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1. Introduction

We construct real-valued finite energy solutions of the dissipative nonlinear wave
equation
Ou+ u; ", =0, 0:=82—A,, L<heR, (1.1)

which have singularities that are partially smoothed after a focus. Heté €
R4 with spatial dimensiod > 2.

A striking classical result of Lions and Strauss [LS] shows {bd) is awell-
behaved evolution equation ire 0 in all dimensions. Two underlying estimates
are used in establishing this result. The first is that solutions have nonincreasing
energy. With

w?>  |Veul?
E(u,t) = L  dx, 1.2
(u,t) /];xd 5 + > x 1.2)
one has
Eu, 1) = E(u, 0) /Tf " dt < E(u,0) (1.3)
u,t) = Eu,0) — xdt < E(u, Q). .
0 R4 I’l+1

More generally, one has a contractivity estimate that relies on the monotonicity of
the nonlinear function
Fu(s) := |s"Ys.

Precisely,
T
Eu—v,t)=Eu—v,0) — / / (uy — v)(Fp(uy) — Fp(v,)) dx dt
0o Jrd

< E(u—v,0). (1.4)

The energy dissipation identity is the case= 0 of the contractivity identity.
These estimates lead to the following fundamental results of Lions and Strauss.

THEOREM 1.1[LS]. If {f, g} € HXR?) x L?(R?) then there is a unique solution
u to (L) with
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ueC([0, oo[; H(R?Y),  u, € C([0, oo[; L*(RY)) N L"([0, co[xRY),

with Cauchy data
u’t:O=f’ ut’f:0=g' (15)

In addition, the energy lawd..3)and (1.4) are satisfied by pairs of such solutions
as well as by the local versions in the truncated cones, R, T) := {|x — x| <
R—t,0<t<T <R}

The energy law i (x, R, R) shows that two solutions whose Cauchy data agree
on|x — x| < R must also agree on cofe — x| < R —t.

Regularity results follow from this by applying the contractivity estimate (1.4)
to the solutions:(z, x) andv = u(¢, x + £). The H! modulus of continuity is de-
fined by

o, t,h)? 1= sup [|Veu(t, x) — Veu(t, x + 175 za,
0<|é|<h

+ Ll (8, %) = wit, X + )12 g0 (1.6)

COROLLARY 1.2 [LS]. If u is one of the solutions from Theorem 1, then Hve
modulus of continuity (u, t, ) is a decreasing function af It follows that, if
f.ge H** x H° witho €]0, 1], then

ue L>¥([0, oo[; H*TH(R?)) and u, € L*([0, oo[; H(RY)).
For o €]0, 1] one has continuity in timehat is,
ueC([0,00[; H*Y(R?) and u, € C([0, oo[; HO(RY)).

This shows that{® regularity for 1< s < 2 propagates forward in time.

The major interest of these results is that they define a strongly nonlinear evo-
lution. By any known measure, these problems are supercritical wigtarge.
These problems can not be attacked by using the basic estimates and then treating
the nonlinear term as a perturbation, writing= —O~1(u"). In particular, ford
large andh € Zqq, the nonlinearity is polynomial and it is not known whether the
solutions with data i€ areC*°. Equivalently, it is not known if such solutions
are locally Lipshitzean.

Our main result is the construction of compactly supported solutions that are
smoother infr > 1} than they are if0 < ¢ < 1} (see Figure 1). This includes an
explicit solution in closed form computed in Section 5.

The examples cannot be locally Lipshitzean because the result of [GR] shows
that if a solution ha¥; .u € LS, thenitsHj, . regularity does not change with time.

In particular, in the 1-dimensional case, if the Cauchy data sati€figs(0, x) €

L{. then the solution is Lipshitzean and hence Hheregularity is independent
of t > 0. This Lipshitz bound is proved by an argument needed later, so we recall
the estimates. Introduce the characteristic combinations

Uyt = 0zu = (0; F 0)u.

Whend =1, the differential equatiofil.1) takes theharacteristic form
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MORE THAN 1.5 DERIVATIVES

1.5 DERIVATIVES

Figure 1 Rough regularity
Fpuy +u_)
2h N

Multiplying by puffl with even integep, adding and then integratintyx shows
that

(0, £ 0 )us + 0.

p _ _
atA”i+”€de—§A(”i WP Y Fuuy +uo)dx.

Since for abitrary reat, b one hasa?~* 4+ b»Y) F,(a + b) > 0, it follows that
[ u +u” dx is a nonincreasing function of Passing to the limip — oo shows
that sup, max{|u|, |u_|} is a nonincreasing function of Thus, ifV; ,u(0, -) is
initially L°° then it remains so in > 0.

AssumpTION 1.3.  Suppose that the initial dafag are piecewis€ 2, radial, com-
pactly supported, vanish fgix| < 1, and have singularities only dn| = 1 In
addition, f is assumed to be continuous and- 9, f is not continuous.

When this assumption is satisfietl,f andg are radial piecewise smooth and the
locus of singularities is = 1. Sinceg + 9, f is not continuous, at least one of
andd, f must jump at = 1 This implies that

{(f,g)e H R x HTYRY) — o <3/2. (1.7)

AssumpTioN 1.4.  In addition to Assumption 1.3, suppose t{at— 9, )u (0, r) =
g — 0,f is continuous at = 1.

Sinceg — 9, f does not jump, it follows that the jumps gfandd, f are equal
and nonzero. Assumption 1.4 ensures that a jump discontinuiy ipropagates
along the focusing congx| = 1 — ¢} and that the first derivatives are continuous
across the outgoing cone. See Figure 2.
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Figure 2 The main singularity for O< < 1is a focusing spherical front

MaAIN THEOREM 1.5. Assume that Assumptions 1.3 and 1.4 are satisfied and that
u is the solution from Theorefinl. Then

u,u, € L*([0,1; H(R?Y) x HOYRY)) <= o <3/2

andu is more regular for > 1in the following senses.
(i) Ifd > 2h/(h — 1), then

ueL®([L, oo[; HA(RY) and u, € L*([1, oo[; HY(RY)). (1.8)

(i) f 2h/(h—1)—1<d <2h/(h—D),leta := (2h/(h—1) —d)/2€]0,1/2].
Then, for alle > 0,

ue C([1, oo[; HZ**(R) N C([1, oo[; H***(RY)). (1.9)

REMarks. (1) Fork fixed, the regularity of the solution for> 1 increases lin-
early fromH %2 to H? as the dimension increases fraath) := 2h/(h —1) —1to
d,(h) = 2h/(h — 1). For dimensions higher thafy(h), the wave isH? int > 1.

(2) Theorem 1 of [GR] shows that, in order for this smoothing to take place,
the solutions must not be Lipshitzean. For amy]0, 1], the solution is uniformly
Lipshitzean on [0¢] x R?, but the sup norm of the derivatives diverges to infinity
ast - 1

(3) What is happening is that an incoming spherical wave focusesdt x =
0. Approaching the focus, the amplitudes:pfandu” diverge to infinity. The
nonlinear term acts in a dissipative manner. Fos 2h/(h — 1) — 1, the non-
linearity is sufficiently large that the effect of the dissipation is so strong that the
solution grows more slowly than it would have in the linear case. The idea of the
proof in case (i) is to use the classical energy estimate for the second derivates of
u in the domain outside the incoming light cone, thatfs,x} : |x| > 1—¢}. The
energy identity involves a boundary term on the incoming light dafhe- 1 — ¢.

This term is finite for the nonlinear problem and would have been infinite for the
linear problem. In this way one shows that the second derivatives at timé

are square integrable. In case (ii), one shows that they are square integrable with
weightr®, 1 > « > 0. Then an inequality of Hardy type finishes the proof.
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(4) There are at least two other circumstances where supercritical damping for
the same family of equations has been shown to have a regularizing effect on solu-
tions. The first involves families of oscillatory solutiomSwhose angular deriva-
tivesd, v, (u® are uniformly bounded ii.? at the same time &§ _«° is bounded
in L2 [JMR2; IMR3; JMRS5]. Ifthe initial data is supported|iti < 1, is not com-
pact in energy, and has prinicipal oscillations that initially move toward the origin
in the sense thad, — d,)u® is compact inL?, then fors > 1 the familyV, ,u® is
compact inL?(R%). The noncompactness has been absorbed at the focus.

(5) A similar phenomenon was described RR 3] for familiesu® of uniformly
dissipative first-order systems whén= 1 and the intial data are the regulariza-
tions j. * u of finite measures. Th&'(R) norm of u®(¢) decreases in time. It
is proved that, for > 0, the solutions converge to the solution with initial data
given by the nonsingular parts (in the sense of the Lebesgue decomposition) of
the measureg,;. The singular part is absorbed. In particular, if the singular part is
nonzero them®(z, x) is compact inL(R,) for + > 0 even though the initial data
are not.

(6) The explicit example of Section 5 shows that the result of the Main Theorem
is sharp whetk = 2 andd = 4.

(7) These results were first described in [JMR4].

2. Analysis of the Singularities

The most important step in the proof of the Main Theorem is to analyze the jump
discontinuities in the derivatives of the solution for timesQ < 1. The singu-
larities come from the initial jump discontinuities on the sphete= 1.

The finite speed of propagation implies that the solutigmthe Main Theorem
satisfiest = 0 in the truncated coner| < 1 — ¢. Uniqueness implies thatis ra-
dial. With the usual abuse of notation we write= u(z, r), and the differential
equation in{r > 0} becomes

Uy — Upr — u, + Fp(uy) = 0. (21)
This is a hyperbolic equation, and the coefficiéht- 1)/r is smooth in{r > 0}.
The solution we are looking at vanishes{in< 1 — ¢} and so is supported in the
smooth coefficient region for & r < 1

Lemma 2.1.  (See Figure 3.)

(i) (Piecewise Continuity for < 1) If Assumption 1.3 is satisfied then, for<
t < 1, u is continuous and piecewisg? with jumps in the first derivatives
restricted to the conex| = 1+ ¢}.

(i) (Piecewise Continuity up to = 1 away fromx = 0) Foranyd > 0, u is
continous and piecewisg? in the regiongr > § +1¢, 0 < t < 1}, with jumps
in the first derivatives restricted to the conjgs| = 1+ ¢}.
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Figure 3 The singularity locus forG< r <1

Proof. (i) Fix 0 < T < 1 Finite speed shows that, for9¢ < T, u is supported
inr >1—T > 0, where the coefficientd — 1)/2r in (2.1) is smooth.

Thefirst step is to show that the solution is uniformly Lipshitzean off [0« R,
Write (2.1) in the characteristic form
d-1 F,(u Uu_

2r (g —u_)+ %

The standard local existence theorem for hyperbolic equations in space dimension
d = 1shows that is uniformly Lipshitzean on [0T1] x [1 — T, co[ with Ty, small
positive. The same result shows that, in order to provedhatLipshitzean up
to time 7, it suffices to prove an a priori estimate ¥V, ,u(1)| .~ ). Precisely,
it suffices to show that there is @ < oo depending only or¥, g, so that, if
0 <t < T, < T andu is a Lipshitzean solution on [0%] x [1 — T, oo[, then
Vi, rttll oo (o, T2 x 1= T, 00]) < M.

Multiply (2.2) by puffl with even integep and add the resulting identities to
find that

(3, & 9, )us + =0, uyi=@Fo)u (2.2)

pd—1)
2r

= —%(uiﬁl'i‘ Ml_)il)Fh(u-&- +u_) < 0. (23)

3l +u”) + 0, —u’) + o —u) @+ u”h

Define .
Vv, p) = / ull +u” dr. (2.4)
1

-T

Integrate (2.3) over [Q] x [L— T, oo]. Integrating by parts and using the fact that
r >1—T > 0, so no boundary terms arise, yields

r

(1) — ¥(0) < / / T @ e drds
0 Ji1-T

< cp/r V() dt, (2.5)
0

where
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d-1 _ - R
c=cd,T) = —— max max - mu)y Fu- ) (2.6)
1— T peNeven{us,u_}cR2\0 ull +u”
Therefore,
t
V(t, p) < (0, p) +c(d, T)p/ V(t, p)dt, (2.7)
0

and Gronwall’'s inequality yields

¥ (t, p) < ¥ (0, pe”” (2.8)

with ¢ independent ofp. Taking thepth root gives a bound on the? norm of
u. that is independent of < T, and p. Passing to the limipp — oo bounds
llus (@)l oo, 721x[0.00)) < M(f, g). This estimate completes the proof theit a
uniformly Lipshitzean solution ofL.1) on [Q T] supported in{r > 1 — ¢}.

When F;, is a smooth function (i.e., whéine Zoqq), Theorem 1 of [RR1] ap-
plied to the first-order system (2.2) implies thas piecewise smooth with singu-
larities restricted to the two cones.

If one is interested in showing only that Lipshitz continuous solutions are piece-
wise C2, then the argument dRR 2] requires only that the nonlinear functiégh
beC?Y, which it is in our problem. More generally, i € C* then the argument of
[RR] can be carried out to study discontinuities in derivatives of okdet. The
details for completeing this part of the proof of part (i) are left to the reader.

The proof of (ii) is similar. It suffices to prove an a priori estimate

I Vi, rttll oo o, o] xir=s+1p) < M(f, &)

with M independent of’; < 1. Introduce

w(t, p) = / ull +u” dr.
5

+1
Integrating (2.3) over the regidm > § + ¢t} N {0 < ¢t < ¢} yields

1
\II(L, p) - \II(O, p) +2/ u€|r:5+l dl
0
tre pd—d 1, -
5// M(M_u_)(u’;ljtu’_’ Yy dr dt
0 Js+t 2r

<c(d,d)p f W(r, p)dt.
0

There is now a boundary term en= § + ¢ that is nonnegative and so improves
the estimate. As before, this yields an estimate

W(t, p) < W(O, p)ec@or (2.9)

with ¢ independent op. Taking thepth root and then the limip — oo yields
the desired Lipshitz estimate. O
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The next three lemmas prepare for the application of an energy estimate. That es-
timate is applied ta := du, and one needs to control the growth of the boundary
values of(d, — 3,)du on the shrinking sphere= 1—t asr increasesto 1. In order
to do this, we take advantage of the piecewise smoothness.

The main estimate (2.10) of the next lemma is very important. If the problem
had been linear, one would have found that the energy derféity (u? + u?)
was constant on the incoming characteristic(df 1)(h — 1) > 2 then the en-
ergy density tends to zero as— 0, which is a result of the nonlinear dissipative
mechanism. For linear dissipation, the energy density would converge to a strictly
positive quantity.

In comparing the conditions of this lemma with those of the Main Theorem, it
is useful to keep in mind the relation

2h 1_h+1
h—1 T h-1

LemmMma 2.2 (Analysis of the Incoming Jump).On the incoming characteristic
r=1—t,onehasu, =0.1fd > (h+ 1)/(h — 1) then, as increases td,

lu_(t,1—1)] = ——— 1+ o(D)), (2.10)

1/<h D
where the values of_ are the limits from abové.e., froms > 1—r) and the con-

stantc = c(d, h) is given in(2.13). In addition, the tangential derivative satisfies

10; — 3 )u—(1,1— 1) = ——=—= (14 0(1)),

P h/(h—1)
(2.11)
cd.h)d=1) c(d h)

2 2n
Proof. By finite speed of propagation, both andu_ vanish inr < 1—¢. Also,
by the plus equation in (2.2),, is continuous acrogs= 1— ¢, which proves that

u vanishes on the incoming characteristic.
Next estimate the boundary valuesf u_:

b(t,1—1) .= sir&u_(t, 1—1t+96).

C=Cd,h)=

Note thatb is defined only on the characteristic lifre= 1 — ¢}.

Sinceu_ = 0 below the characteristic, the jumpuin from under to over the
characteristic is equal tb. Sinceu_ = 0 belowr = 1— ¢ andu. vanishes on
both sides, the minus equation of (2.2) reads

d-1 Fu(b)
9, —0,)b— ——b+ ——
8 =) o "t o
Lety :=r@ /2 = (1 —1)“"V2pt,1—1). Then

@ —d,)y =r" 1>/2<(a —a)b——d2 1b>

= 1)/2Fh(g) —Fy(y)
oh T Dhpd-D(h-D/2°

—0. (2.12)
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Then, sincgd — 1)(h —1)/2 £ 1,

It -0y -1

—h+1 Fl(y)  2y@d-D0-1/2
Fl-d=D (=12

21— (d—-D(h—1/2)

(8t - ar)

= (8l - 8r)

Thus, along- = 1 — ¢, the quantity
1 1
(h=Dly" 1 27X(d —Y(h — 1) — 2)r@DE-D/21
is constant.
The hypothesigd — 1)(h — 1) > 2 guarantees that the exponent af the sec-
ond term is positive; hence, asncreases to 1, the radiusshrinks to 0 and the

second term grows without bound. To compensate for this, the first term tends to
infinity. Thus,

ly| = er @2V 4 0(D),

d—Dh—1—2\V"? (2.13)
=c(d,h):=2 .
c=cld.h) ( h—1 )
In terms of the original variablk, the estimate (2.13) is equivalent to (2.10).
To prove (2.11), insert the estimate (2.10) into the identity (2.12). O

The energy density along the characteristic is therefore
rd—1|u_|2 — O(rd—lr—Z/(h—l)) — O(r_d—].—Z/(h—l))7

which iso(2) precisely when the hypothesis of Lemma 2.2 is satisfied.

LemmMma 2.3.  If 4 satisfies the conditiost > (h +1)/(h — 1) from Lemma 2.2 and
if o satisfiesx +d > 2h/(h — 1), then for eachd € {9/9,, 3/dx1, ..., 3/dx,} the
limits of the derivative$d, — 9,)du from above the incoming light cone satisfy

A:H r* (1, — 8,)0ul® + |V, 9ul?) do < oo, (2.14)
O<t<1
where |V, w| is the length of the angular derivative, given by,w[? :=
IV.w|? — |9,w|?, anddo is the element of surface area.
Proof. In |x| > 1— 1, write
ou  Ou or  Xx;j ou
ax;  orax;  r or

Sinced, u is spherically symmetric, its angular gradient vanishes and so

ou xj\ ou
Vo— = V,— | —.
0x; r ) or

Since @,u = u_ — u, and since the second summand vanishes on the incoming
light cone, it follows that onx| = 1 — ¢ we have
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2 r
Similarly, by the product rule,

<V ﬁ)”_ - (v ﬁ)—” e i) W e T
w r w 2 .

ou X\ ou  xj ou
0 —0)z—=10;—93)= |+ =0 —03,)—
ox; r ) or r or

— (@, = 9L Vu_ + 28, — 8,)u
S\ )T Tt T

Equations (2.10) and (2.11) show that each summagis”/#=D)
Thus,

/ «(lca, — 5, ou
=it T oy

O<t<1

? 2 ! 1 1
o d—
+ |V, 0u| )do < C/O r —rZh/(h—l)r dr.

This integral is finite if and only itx — 2h/(h — 1) +d — 1 > —1, recovering the
condition in the lemma.

The remaining derivativéd, — 9,)d,u = (3, — 9,)9,u on the incoming cone,
so the square integrability follows from the previous estimates. O

LemmMma 2.4 (Analysis of the Outgoing Jump).If Assumption 1.4 is satisfied then
u is continuously differentiable on a neighborhood of the outgoing ¢arie=
1+ 1, t > 0}. In particular, u is locally H? on the complement of the incoming
light cone,u € H2.((]0, 1[xR9) \ {|x| = 1—1}).

Proof. From Lemma 2.1(ii)# is continuous; on a neighborhood fof = 1+ ¢,
t > 0}, u is piecewise smooth with singularities en= 1+ ¢. It is sufficient to
prove that the:. are continuous acro§s = 1+ ¢, t > 0}. Foru_, this follows
from equation(2.2) _ and the fact that the.. are locally bounded.

Next we show that the continuity af, (0, r) atr = 1 from Assumption 1.4 im-
plies the continuity ofi, across the outgoing characteristie= 1+ ¢. The jump
in u. is defined as

[ue]@,1+18) i=us(t+,14+1) —up(t—, 1+ 1),
uy(t+,141) = 5Iir9+u(t +8,1+1).

The first step is to show that the limg[u](z,1+¢) = 0.
Equation(2.2) . shows thatd, + 9, )u is locally bounded. Thus, with& § <
t < 1, integrating this equation shows that

up(t+8,1+1) —u(0,1-8) = O(r),  up(t—238,1+1)—u(0,1+8) = O(1).
Lettingd — 0 and subtracting shows that
[u1(. 14+ 1) = O@) + M (0,1~ 8) — u, 0.1+ 5)).
The limit on the right is equal to zero, thanks to Assumption 1.4, and therefore
lin3+[u+(t, 1+n]=0. (2.15)
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Define a smooth functiok(z) by
k(t) =us (¢t —0,1+1t)4+u_(¢t,141¢) = 2u,(t — 0,141).

The transport equation satisfied by the jump]along the outgoing characteris-
tic is derived by taking the difference between the equatib®), on the upper
and lower sides of the characteristic to find

1 F([us] + k(1)) — Fa(k@))

d—
(@ + 90)[uy] + —[us] + 5 =o.

Now define aC? function
d—1  Fp(s+ k(@) — Fp(k(@))
s+
r 2h
to find the nonlinear transport equation

Gu(t,s) .=

with G,(¢,0) =0

(at + 8r)[u+] + Gh(ts [l/t+]) =0. (216)

The initial value problem defined by (2.15) and (2.16) has the unique solution
[#.] = 0, which proves the desired continuous differentiability. O

3. Proof of Part (i) of the Main Theorem

The next step in the proof is an energy estimate, which begins with the energy
identity

w,0w = 3, ( . +|V awl? ) Za(w,a w) = ,e(t, x)— ;a(w,a w). (3.1)
J

Lemma 3.1 (Energy Estimate). For 0 < T < 1, defineQr = {(r,x) : 1+1¢ >
x| > 1—1, 0 <t < T} and suppose thab € CY(Q7), Dw € LX), and
w,0w < 0in Q7. Define2e(w, ¢, x) := w? + |V,w|?. Then

2 5. do
e(w, T, x)dx < (= w)” + [Vowl?) ==
L4 T>|x|>1— |x[=1—

O<I<T 2\/5
+ (W, + wy)? + |V, w]?) 2% 3.2)
g‘:l‘;f t r [0} Zﬁ .
<t<

Proof. Choose a smooth radial functigitr, r) compactly supported i€z, and
define the mollified functions

w(, x) ZZ/w(x +¢£2)j(2) dz.

Integrate (3.1) applied t@® overQr_; and then integrate by parts to find
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t=T-§

f eg(t,x)dx|tzo —/ w;Ow® dx dt
1+1>|x|>1—¢ Qr_s

+/ (€5t x) — wi(t, 0wt 1)) 2
_a ’ JALR) r\%s
S V2
+/ (€5t x) + wi(t, Dwe(e, 1)) 2L
Y= ) [ASE] r\ts .
s V2
Passing to the limi¢ — 0O yields
/ e(t, x) dx’iig_a =/ w,Ow dx dt
1+1>|x|>1-1 Qr_s
+/ (et x) — wilt, Dyw, (1, x)) 2
(et x) —w,(t, x)w, (1, X)) —=
S V2
do
F JL gy @0 w0 0) T

O<t<T—$§

Note that the integral oveR7_; is nonnegative and that the contribution to the
left-hand side from = 0 vanishes; this yields

d
/ E(T—S,x)dx S / (e(t’x)_wl(t5x)wr(tax))_0
14+T—68>|x|>1-T+3$ |x|=1—¢

O<t<T—6 ﬁ
+ ﬁx\zlw (e(t, x) + w,(t, x)w,(t, x)) ﬁ

O<t<T-§

Simplifying the boundary terms by using the identities
2(e F ww,) = (w, Fw)? + [Vwl?

and passing to the lim& — O proves the lemma. O

End of Proof of Main Theorem 1.5(i}-ord € {9,, 3/9x1, ..., 3/3x4}, letw =
du. Lemma 2.1(i) proves that € C(Qy) for anyT < 1. Applying 3 to equa-
tion (1.1) showsghatOw = — F;(w,)w,, Sow,Ow = —Fh/(w)(w,)2 < 0 because
of the monotonicity off;,. Thus Lemma 3.1 can be applied to this

Next consider the terms on the right-hand side of (3.2) in the lifnit- 1
Lemma 2.1(ii) implies that the second term is bounded independently $im-
ilarly, Lemma 2.3 withe = 0 shows that the integral of the first summand in the
first integral on the right of (3.2) is bounded independently oT his is where the
hypothesisi > 2h/(h — 1) is used.

Taking the limit7 — 1in (3.2) implies that

lim sup e(w, T, x)dx < oo.
T—1 14+T>|x|>1-T

Inserting the definitionv = du, this reads
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lim sup (3,0u(T, x))? + |V, du(T, x)|? dx < oo.
T—1 1+7>|x|>1-T

Lemma 2.1(ii), together with the continuous differentiability from Lemma 2.4,
implies that

lim sup (8,0u(T, x))? + |V ou(T, x)|? dx < oo.
T—1 |x|>84+T
Combining the last two estimates shows that
lim sup (8,0u(T, x))? + |V, du(T, x)|? dx < oo. (3.3)
T—1 |x|>1-T

Corollary 1.2 and (1.7) together imply that

ou(t,x) e C([O, ool; Hl/Z_E(Rd)),

3.4
3:9u(t, x) € C([0, oo[; H™ Y2 #(R)). e

Estimate (3.3), together with the continuity (3.4), implies that the restriction of
9,.0u(l, x) to {R? \ 0} is a square integrable function; that is,

f (0,0u(L, x))? + |Vedu(l, x)|?>dx < oo. (3.5)
R4\0

Define G(x) to be the square integrable function that is the restriction of
9, du(l, x) to R\ 0, and let

R(x) :=G(x) — 9, ,9u(l x), so suppr C {0}. (3.6)
The regularity (3.4) implies that
R e H Y 5RY). (3.7)

Since there are no nonzero elements of this space with support at the origin, it fol-
lows thatR = 0 and hence that, ,du(L, x) € L2(R¢). Corollary 1.2 witho =1
implies that (1.8) is satisfied, so the proof of Main Theorem 1.5(i) is compléte.

4. Proof of Part (ii) of the Main Theorem

The difference in the analysis comes from the square integrability near the focus
atr =1, r = 0. For the second part of the Main Theorem, one needs the weights
r¢ from Lemma 2.3. In order to take advantage of the weighted estimates from
Lemma 2.3, we use the following weighted energy estimate, which reduces to
Lemma 3.1 whe = 0.

Lemma 4.1 (Weighted Energy Estimate)For 0 < 7' < 1, defineQy := {(z, x) :
14+t > |x] >1—1t,0 <t < T}, and suppose that € C1(Q7) and0 < w,dw €
LYQ7). Define2e(t, x) := w? + |V,w|?. Then, for alla > 0,
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/ (Jx] +1—T)%(T, x)dx
14+T>|x|>1-T

do
1-n” t r2 Vw 2 —
</ (Ix] +1—=0)%((wr —wy)” +| wl)22

<| .
l(;c<‘t<Tt f
+ (x| + 1= D%, + w2+ [VowP) 22 @)
\g|=1+Tz ! " @ 2«/5. .
<t<

Proof. We give a proof assuming that € C2(Q7). A regularization as in the
proof of Lemma 3.1 shows that this is sufficient.

Multiplying (3.1) by a continuous function (¢, x) with integrable first deriva-
tives yields

d

d
di(ge(t, x)) — Y (pw,dw) = pre — Y _(3;¢) (w;djw)

j=1 j=1
< ¢re + |Vidl|w || Viw] < (¢; + [Viop))e.
If ¢ satisfiesp, + |V, ¢| < 0, then an integration by parts R yields

ozf ¢, x)e(t, x)dx|'~)
I+r>|x[=1-t

do
—/ o, x)(e(t, x) —w,(t, D)w,(t, X)) —=

bortr V2
t t t do 4.2
- ﬁg_l?qﬁ( cx)(e(t, x) + w1, x)w, (2, x)) ﬁ (4.2)
<1<
Taking¢(t, x) := (|x| + 1 —#)* > 0 and using the identities(2 ¥ w,w,) =
(w; F w,)? + |V,w|? yields (4.1). O

Proof of Main Theorem 1.5(ii)Using Lemma 2.1(ii), Lemma 2.4, and estimates
(2.14) and (4.1), and reasoning as in the proof of Theorem 1.5(i), yields the fol-
lowing weighted estimates d&? \ 0. Definea €]0,1/2] by

1/ 2h
=——-4d). 4.3
* Z(h—l ) “43)
Then, for alle > 0 andd € {9/9¢, 3/9x;},

/ |x|2F2((3,0u (1, x))* + |Vidu(L x)[%) dx < occ. (4.4)
RI\0

An application of Holder’s inequality shows that the function definedxfgt 0

by 8,0u(1, x) is absolutely integrable on compact subset®6fand so defines

a distribution. As in the sentence before equation (3.6), this distribution is called
G(x). DefineR asin (3.6). Then
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ReLl (R + H Y2 5R?Y and supgR C {0}.

loc
It follows that R = 0. Thus, G is equal t0d,du (1, x), where the derivatives are
taken in the sense of distributions. Thus,
@ :=0u = |x|*°V,® e LA(RY). (4.5)

LemmA 4.2 (Hardy Inequality). If 8 €]0, d/2[then thereis & = c¢(d, B) such
that, for all ® € S(RY),

|||D|17ﬁ(b||L2(Rd) S C|||x|ﬂvxq>||L2(Rd)' (46)
Proof. Inequality (4.6) follows from the inequality
_ d
”lDl ﬁw”LZ(Rd) §C|||X|'B'¢'||L2(Rd), 0< .B < 57
applied to the first derivatives @. Inequality (4.7) is, in turn, a consequence of
the boundedness di? of the integral operator with kernel
1 1
lx — y|9=F |y|f’
(A proof of this boundedness can be found in [SW].) This completes the proof of
Lemma 4.2. O

4.7)
0<ﬂ<§. (4.8)

Applying (4.6) to the regularizationd® := j. * du and passing to the limit — 0
yields
DI *"%3u(l, -) € L%(RY). (4.9)

An application of Corollary 1.2 completes the proof of the Main Theorem.OJ

5. An Explicit Example

In this section we compute an explicit example that exhibits smoothing of a sin-
gularity. The example is self-similar, so the partial differential equation in
becomes a nonlinear equation with singularities of Fuchs type. Wher, this
equation is explicitly solvable.

If vis a solution of(1.1) andx > O, then

uy = uy(t, x) ;.= A*v(rt, Ax) (5.1
is also a solution, provided thatand# satisfy the equivalent conditions
2—h a+2
=, h= . 5.2
-] a+1 ®-2)
For the case of quadratic nonlinearity,
h=2 and a=0, (5.3)

we seek radial self-similar solutions—that is, solutions satisfying
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u(t,r) .= u(rt, Ar).
Settingh = 1/r shows that
u(t,r) =u(t/r,1) :=U@t/r). (5.4)

1 [/t 1 ([t
u,=-=-U" -, un:—zU =
r r r r
—t(! tzU“ t +2tU/ t
Ur = — I K Upyp = — - - b
r2 r r4 r r3 r

Therefore, equation (2.1) may be written as

Then

1 2 d—DLt 2t 1
O:DM+Fh(uf)=|:—2——4:|UH+|:( 3) ——3:|U/+—2U/|U/| (55)
r r r r r

Multiply by 2, and set
s:=t/r and V:=U' (5.6)

to find
A—5V' +d—-3)sV+V|V|=0. (5.7)

Consider solutions with
U=V =0 for —oco<s <—1

which corresponds to solutiomsthat vanish on the incoming cofe < —r}.
For—1 < s < 1, use the change of variable

Vi=(1-s3)32w
to find that (5.7) is transformed to
A= s)W' + 1L—sH42w|w| = 0. (5.8)

Thus, W never changes sign ir-1 < s < 1} and—W is a solution whenevei
is a solution.
Separating variables in (5.8) yields the positive solution

W(s) = where F(s) .= / 1- t2)(d—5)/2 dr.
-1

1
m,
This integral is finite fo > 3, and approaching = —1 from above yields

1— s2)(d—3)/2
F(s) = 1_3
The right-hand limit ofV(s) ats = —1 is therefore given by

A_Ii\r‘r_11V(s) =(d-3).

1+o).

HenceU’ = V has a jump discontinuity at= —1, so the first derivative of the
self-similar solution has a jump discontinuity on the incoming light cone.
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Whens increases ta-1 from below, one has
V(s) ~c(l— SZ)(d—B)/Z'
ExtendV to vanishing fors > 1,

V=0 fors=>1 (5.9

The resulting self-similar solution is constant inside the outgoing light ¢ore
t > 0}. In addition, the first derivatives of are continuous across this cone.
Near the outgoing cone,

Viu~ (r — t)(d_s)/2

and so, for alk > 0,

ue H,Ejl;* @=3)/2+1/2=¢) (5.10)
Ford = 4, this example shows that the result of the Main Theorem is sharp. For
d > 4, the regularity on the outgoing cone increases linearly widls if the result
of the second part of the Main Theorem were true forall 2h/(h — 1).
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