ag+ A7+ Az + A1, Ag+ Ag+ As, Ag+ A+ Az + A1, Ag+ Ag + Az + 24y,

Ag+ As+ Ag+ A1, Ag+2A4+ 2A1, Ag+ Ag+ Az + Az + A1, 2A7 4+ 2A,,

A7+ Ag+ As, A7+ Ag+ As+ A1, A7+ A+ As+ Az, A7+ Ag+ 242+ Ag,

A7+ As+ As+ A, A7+ A+ Az + 243, 2A6+ As+ Ay, 2A6 + 2A3,
2A6+2A2 4+ 2A1, Ag+ As+ Ay + Az, Ag+ As+ Ag+ Ax + Ay, Ag+2A4+ Az + Ay,
Ag+2A4+ A+ 2A1, Ag+ Ay +2A3 + Az, Ag+ As+ As+ 245 + Ay, 2A5 4 2A,,
2A4+ 2A3 + 2A5.

(2) An ADE-type X with r := rank(X) < 18is a member o if and only if
¥ is obtained from a member d?l[é] by elementary transformation.

TuroreMm 2.4.  (1)The listP[Z! consists 0f84 elements as follows.

2E7+ D4, 2E7+ A3+ A1, E7+ Dio+ A1, E7+ Dg+ A2 + A1, E7+ D7+ Az + Ay,
E7+ De+ Ds, E;+ Dg+ As, E7+ Dg+ Az + Az, E7+ Ds+ As+ Ay, E7+ Ag+ A,
E7+ Ag+2A1, E7+ A7+ A3+ Ay, E7+ A7+ Ay + 241, E7+ As+ Ay + 244,

E7+ As+2A3, E7+ As+ As+ Az + Ay, E7+ Ag+2A3 + A1, D1+ Az, Dis+ 24y,
Dig+ Az + A1, Dia+ Az +2A1, D12+ Dg, D12+ Ds+ A1, Do+ Ag+ 24,
Dip+ Az + Az + A1, D12+ 2A2 + 2A1, Dio+ D7+ A1, Dio+ Ds + Ay,
Dio+ Ds+ Az + A1, Dio+ As + Az, Dio+ Ag+ Az + A1, Do+ A7+ 24,

Dg+ As+ A3+ A1, Dg+ 2Ds, Dg+ Ag+ A1, Dg+ A7+ Az + A1, Dg+ 2As,

Dg+ As+ Ay + Ay, Dg+2A3+2A2, D7+ De+ As, D7+ Ds+ As + Ay,

D7+ Ag+2A1, D7+ A7+ A2+ 2A1, De + Ds + A7, D+ Ds + As + A,

De + Au1+ A1, De+ Ag+ Az, De+ Ag+ Az + A1, De+ A7+ Ag+ Ay,

D¢+ A7+ As+ Az, De+ A7+ 2A2 + A1, De+ As+ As+ Az, Ds+ A+ Aa,

Ds+ Ag+ Az + Ay, Ds+ Ag+ Ap + 2A1, Ds+ A7+ Ag+ 2A1, Ds+ 2As5 + Ag,

Ds+ As+ Ay + Az + Ay, Ais+ Ax + A, Aiz+ A+ Ay, A+ Az + 24,
A13+2A2 4+ Ay, A1z + Az + 3A1, A+ As+ 2A1, A+ As+ 34y, A+ Az + Ar + 244,
Ag+ Ag+3A1, A9+ As+ As, Ao+ As+ Az + Ay, Ao+ As+ Az + 2A,,
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Table 2.3 Forbidden Substitutions for [2]

Ay + A;_1_p with [ odd andl’ even (0 <!' <1/2),

Ay,

As+ A,,_s with m even,

D, + A, _1_,» Withm evenandn’ odd (5<m’' <m —1),

Ag, As+ Az, Es.

S
1717117

Table 2.4 Forbidden Substitutions for [3]

A= Ap+ A, h+lh=1-10<[1<1y
with I mod 3= 2, /; mod 3+ 2, [, mod 3# 2;

EG = A4+Al, D5.

Ag+ Ag+ A3+ 2A1, Ag+ As+ Ay + 3A1, Ag+ 2A3+ Az + A1, Ag+ Az + 245 + 24,
2A74 245, A7+ As+ A+ 2A1, A7+ 2A5+ A1, A7+ As+ As+ 24,

A7+ As+ A3+ Ao+ A1, A7+ As+ A3+ Ax 4+ 241, Ag+ 2A5 4 2A,,

Ag+ As +2A3 + A1, 2As + As+ Az + Ay, As + Ag+ 2A3+ Az + As.

(2) Let S be the union ofP/2l and the following list.

2E7+ A3, E7+ D19, E7 + Ds + As, D12+ Ds, 2Dg + A1, D7+ Ag + A1, D7+ 2As,
Dg + A, 2Ds + A7, A1s+ Az, E7 + Ao, D1s, 2Dg, Ds + An, Ass.

Then anA DE-typeX. is a member ofP 2 if and only if ¥ is a member ofS® or
obtained from a member &$? by applying substitutions listed in Table 2.2 but
not in Table 2.3.

TueorEM 2.5, (1)The listPL consists ofi9 elements as follows.

3Es, 2E6 + As + A1, Es + Au+ A1, Ee+ Ag+2A2, Ee+ Ag+ Az + 24,

Es+ 2As5+ Ay, E¢ + As+ A3+ 245, A17+ A1, Aws+ 2A3, A1a+ Az + 244,
An+ As+ Az, A+ Az + 24z, Aun+ 3Ax + Ay, 2Ag + 241, Ag+ As + Az + Ay,
Ag+ As+2Az + A1, Ag+ Ag+ 342, Ag+ Az + 3A2 + Ay, 2A5 + Ay + 240.

(2) LetSB bePf). Then anA DE-typeX is a member of? 3! if and only if =

is a member ofSE! or obtained from a member &l by applying substitutions
listed in Table 2.2 but not in Table 2.4.

TuEOREM 2.6.  (1)The listPl3! consists ofi1elements as follows.

D74 An, D7+ A7+ A3+ Ay, D7+ 3A3+ Az, 2Ds+ A7+ Ay, Ds+ A+ 24,
D5+ A7+ A3+ Az + A1, Ais+ Az, A1s+ 3A1, A+ 2A3 + A1, A+ Az + Az + 24,
A7+ 3A3+ Aa.
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Table 2.5 Forbidden Substitutions for [4]

A1I—>0;

A= AL+ A, h+lh=1-10=<h <)
with I mod 4= 3, [y mod 4# 3, [, mod 4+# 3;

D,, — A, _1, D,_1, 2A1+Am_3 with m Od(i
D,, — D,,_3+ A, with m odd andm > 6.

Table 2.6 Forbidden Substitutions for [2]

A — Ay + A1y withl odd andl’ even (0 <1'<1/2),
D, +— A,_1, A3+ A, _4 with m even,

D, — D, + A,_1_,» withm evenandn’ odd G <m' <m —1).

(2) Let S¥ be the union ofPL3 and the following list.
2Ds + A7, A5+ 2A;.

Then anA DE-typeX is a member ofP ! if and only if X is a member ofS“ or
obtained from a member &$! by applying substitutions listed in Table 2.2 but
not in Table 2.5.

THEOREM 2.7. (1)The IistPl[S’z] consists ofl1elements as follows.

D1o+ As + 3A1, D1o + 2A3 + 2A1, 2Dg + 2A1, Dg + Dg + Az + A1, Dg + As + Az + 2A4,
3Dg, 2Dg + 2A3, D+ 2A5 + 2A1, Dg+ As+2A3+ A;, A7+ As+ Az + 3Aq,
2A5 + 2A3 + 2A1.

(2) Let S22 be the union ofP[2? and the list
4Dy,

Then anA DE-typeX is a member ofP 22 if and only if = is a member of52-2]
or obtained from a member &2 by applying substitutions listed in Table 2.2
but not in Table 2.6.

By these theorems, we can easily generate the compleefisor G = [1], [2],
[3], [4], [2, 2]. Table 2.7 shows the cardinalities Bf .

Case 2:G € {[5], [6], [4. 2]}. We simply give the table gP¢. For eachG, the
ADE-types are listed according to the rank and the lexicographical order.
G =[5

2Ag, Ag+ 2A4 + Ay, 4A4 + 2Aq, Ag + 2A4, 4A4 + Aq, 4A,.
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Table 2.7 Cardinalities ofP.¢

r 123456 7 8 9 10 11 12 13 14 15 16 17 18 Total

PM |12 36 9 16 24 39 57 88 127 189 262 360 448 500 416 199746

P2 {00000 0 0 1 2 6 13 29 53 92 133 164 155 84 732

P8 {00000 0 00 OO0 O 1 2 6 12 21 24 19 85

¥ |ooo000 00 0O0OO0O O O O 1 4 10 15 11| 41

P23 loo0o00 0 0000 O 1 2 5 10 16 16 11 61
G =[6]:

A+ As+ 2A1, Apn+ Az + 2A5, A+ 245 + 3A1, 3As5+ Az, 2As + Az + 2A, + Aq,
A11+ 2A3 4 2A1, 3A5 4 241, 2A5 4+ A3+ 2A5, 2A5 + 2A5 + 3A1, 2A5 4 2A5 4 2A;.

G =42
2A7 +4A,, A7+ 3A3+ 2A1, A7+ 2A3 + 4Aq, 5A3 + 2Aq, 4A3 + 4A;.

Case 3:G € {[7],[8],[6, 2], [3, 3], [4, 4]}. In this case, thei DE-type deter-
mines the torsion of the Mordell-Weil group uniquely.

TueEOREM 2.8. Let f: X — P! be an elliptick 3 surface. Then the following
hold.

(@) Gr=Z/(7) < % = 34s.

(b) Gf =27Z/8) — Ef =2A7+ A3+ A

(C) Gr =Z/(6) x Z/(2) = T = 3As+ 3A1.

(d) Gr = Z/(4) x Z)(4) < % = 6As.

(€) Gr 27/(3) x 7/(3) = ;€ (2As+ 4Az, As + 642, 8A2).

ReEMARK 2.9. Elliptic K3 surfaces withG; = [7], [8], [6, 2], [4, 4] are con-

structed as elliptic modular surfaces (cf. [14; 17]). The corresponding congruence
groupsl” C SL»(Z) are as follows.

G| M 8] [6.21  [4.4]

r |F1(7) N® TL3Nnr@ TI'é

2.3. FromADE-Types to Configurations of Singular Fibers

The correspondence between the type (in the notation of Kodaira) of a singular
fiber of an elliptic fibration and aA DE-type is shown in Table 2.8. We have the
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Table 2.8 Singular Fibers of Elliptic Fibration

Singular Fiber ADE-Type Euler Number Possible Torsion Parts
lo regular 0 all
1 irreducible 1 } 0
l, (b=2) Ap_q b
{ [1].[2].[2.2] if biseven
I, (b=0) Dy 6+ b ol
[11.[2],[4] if bisodd
]l irreducible 2 [1]
1 Eg 10 [1]
. A 3 [l (2]
e Er 9 [1l.[2]
v Az 4 [11.[3]
v Ee 8 [11. [3]

[a] is possible fora =1, ..., 8,

[2a, 2] is possible fora =1, ..., 3ifand only ifb =0 mod 2
[3, 3] is possible if and only ith = 0 mod 3

[4, 4] is possible if and only iy = 0 mod 4

following ambiguities in recovering the configurations of singular fibers from its
ADE-type:
(a) anirreducible singular fiber is of type eithermor I1;

(b) asingular fiber oADE-type A, is of type either } or lIl;
(c) asingular fiber oA DE-type A is of type either } or IV.

We next present some restrictions on the possibilities of configuration of singular
fibers of an elliptick 3 surfacef : X — P! with a givenA DE-type.
Let i, be the number of singular fibers ¢gfof type I,. We define similarlyi,

the modulus function; : P — P! := §/SL,(Z) associated withf : X — P*:
degJs ==Y b(i, +i}).
b>1
By the Hurwitz formula, they obtained the following necessary condition for con-
figurations: If deg/y > 0, then
degJ; < GZ(ib +ip) + 4G+ iv*) + 3 +iii*) + 2(iv +ii*) — 12
b>1

See [9, Sec. 3] for the proof.
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The euler number 24 of thE3 surfaceX is equal to the sum of euler numbers
of singular fibers off. The third column of Table 2.8 shows the euler number of a
singular fiber of each type. We define the euler number €xlleof an A DE-type
Y= ZalAl + deDm + Ze,,En by

eulerT) ==Y @ (+D+Y du (m+2D+ > ey (n+2).

Then eule(Xy) is less than or equal to the sum of euler numbers of reducible sin-
gular fibers. Hence we always have

eulenxy) < 24

For example, we can deduce from Table 2.8 that, if €lley = 24, thenf: X —
P! has neither irreducible singular fibers nor any fibers of type 111 ar IV

When G, is nontrivial, certain types of singular fibers cannot appear. Let
g: S — A be an elliptic fibration over an open unit digksuch thatg is smooth
overA* := A\{0}, and letE := g~(p) be the fiber over a point € A*. Looking
at the monodromy action of,(A*, p) on the set of torsion points df, we can
determine whether a finite abelian group can be embedded into the Mordell-Weil
group ofg. The fourth column of Table 2.8 shows the groups among the list (2.1)
that can be isomorphic to the torsion part of the Mordell-Weil group of an ellip-
tic surface having the singular fiber. We see, for example, thay i nontrivial
then every irreducible singular fiber must be of type |

2.4. Miscellaneous Facts
For an integer with1 < r < 18, we set:
R, :={X | X isan ADE-type with ranKX) = r };
E, ={XeR, |eulerx) < 24},
P, :i={X €&, | there exists an ellipti&k 3 surface
fiX—>Phwith 5, =35} = PO
G

For = e |J®,P.. we denote byG(X) the set of isomorphism classes of finite
abelian groups; such thatx, G) € P. For each, we denote by, the set ofE

P. such thatz (X) consists of only the trivial group [1]The cardinalities of these
sets are given in Table 2.9. Note that, if raBk < 12, then eule¢X) < 24 holds
automatically.

THEOREM 2.10. Let ¥ be an ADE-type witheule(X) < 24. Suppose that
rank(Z) < 13. Then there exists an ellipti€ 3 surfacef: X — Plwith¥,; = ¥.

REMARK 2.11. The complement oP14 in £14 consists of a single element
E¢+8A;. Hence, when eul€éE) < 24 and rankX) = 14, there exists an elliptic
K3 surfacef: X — Pt with £, = = if and only if © # Eg + 84;.

THEOREM 2.12. Suppose thatank(X) < 10. Then there exists an ellipti& 3
surfacef: X — P with G, = [l]and =, = =.
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Table 2.9 Cardinalities ofR,, &,, and P,

r 123456 7 8 9 10 11 12 13 14 15 16 17 18| Total
R+ |12 3 6 9 16 24 39 57 88 128 193 276 403 570 81%37 1599| 5366
o] 1236 9 16 24 39 57 88 128 193 274 393 531 688 773 713937
|Pr 1236 9 16 24 39 57 88 128 193 274 392 518 624 580 328279
[T+ 1236 9 16 24 38 55 82 115 162 217 289 362 419 372 188360

REMARK 2.13. The complemeriy; \ 7?1[1] consists of a single elementAil We
haveG(114;) = {[2]}.

THEOREM 2.14. Let f: X — P! be an elliptick 3 surface. Ifrank(Z;) < 7,
thenG; must be trivial.

REMARK 2.15. The complemeﬂi’él] \ T consists of a single elemen#A8 and
the complemerfPél] \ Tg consists of two elementsAQ and A3 + 6A4;. We have

G(8A1) = G(941) = G(A3 + 6A1) = {[1]. [2]}.
REMARK 2.16. There are severdlDE-typesX. with |G(Z)| > 3. For example,
G(2As+ 2A3 4+ 2A1) = G(An+ 242+ 2A1) = {[1], [2], [3]. [6]}-

3. Local Invariants of Lattices

First we fix some terminologies about lattices.

Let R be eithelZ or Z,. A latticeoverR is, by definition, a fregR-moduleL of
finite rank equipped with a nondegenerate symmetric bilinearfaron L x L —
R. Fora € R\ {0}, let oL denote the lattice obtained fromby multiplying the
symmetric bilinear form by. We will useL~ to denotg—1) L. We often express
a lattice by the intersection matrix with respect to a certain basis. dfor ex-
ample,(a) is the lattice of rank 1 generated by a veat@uch thate, ¢) = a. A
sublatticeN of L is said to beprimitive if L/N is torsion free. A latticel over
R is said to beevenif (v, v) € 2R holds for anyv € L. Note that, whemR isZ,
with p an odd prime, every lattice ové® is even. Thaliscriminantdisq(L) of a
lattice L is considered as an element(@ \ {0})/(R*)?. A lattice L is said to be
unimodularif disc(L) € R*/(R*)?.

Suppose thak = Z,. Then we have dis€) = p"u for somev > 0, where
ue Z;/(Z;)Z. We denote the element by reddis¢L) and call it thereduced
discriminantof L.

Let k be the quotient field oR. Thek-vector spacd. ®x k has a natural sym-
metric bilinear form with values ik. We denote by." the R-submodule of. ®x k
consisting of all vectors such that(v, w) € R holds for everyw € L; we call it
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thedual latticeof L. An R-submoduleV of LV is said to be aoverlatticeof L if
M containsL and the symmetric bilinear form restricted ¥ takes values irR.
Two latticesL and M over R are said to b&-equivalentif L ®z k andM ®y, k,
together with their symmetrik-valued bilinear forms, are isomorphic.

For a detailed account of the following definitions and theorems, see Conway
and Sloane [6, Chap. 15] and Cassels [5, Chaps. 8-9].

3.1. Local Invariants

Let A be a lattice oveZ,. ThenA is decomposed into the orthogonal direct sum
A =@P,.op"Av, Where each, is unimodular. This decomposition is called a
Jordan decompositionf A, and eachp”A, is called aJordan componentf A.
Note that the reduced discriminant &fis the product of the discriminants &f,.

Suppose thap is odd. Then a latticé overZ, is isomorphic to an orthogonal
direct sumép; p¥i(a;), whereq; € Z;. The p-exces®f A is defined to be

—rank(A) + 4m + Z p"eZ/(®),

wherem is the number of orthogonal direct summandga;) such that; is odd
anda; is not square iZ ;. Itis known that thep-excess is a well-defined invariant
of Q,-equivalence classes of lattices o¥gy.

Suppose thap = 2. We put

s (01 G (2t
=\1 o) V=11 2)

both of which are unimodular lattices of rank 2 o%&r. Then a lattice oveZ., is
decomposed into the orthogonal direct sum of lattices such that each direct sum-
mand is isomorphic t0'2a) (a € Z3), 2'U, or 2°V. We define the 2-excesses of
these lattices by:

1—amod8 ifvisevenora==41mod 8

5—amod8 ifvisoddand: =+3 mod §
2-exces®'U) =2 mod §

2-exces’(a)) = {

2mod 8 ifv iseven,

2- V)=
exces@"V) { 6 mod 8 ifv is odd.

Then we define the 2-excess of
A=P2ia) o P2rve P2y (3.1)
i j k

to be the sum of the 2-excesses of direct summands in the decomposition (3.1).
Even though the decomposition (3.1) is not unique in general, it turns out that the
2-excess is a well-defined invariant@%-equivalence classes of lattices o#ex.

(Note thaty andV areQ;-equivalentto 21) ®2(7) and 1) & 2(3), respectively.)
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3.2. Existence of Lattices ov&rwith Given Local Data

By combining [6, Chap. 15, Thm. 5] and [5, Chap. 9, Thm. 1.2], we obtain the
following.

THEOREM 3.1. Letd be a nonzero integer, and lét, s) be a pair of nonnegative
integers such that := r + s is positive and! = (—1)*|d| holds. Suppose that,
for each prime divisorp of 2d, a lattice A”’ of rankn overZ, is given. Then

there exists a latticé. over Z with discriminantd and signaturg(r, s) such that

L ®z Z, is isomorphic toA'” for eachp if and only if the following two condi-
tions are satisfied

(i) disc(AP) is equal tod - (Z;)2 for eachp; and
(i) r—s+ ), p-excessA”’) = n mod 8holds.

4. Theory of Discriminant Forms

4.1. Definitions

Let R andk be as before, and ldd be a finite abelian group. A finite symmet-
ric bilinear form onD with values ink/R is, by definition, a homomorphism
b: D x D — k/R such that(x, y) = b(y, x) holds for anyx, y € D. A finite
guadratic form orD with values ink/2R isamapg : D — k/2R having the fol-
lowing properties:

(i) g(nx) =n?q(x) forn €Z andx € D; and
(i) themapb[q]: Dx D — k/Rdefinedbyx, y) — (g(x+y)—q(x)—q(y))/2
is a finite symmetric bilinear form.

Let H be a subgroup ab. The orthogonal compleme#i' of H with respect to
q is the subgroup oD consisting of elementg such that[¢](x, y) = 0 holds
for anyx € H. We say thay is nondegeneratéd D+ = (0). Note that, ifD =
H @ H*, theng is written asg | 1 Dq | L. because the homomorphism-— a/2
fromk/2R to k/R is injective.

The length ofD is, by definition, the minimal number of generatorsiaf A
subset{ys, ..., y;} of D is said to be aeduced set of generatod D if [ is the
length of D andD = (y;) x - -- x {y;) holds. Let{y, ..., y,;} be areduced set of
generators oD. Then a finite quadratic form on D is expressed by a symmet-
ric I x I matrix whose diagonal entries aj€y;) € k/2R and whose off-diagonal
entries aré[q](y;, v;) €k/R.

Let L be a lattice oveR. The discriminant grou, of L is, by definition,
the quotient group.Y/L. We denote byw; : LY — D, the natural projection.
Suppose thaL is even. Then we can define a finite quadratic farmon Dy,
with values ink/2R by ¢, (x) := (x/, x’) mod 2R, wherex’ is a vector ofL
such thaty; (x") = x. We callq, thediscriminant formof L. Becausd. is non-
degeneratey; is also nondegenerate. By definition, we h&g ¢y, grom) =
(Dr,qr) ® (Du, qum)-
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Table 4.1 Discriminant Forms
of Lattices ovetZ,

A | pl@ U 2y

Dy | Z/(p") (Z)@2)% (Z/(2")%?

a 170 17 1[2 1
A 7| 201 0| 2|1 2

4.2. Discriminant Forms and Overlattices

The following two propositions, due to Nikulin, play a central role in making the
list P.

ProposiTION 4.1 [11, Prop. 1.4.1]. Let L be an even lattice ovek.

(1) If H c D, is a subgroup that is isotopic with respectdp, thenM =
qr (H) is an even overlattice of. and the discriminant form oM is isomorphic
to (HL/H qL|Hi/H)

(2) The mapH > W;*(H) establishes a bijection between the set of isotopic
subgroups of(Dy, g;) and the set of even overlattices bf

ProrosiTiON 4.2 [11, Prop. 1.6.1]. Let L and M be even lattices ovef.. Then
the following statements are equivalent

(i) the two finite quadratic formé&D;, g, ) and (D, —qy) are isomorphi¢
(i) there exists an even unimodular overlatticelo® M into whichL and M
are embedded primitively.

4.3. Localization and Discriminant Form

Let L be an even lattice ovet. We decompos®, into the direct sum of itp-
Sylow subgroupsD(”), wherep runs through the set of prime divisors|@i, | =
|dis(L)|. Thesep-parts are orthogonal to each other with respegftand hence
g is also decomposed into theparts;q, = @, q\", whereg'” is the restric-
tion of ¢ to D(’” By our definition of the d|scr|m|nant form, we can easily prove
the following Iemma

LemMMA 4.3. Theimage of\” is contained irRZ[1/p] /27 c Q/2Z. The natu-
ral inclusion2Z[1/p] — Q, induces an isomorphis@Z[1/p]/2Z = Q,/2Z,.
Under this identification(D;”, ¢;”’) is isomorphic tdDy¢z, . 4167,)-

The discriminant form of an even lattice overZ,, is calculated by Table 4.1. In
particular,D, is a p-group of length equal to rarfkk) — rank(Ag), whereAq is
the first Jordan component af. We also have dig@\) = | D, | - reddisgA).
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5. Existence of Lattices with a Given Discriminant Form

5.1. Overz,

Suppose that a finite abeligngroup D and a nondegenerate finite quadratic form
q: D — Q,/2Z, are given. Itis known that, i > length(D), then there exists
an even latticeA of rankn overZ, such that(Dx, g,) is isomorphic to(D, q).
Our purpose here is to describe a method for determining th& 8&t, D, ¢) of
all [o,u] € Z/(8) x Z}, /(Z;)2 such that there exists an even lattiteof rankn
overZ, with (Da, ga) = (D, q), p-excessA) = o, and reddis¢A) = u.

Note that

p-excessA; @ Ap) = p-excesgAi) + p-excessAr)

and
reddis€A, @ Ao) = reddisCAq) - reddiscA ).

Taking these equalities into account, for sétand £’ of elements ofZ/(8) x
7 [(Z7)? we definel « L' to be the set

{[o +0',uu'l|[o,u]l €L, [o/,u']eLl’}.
We also putly” := {[0,1]}. ThenZ « LY = £ holds for anyL.

LemMma 5.1. Let/ be the length ofD. Then we have

LP(n, D, q)=LP(n—1,(0),[0]) « LP(, D, q). (5.1)
If pis odd, then
] ifn<l,
LP(n—1,(0),[0) = { £ ifn=1, (5.2)

{[0,1],[0,v,]} ifn>1,
wherev, is the unique nontrivial element (Z;/(Z;)Z. If p =2, then
? ifn<lorn—1I1mod2=1,
£ ifn=1,
{l[n—011,[n—1,5]} ifn>I1andn—1 mod4=0,
{[n—10,3],[n—1,7]} ifn>[andn —1mod 4= 2.

L@ (n—1,(0),[0]) =

Proof. Let A = Ao @ ,.,p"A, be a Jordan decomposition of a lattise
overZ, with (Da, ga) = (D, q). We putA~o = Ag = @, p"A,. Then we
have rankA-o) = I, (Dag: gao) = ((0),[0]), and(Da_g, ga_o) = (D, ga) =

(D, g). Hence (5.1) holds. The statement (5.2) is obvious. A lattiaeverZ, is
even if and only ifAq is of even rank and is isomorphic to an orthogonal direct
sum of copies ot/ andV. Because
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[2-excesgU), reddis¢U)] = [2, 7] and [2-excesd/), reddis¢V )] = [2, 3],
we can easily prove the last statement. O

LemMma 5.2, Suppose that is a positive integer, and let be an integer prime
to p. Then

p' =1 u]) if p is odd,
£ (1, 7)(p"), [iD - { (L= u,ul} if p=2andv > 1,
P L=, u],[L—u,5u]) if p=2andv=1

Letu, v, w be integers withv odd. Then

172u v {[2, 7]} if uw is even,
(¥3) VB2 T _
. (2’ (/) ’2”[ v ZwD - { {[2,3]} if uw is odd.

Proof. Two nondegenerate quadratic forms/$*] and [1'/p*] on Z/(p") with
values inQ, /27, are isomorphic if and only if

uu' € (Z3)* or (p=2v=1 andu =u' mod 4

is satisfied. On the other hand, two lattige§u) and p¥(u’) with u, u’ € Z, of
rank 1 overZ, are isomorphic if and only ifiu’ € (Z;)2 holds. Therefore, the
first statement follows. The finite quadratic form

1 [ZM v

q:; ” 2u):| (v odd)

on (Z/(2"))®? with values inQ2 /27, is isomorphic tagz (resp..gzv) if and
only if uw mod 2= 0 (resp.uw mod 2= 1). These two forms can never be iso-
morphic to i’/2"] & [w’/2"] whenu’ andw’ are odd. Thus the second statement
follows. O

Now we state an algorithm to calculaf&” (n, D, g). By Lemma 5.1, itis enough
to determineCP (I, D, q). Let {y1, ..., y;} be a reduced set of generatorsinf
We denote the order ¢f by pi, and we arrange the generators in such a way that
vy > --- > y; holds. For an element € Q,/Z,, we defineg,(«) to be the in-
teger such that the order afis p?»®. Note thatp, (b[¢](yi, y;)) < min(v;, v;)
holds for anyy; andy;.

If I =1, thenLP)(l, D, q) is given by Lemma 5.2. Suppose then that 1.

Case 1.Suppose there is a generajorsuch that, (b[¢](vi, y:)) = v1; then
v; = v1. Interchangingy; andy;, we will assume tha, (b[¢](y1, y1)) = vi.
Let  be an integer such th&{g](y1, y1) = u/p** modZ,. Thenu is prime
to p, and hence there is an integersuch thatuv = 1 mod p"* holds. Since
¢, (b[q](y;, y)) < min(v;, v1) = v;, we can writeb[g](y;, y1) in the form
w;/p** modZ, by some integew; that is divisible byp**~*. For j > 2, we put
y; = v;—vw;y1. Because, is of orderp" in D, itfollows thaty/ is independent
of the choice of¢, v, andw;. Moreover,yjf is of orderp¥, and{y, y5, ..., ¥/}
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is again a reduced set of generators. By definition, we by y;, y1) = 0 for
anyj > 2. We put
(D1, q1) = (1), ql ) = (Z/(p™), [u/p™])
and(Dz, q2) == ((¥5,....¥]). q ” y,)). Then(D, g) is decomposed into the
heeens¥)
orthogonal direct sum dafD,, g1) and(D>, g2).
Let A be a lattice of rank over Z, such that there exists an isomorphism
h: (Da,qp) = (D, q). Lete* € AY be a vector such thadto W, (e*) = y1, and
let A} C A betheZ ,-submodule generated bYy. ThenA; := A};N A is asublat-

tice of rank 1 generated ky:= p“ie*. Letx be an arbitrary vector ok. Because
ord,((x, e)) > vy = ord,((e, e)), the vector

,. (x,e)
X =x— e
(e, e)
isin A and orthogonal ta\;. Hence we obtain an orthogonal decompositioa-
A1® A7. The homomorphism o Wy 1 AY = A & (A1)" — D induces isomor-
PhismS(Da,, g,) = (D1, q1) and(D, 1, g51) = (D2, g2). It follows that

L, D, q) =L Dy, q1) * L2 —1, Dy, q2).
ThusLP(l, D, q) is calculated by Lemma 5.2 and the induction hypothesis on

Case 2.Suppose thatp,(b[q](y:, vi)) < vi holds for any generatoy;.
Since ¢ is nondegenerate, there exists at least one geneyattinat satisfies

¢, (blg](y1, yi)) = v1. Becausep, (b[g](y1, yx)) < vi, we havev, = v;.

Case 2.1.Suppose thap is odd. We replacey by y; := y1+ v, which is an
element of ordep**. It is obvious that{y;, y2, ..., y;} is again a reduced set of
generators oD. Moreover, we have,(b[¢](y;, y1)) = v1 and we are thus led
to Case 1.

Case 2.2.Suppose thgt = 2. We replace/, by y.. There existintegers, v, w
(v odd) such that

2u v 2w
blgl(y1, y1) = o blql(y1, y2) = o blql(y2, v2) = o

hold moduloZ,. Note thatg(y;) = 2i/2"t andg(y2) = 2w/2"* hold modulo
27, for some integers andw with u = i mod 2t andw = w mod 2+7%

If I = 2, thenL£@(l, D, q) is determined by Lemma 5.2. Suppose that 3.
There exists an integersuch thatv? — uw)r = 1 mod 21 holds. For each >
3, we choose integers, ands;» such that[g](y;, y1) = s1/2"* modZ, and
blql(y;, y2) = sj2/2"* modZ, hold, and we calculate

()= (5 20)- ()
Bj2 o —v 2u 8j2 '

Then g, and B;, are divisible by 227", Hencey; := y; — Bj1y1 — Bjzy2 is an
element of order 2 that is independent of the choice of the integers. The set
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{y1, v2, v3 ..., v;} is again a reduced set of generators/ofand the two sub-
groups(ys, y2) and(ys, ..., y;) of D are orthogonal with respect o Therefore,
putting

v 2w

1T[2u
(Drqp) = (1.2 dl,,,,) = ((Z/(p”l))@z,ﬁ[ o D

and(D2, g2) := (¢4, ... ¥]), q|<y, ’’’’ V,>), we obtain an orthogonal decomposi-
tion (D, q) = (D1, q1) ® (D2.q2)."

Let A be a lattice of rankl over Z, such that there exists an isomor-
phism#h: (Da, qa) = (D, q). We pick up two vectorg}, e5 € A’ such that
hoWa(e}) = y1andh o W, (e5) = yo. Let A} C A be theZ,-submodule ofA”
generated by; ande’. ThenA; := AN A is a sublattice o\ generated by, :=
2'1e7 ande, (= 2"1e%. The intersection matri¥f, of A1 with respect te; ande>
satisfies ord(detM[l) = —v,. Because orgl(x, e1)) > vy and ora((x, ep)) >
vy hold for any vector € A, we have((x, e1), (x, e2))- My ' € Z$2. Therefore A
is decomposed into the orthogonal direct sumh@faind A7 . The homomorphism
h o W, induces isomorphism@,,, ga,) = (D1, q1) and(DAi, in) = (D3, q2).

It follows that

LU, D, q) = LP2, D1, q1) * L2 ~2, D2, q2).
Thus£@(l, D, q) is calculated by Lemma 5.2 and the induction hypothesis on

5.2. OverZ

Let D be a finite abelian group and D — Q/2Z a nondegenerate finite qua-
dratic form. Let(r, s) be a pair of nonnegative integers such that r +s > 0.
We will describe a criterion to determine whether there exists a lattioger Z
with signaturg(r, s) such that D, , g, ) is isomorphic to the given finite quadratic
form (D, g).

We putd ;= (—1)*|D|. Let P be the set of prime divisors of2 and let(D, ¢q) =
@B, (D?, g7 be the orthogonal decomposition@?, ¢) into the p-parts. If
d is odd then we putD®@, ¢@) = ((0), [0]). By Lemma 4.3 and Theorem 3.1, a
lattice L overZ with signature(r, s) and(Dr, q.) = (D, g) exists if and only if
the following claim is verified:

(#) For eachp € P, there exists a lattica'”’ of rankn overZ, such that
(i) disc(A'P) =d - (Z%)* and
(i) (Dpwrsgam) = (D, ¢'P) hold,
and they satisfy

r—s+ Z p-excessA”) = n mod 8
peP
We puts, := d/p°%@) e 7. Under condition (i), which implies thatD,» | =
d/é,, condition (i) is equivalent to

reddis¢A”) =8, - (Z)>.
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We can therefore check the claift) by the following method. First calculate
LP(n, DP), ¢'P) for eachp € P; then search for an elemetfio,, u,] | p€ P)
of the Cartesian product of the s&9’(n, D7, ¢'P) that satisfies, = §,,- (Z;)2
for eachp € P andr —s + )0, = n mod 8 The claim(#) is true if and only if
we find such an element.

6. Roots

For the following, we refer to [3, Chaps. IV-VI], [6, Chap. 4], or [12].

6.1. Root System of a Positive Definite Even Lattice @ver

Let L be a positive definite even lattice ov8r A vector of L is said to be aoot

if its norm is 2. We denote by, . the sublattice of. generated by roots. A lat-
tice L is said to be aoot latticeif L = Lyt holds. Let Root&l) be the set of
roots of L. We define~ to be the finest equivalence relation on Robjsthat sat-
isfies(v,w) # 0 = v ~ w. Let I, ..., I; be the equivalence classes of roots
under the relation~, and letL; be the sublattice of.,,o; generated by;. There
exists a basi®; C I; such that the intersection matrix 6f with respect taB; is
the Cartan matrix corresponding to a Dynkin diagram of typeD,,, or E,, (see
Figure 6.1). Let; be the type of the Dynkin diagram of the intersection matrix of
L;. We define the root type df to ber‘:1 7;. Conversely, for am DE-type X2,
there exists a root lattice(X), unique up to isomorphism, whose root typels

A oo i .
ai az as ap
di
Dm O_I_ﬂ__ ......... -
d2 d3 da dm
€1
En c,__o_I,_ ......... s
ez es e4 €n

Figure 6.1 Dynkin diagram

The root type of a positive definite even lattiteoverZ is thus determined by
the following procedure:

(1) create the list Root&), and decompose itintd, ..., Ii;
(2) calculate therank of; fori =1, ..., k;
(3) determine the type; from rank(L;) and|I;| by using Table 6.1.
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Table 6.1 Number of Roots and Discriminant Forms of Root Lattices

T |RoOtSL(7))| Dy qL(z)
o~ l

Ay I1+1 (al)—Z/(l+l) [m]
D, (meven  2mim—1 () & (d;) = (Z/2)* [”1’//; Jﬂ
D,, (modd  2m(m —1) (dry =7/ [m/4]

Eg 72 (eg) =Z/(3) [4/3]

E; 126 @) =7/(2) [3/2]

Eg 240 (0) [0]

6.2. Discriminant Forms of Root Lattices

The discriminant form( Dy, ), g.r)), Wheret is A;, D,,, or E,, is indicated in
Table 6.1. In this table, for exampl;, ..., a;} is the basis oL (4,;)¥ dual to the
basis{ay, ..., a;} of L(A;) given in Figure 6.1, and} € Dy 4, is the image ot}
by the homomorphism/,4,): L(A;)Y — Dra)-

Let I'(r) denote the image of the natural homomorphism from the orthogonal
group O(L(t)) of the latticeL(t) to Aut(Dp ), gr(r))- The structure of'(t) is
given as follows.

(@) Ift = Ay ort = E7, then['(7) is trivial.
(b) ft=A;(( > ort =D, (modd ort = Eg, thenl'(r) is isomorphic to
7,/(2) generated by the multiplication byl.
(c) If t = D,, (m > 4 and even), the'(t) is isomorphic tdZ/(2) generated by
cffl—)c?f—i—cf,’;, d_:ll—>d_;;.
(d) If T = Dy, thenT'(7) is isomorphic to the full symmetric group acting on the
set{d{, d}, di + d}} of nontrivial elements oD, ).

7. Existence of an Elliptic K3 Surface with Given Data

THEOREM 7.1. Let X be anADE-type withrank(X) < 18, and letG be a finite
abelian group. Then there exists an ellipi@ surfacef: X — PlwithZ, = =

and Gy = G if and only if the root lattice. (X) has an even overlattickf with

the following properties

(i) M/L(Z) = G;
(i) there exists an even latticy of signature (2,18 — rank(X)) such that
(Dy, qy) is isomorphic ta(Dy,, qar); and
(iii) the sublatticeM oot Of M coincides withL (X).
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Proof. Suppose that a paiz, G) satisfies the conditions of the theorem. By
Proposition 4.2, property (ii) implies that there exists an even unimodular over-
lattice K’ of M~ & N into which M~ andN are primitively embedded. Let
denote the hyperbolic lattice,
(i o)
H = .
10

ThenK := K’ @ H is an even unimodular lattice with signatu@ 19). Hence
K is isomorphic to thek 3 lattice L(2Eg)~ @ H®2 by Milnor’s structure theo-
rem (see [15]). There exists a 2-dimensional linear subspacEN ®z R such
that (a) the bilinear form is positive definite dhand (b) if N/ C N is a sublat-
tice such thatv’ ® R containsV, then N’ coincides withN. By the surjectivity
of the period map on the moduli & 3 surfaces, there exist a compl&8 surface
X and an isomorphism : H%(X; Z) => K of lattices such that

agi(V) = (H*%(X) ® H*°(X)) N H*(X; R)
holds, wherexg := o ®7 R. Then we have
o XM~ @® H) = NSy. (7.1

By Kondo’s lemma [8, Lemma 2.1], there exists a structure of the elliptic fibration
f: X — PYwith a sectionO : P! — X such that, ifF denotes the cohomology
class of a general fiber gf, then

ZIF1YZ[F1= M~ (7.2)

holds, whereZ[ F]+ is the orthogonal complement & F] in the Néron—Severi
lattice NS of X. Let H; be the sublattice of Ngspanned by the cohomology
classes of the zero section and a general fibgft tdt S, be the sublattice of NS
defined in Section 1, and 1&; be the orthogonal complement &f in NSx. The
lattice H; is isomorphic to the hyperbolic latticE and is orthogonal t§,. By
an abuse of notation, we denote @)oot the sublattice o#¥; generated by the
vectors of norm-2. From (7.2), we have

Wr=M". (7.3)

On the other hand, by Nishiyama'’s lemma [12, Lemma 6.1] we have
W /(Wp)root = MW, (7.4)
St = (Wp)root- (7.5)

Combining these with the properties (i) and (iii) &f and the isomorphism (7.3),

we haveS; = L(X)~ and MW = G. HenceX = Xy andG = Gy hold.
Conversely, suppose that there exists an ellit®& surfacef : X — P! with

¥, = ¥ andGy = G. Using Nishiyama’s lemma again, we see that the primi-

tive closureS; of Sy in NSy satisfiesS;/S; = G and(Sy)rot = Sy. We have an

isomorphismS; = L(X)~; let M~ be the overlattice of. (¥)~ corresponding to
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S_f via this isomorphism. TheM := (M ~)~ is an overlattice of.(X) that pos-
sesses the properties (i) and (iii). Moreo@rﬂa Hy is primitive in the even uni-
modular latticeH ?(X; Z) and hence Proposition 4.2 implies that the orthogonal
complementV, of S; @ Hy in H2(X; Z) satisfies(Dy,, qn,) = (D5, —q5) =
(Dum. qu). Because the signature of; is (2,18 — rank(X)), the overlatticeM

has the property (ii). O

8. Making the List

Recall that, in order for ad DE-type ¥ to be anA DE-type of an elliptick 3 sur-
face, it is necessary that raf) < 18 and eulefZ) < 24. It is obvious that the
torsion part of the Mordell-Weil group of an elliptic surface is of lengtf2.

First we list all ADE-typesX. with rank(X) < 18 and eulefX) < 24; there are
3937 suchA DE-types. For each

Y= ZGIA] + deDm + ZenEn

in this list, we carry out the following calculation.

Step 1.We calculate the discriminant for®,, s, g.(x)) using Table 6.1. Note
that the product of the wreath products

[[r@an16.) x [T 184,) x [T(N(ED 16,,)

a;>0 dy>0 e, >0
acts on(Dyx), qL(x))- Here, for example, the full symmetric gro@,, acts on
D, x) as the permutation group on thecomponents oD, (5, that are isomor-
phic to Dy 4,). We denote this group by(X).

Step 2.We make a complete list of representatives of the quotient set
Dyx)/T'(2) and pick up from this list elements that are isotopic with respect
t0 g1 (x). Let Vs = {vy, ..., vy} be the list of isotopic elements @i, modulo
['(¥). For eachy; € Vg, we calculate the stabilizer subgroupgBtX), v;) of v;
in I'(X). Then we make a complete list of representativeB gf, / S T'(X2), v;),
and we pick up from this list elements that are isotopic with respegt 9 and
orthogonal ta; with respect td[q,(x)]. Let Wy ; be the list of isotopic elements
orthogonal tov; modulo StI'(X), v;).

Next we make the lis§s, of all pairs [p;, w;] of v; € Vs andw; e Wy ;. Then
every isotopic subgroup @D,.x), g1(x)) With length < 2 is conjugate under the
action of['(X) to a subgrougv;, w;) generated by; andw; for some p;, w;] €
Gs. Of course, there are several different pairs that can generate a given subgroup.
We remove this redundancy fro@{,, and make a lis@s.

Step 3.For each{, w] € Gx, we calculate the subgroup := (v, w) of Dy(x),
its orthogonal complemer& in (Dyx), q.(s)), and the finite quadratic form
(Dg. q6) = (G*/G, qL(E)’GL/G)~

Step 3.1.By the algorithm described in Section 5, we determine whether there
exists an even lattich overZ of sighaturg2, 18—rank(x)) suchthat Dy, gy) =
(Dg, q¢)- If the answer is affirmative, we go to the next step.
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Step 3.2.We calculate the intersection matrix of the even overlatlitg of
L(X) generated by.(X) andv, w in L(X)Y, wherev andw are vectors ol (Z)"
such that¥,s,(v) = v and ¥ (5 (w) = w. Then we calculate the root type of
Mg by the algorithm described in Section 6. If this root type coincides with the
initial ADE-type X, then we let the pai¢Z, G) be a member of the ligP.

By Theoremv.1, thelist P so made is the complete list of the data of ellipki®
surfaces.
The following remarks are useful in checking the program.

REMARK 8.1. Note that neither eul€x) < 24 nor lengtliG) < 2 is contained
in the conditions of Theorem.1. Therefore, if we input with eulerX) > 24
into the program, it should return no subgrop®sf D, s such thatX, G) can

be a member of the ligP. If we change Step 2 of the program so that it lists all
isotopic subgroups of length 3, then the result should also be an empty set.

REMARK 8.2. Suppose that the root typ of M. is not equal tax in Step 3.2
of the program. LeG’ be the finite abelian groupls /(Mg )root- Then(X', G')
appears irP.

ReMARk 8.3. For eachX, G) € P, there should be at least one configuration
that satisfies the conditions given in Section 2.3.
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