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Geometric Hardy and Bergman Spaces

WOLFGANG BERTRAM & JOACHIM HILGERT

0. Introduction

The theory of Hardy spaces of holomorphic functions was initiatetPitb by

G. H. Hardy, who considered functions on the unit disc. One possible generaliza-
tion to several variables is the following. Given a bounded donfinia C” that

is star-shaped around zero and a meaguoe the Shilov boundarg of D, one
defines eHardy spaceof holomorphic functions o by

H*(D, p) = {f eOW) | | fI*:= sup Elf(rx)lzdu(x) < oo}. (0.3)
Whereas this definition has been considered because itis natural for certain classes
of examples, a general theory of Hardy spaces of holomorphic functions on
bounded complex domains has been developed only for domains with topolog-
ical C2-boundary (cf. e.g. [Kr]).

In 1937, S. Bochner for the first time considered analogous spactsfodo-
mainssuch as the upper half-plane. More preciselyifs an open convex cone
in a real vector spackg, then one defines a Hardy space of holomorphic functions
on the tube domaiff := V +iQ2 C V¢ by

H*(Tg) = {f €OTa) [ IfI°:=sup | |/ (x +iy)*dx < oo}, (0.2)

Vv
wheredx is a fixed Lebesgue measure Br{cf. [SW, Chaplll]). Generalizations

of these spaces have been studied in particular by Stein and Koranyi and eventu-
ally led to the “real variable approach” to Hardy spaces (cf. [St]). Thus there was
not so much interaction between the settings (0.1) and (0.2). Only much more re-
cently, when people started to consider Hardy spaces of “curved” tube domains
for reasons of representation theory, did the necessity (cf. Fact 4) arise to compare,
among others, the bounded and the tubelike case.

Such a comparison was known for a long time in the simplest cas€dpley
transformC(z) = i(1+ z)(1— z)~* carries the unit disc onto the upper half-plane,
which is just the tube domaiR + iR*. Then one can determine which functions
in the Hardy space o are transformed into functions in the Hardy space on
R + iR" (cf. [Ho, p. 128] and Fact 2). There is an important class of bounded
domains, calledbounded symmetric domains of tube tyfoe,which there exists
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via a generalized Cayley transform an unbounded realization as a tube d&nain
over asymmetric con& (cf. [FK2, Chap. X]). It should be noted here that these
domains do not hav€2-boundaries. Nevertheless, in this case there exist a num-
ber of classical and also more recent results on the Hardy spaces just defined that,
however, have so far not been explained in a satisfactory way. In particular, we
are interested in four facts for which new and geometric proofs are desired.

Fact 1: The unitary action of a “big” group.If D is the unit disc ang. the ro-
tation invariant probability measure on the circle, then the gréug: SU(L, 1)
operates unitarily o/ ?(D, 1) via

(g- f)(z) = (Detdg ) Y2f (g %) (0.3)

(the square root can be defined in a consistent way sin¢g $Us a double cover

of the group AutD) = PSU(L, 1)). By the same formula, the group (8 R)

acts on the Hardy spadé#?(Tg) and, more generally, a double cover of the auto-
morphism group of a tube-type domain acts unitarily on the corresponding Hardy
space. However, this action is not obvious from the geometric data because the
measuregu (resp.,dx) on the boundary is far from being invariant under(sQ)

(resp., under $2, R)).

Fact 2: The isomorphism of classical Hardy spac&he Cayley transforn®
induces an isomorphism of Hardy spaces

H?(D) — H*(Tg), f+ (z+ (DetdCY2)Y2f(C2)). (0.4)

This is not at all obvious from the definitions. First, the spaéesiy over which

one integrates in the definition & ?(Ty) are transformed vig into horocycles

of D, which are not the same as the “concentric circks'used in the definition

of H?(D); second, the measures used on the Shilov boundary (resp., on its open
dense part(V)) are not the same. In fact, no geometric reason for this isomor-
phism is given in the literature; it is only deduced from the explicit knowledge of
the reproducing kernels. Recall here tha®ifdoes not contain affine lines then
the Hardy spacéf?(Ty) is a nontrivial Hilbert space such that the point evalu-
ations f — f(z) are continuous. Thus there exists a vedtore H?(Tg) such

that f(z) = (f, K,) for all f € H?(Tg); the functionk (z, w) = K, (z) is called
thereproducing kernebf H2(Tq) (cf. e.g. [FK2, Sec. IX.4]). Similar statements
hold for the Hardy spac&/%(D).

Fact 3: Hardy spaces are “square roots” of Bergman spacébe reproducing
kernel of H2(D), called theCauchy kerneaind denoted by (z, w), turns out to
be a square root of thBergman kerneB(z, w) of D: there is a constant # 0
such that

cS(z, w)?> = B(z, w). (0.5)

The Bergman kernel is by definition the reproducing kernel oBegman space

B%(D) = {f eO(D) | /le(z)lzdz < oo}, (0.6)

wheredz is Lebesgue measure fx, restricted taD.
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Similarly, the reproducing kernel af?(Ty,) is the square root of the Bergman
kernel of T, (this information allows us to prove that (0.4) is an isomorphism).
Put in another way, the Hardy space turns out to belong to a parameterainahe
lytic continuation of a family of weighted Bergman spa@ég FK2, Chap. Xl1]).

Once more this seems to be rather an accident, and no geometric interpretation of
this fact is given.

Fact 4: Embedding of classical Hardy spaces into nonclassical Hardy spaces.
Motivated by the so-called Gelfand—Gindikin program, the problem of embedding
“classical” or “commutative” Hardy spaces into “nonclassical” or “noncommuta-
tive” Hardy spaces has attracted much interest during the last years (see [BH2; BO;
C; Kgi1; K@2; OF]). One wants to understand a class of Hardy spaces which live
on open domains in curved complex symmetric spaces and which are of interest
in the theory of unitary representations. Their reproducing kernels are very com-
plicated, but—comparing them with the more classical and better-known Hardy
spaces on bounded symmetric domains of tube type—in some cases it was possible
to actually calculate the kernels (cf. [BH2]). When working on this problem, we
realized that Facts 1-3 are usually taken for granted, though they remain mysteri-
ous in the normal framework of Hardy spaces. Once this observation was made, it
became clear that a geometric explanation of Facts 1-3 is precisely the groundwork
needed to understand what is really going on in the problem of embedding one
class of Hardy spaces into another and in this way to extend the results of [BH2].

GEOMETRIC HARDY AND BERGMAN SPACES. The definition of “geometric Berg-
man spaces” is well known: the Bergman space of a complex manHoisithe
space of holomorphig-formsw on M such that the reaRn)-form

.n2 -
mwoQw

is integrable oveM. From this definition it is immediately clear that the group
Aut(M) of holomorphic automorphisms a¥ acts unitarily on the geometric
Bergman space. If we trivialize the geometric Bergman space with respect to a
nowhere vanishing holomorphicform, we obtain a function space in which the
group Aui M) acts via a multiplier representation similar to (0.3). This should be
compared to Fact 1.

Fact 3 indicates what kind of bundle we must take in order to realize the Hardy
space as a space of sections: the bundle must be a “square root” of the bundle defin-
ing Bergman spaces, that is, a holomorphic line bubdéeich thal. ® L is iso-
morphic to the canonical bundie,, = A"(T*M) of M. Such bundles are called
(holomorphic)half-form bundleqcf. [GS]). For the definition of Hardy spaces
of sections, one needs much more structure than for the definition of Bergman
spaces. To see what this structure might be, we observe that—in both types of
Hardy spaces described here—the integration is carried out over a region of the
boundary of a complex domain after translating the function by elements of a cer-
tain semigroup of (stricgompressionsf the domain (i.e., a semigroup of diffeo-
morphisms carrying the closure of the domain into its interior). Thus, besides a
half-form bundle over a domain we need a certain “boundary” of this domain and
a semigroup over which the supremum in the definition of the Hardy norm will be
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taken. This geometric information will be called “Hardy-space data” (Definition
1.3.3). Just as the definition of geometric Bergman spaces does not require a mea-
sure, the definition of geometric Hardy spaces will not require a measure on the
boundary. This allows a “big group” to operate unitarily on the geometric Hardy
space, explaining Fact 1. Also Fact 3 is explained in a natural way: whenever the
“big group” acts transitively on the domain (as is the case for bounded symmet-
ric domains), both the reproducing kernels of the geometric Bergman and Hardy
space define invariant sectionskof{resp., ofL); sinceL ® L = K, there must be
aconstant withcS® § = K. However, the main problem is now to show that

0: itis more difficult to prove that a geometric Hardy space is not reduced to zero
than to prove this for Hardy spaces of functions. In the case of a bounded sym-
metric domainD we prove that # 0 (Theorem 2.2.3) using a result of Clerc [CI]
stating that elements of tle@mpression semigrouf( D) are alsacontractionsof

the Bergman metric ob. Once we know that the geometric Hardy spac®adé

not reduced to zero, we can explain Fact 2: the Hardy spéep) and H?(Tg)

are essentially defined by taking suprema over cegabisemigroupsf S(D);

this supremum is smaller than the one o¥éb) used in the definition of the geo-
metric Hardy space, and therefore the geometric Hardy space can be realized as a
subspace off 2(D) and H?(Tg). But this subspace contains enough elements in
order to prove that we have, in fact, equality (Theorem 2.3.1 and Theorem 2.3.3).

Our setup applies to much more general Hardy spaces than the classical ones on
tube domains. In particular, it includes the highly nontrivial examples described
in [BH2; BO; C; HN; K@2; O@], which can be viewed either as living on curved
complex symmetric spaces or else on complements of hypersurfaces in bounded
domains (Section 3). These are our motivating examples, and they are all related
to Fact 4.

The necessity of building a geometric theory of Hardy spaces in order to really
understand these examples is explained in [BH2, Sec. 4]. Our theory will allow
us to compare these spaces with the classical ones in an intrinsic way. We do not
expand on these examples here in order to cleanly separate the difficulties of build-
ing a general geometric theory of Hardy spaces from the technicalities arising in
the description of the curved examples. The details will be given elsewhere; here,
we restrict ourselves to some remarks on which kinds of subtle problems must be
dealt with in extending the known results about the embedding problem. Namely,
before comparing Hardy spaces, one needs to compare holomorphic half-form
bundles together with “equivariant” group or semigroup actions. Examples show
that half-form bundles that are equivalent as vector bundles may very well carry
several essentially different actions of a given group. This observation naturally
leads to the problem of describing and classifying such objects.

1. Definition of Geometric Bergman and Hardy Spaces

1.1. Begman Spaces of Holomorphic Sections

Before defining geometric Hardy spaces, it is useful to recall quickly the defini-
tion and basic properties of geometric Bergman spaces (cf. [KN, p. 163]). For
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any complex manifold/ of dimensiom, we denote b¥ ,, the canonical bundle
/" T*M whose holomorphic sections are the holomorphforms. The exterior
product of a holomorphie-form w; with an antiholomorphia:-form @, gives,
uptoa factor"’, a real &-form. Becausey (when viewed as a real manifold)
is automatically orientable, this form can be integrated d¥eand the resulting
number, if finite, is the inner produc; | w2). The Bergman spacés then the
space

B2(M) = {weO(M, Ka) ’ i"Z/ wAD < oo} (111)
M

of holomorphia:-formsw for which the inner produciw | ) is finite. Itis known

that this is a Hilbert space admitting a reproducing kernel that is a holomorphic
(2n)-form on M x M (cf. Section 2). From the definition of the Bergman space
it is immediately clear that the group Autr) of holomorphic diffeomorphisms
acts unitarily on3%(M) by (g, ) — (g™Y)*w, whereg* is the usual pull-back of
forms.

ReMaRk 1.1.1 (Trivialization of Line Bundles). A line bund¢ over a complex
manifold N is isomorphic to the trivial line bundle if and only if it admits a holo-
morphic nowhere vanishing sectionin fact, the constant function 1 is a nowhere
vanishing section of the trivial bundle, and conversely, given such a sectioa
define a bundle map

NxC—V, (p,2)— 2z,

whose inverse is given by, > v — (p, z) with z defined byv = zv,. The corre-
sponding isomorphism
O(N,V) — O(N)

whose inverse is given by — fv will be called thetrivialization map associ-
ated tov. Clearly, we can make similar remarks for real line bundles over real
manifolds.

Applying this to the Bergman space, given a nowhere vanishing holomorphic
n-form v, we obtain an isomorphism of Hilbert spaces

B*(M) — B3(M,v) = {f eOM) | f LF@)%" (v A D) (2) < oo} (1.1.2)
M

with inverse given byf — fv. The function spac®?(M, v) is called atrivial-
izationof B2(M).

Note that the unitary action of A@/) in the trivialized picture is no longer
canonical but depends an for everyg € Aut(M) there exists a functiofi(g) =
Jv(g) such that

gv=j(g) v

Thusg*(fv) = g*f - g*v = g*f - j(g) - v, implying that the action of is trans-
ferred to
(g-N@=jg " fg 2,

wherej(g. ) = j(g).
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REMaRrk 1.1.2 BundleValued Bergman Spaces). Mf is a complex:-dimen-
sional manifold andd a holomorphic vector bundle ové{, then by definition a
holomorphicz-form with values irH is a holomorphic section of the bundle

Ky ® H = Hom( A" TM, H); (113)

the space of such forms is denoted @y(M, H). In order to define Bergman
spaces of holomorphie-forms with values irH, we need the additional assump-
tion thatH is aHermitianvector bundle. Thente, v’ e H, anda, o’ € \' T*M
we associate a scalar-valued n)-form

(@a®uv, a’' V') = i"z(v | V) h. (@ A Q). (1.1.4)
In this way we obtain a sesquilinear map
() QUM H) x QUM H) - £ (My), (1.1.5)

where£™" (M) denotes the differential forms of tyge, n) on M considered
as an almost complex real manifaldlz. With these definitions,

B3 (M,H) := {a)e Q"MH) | | (0, 0) < oo} (1.1.6)
My
is called theBergman spacef square integrable sectiorgsf. [K, p. 639]). Itturns
out thatB?(M, H) is a Hilbert space with respect to the inner product

(0| ®)5 :=/ (w, ). 17
My

If H is a trivial vector bundle with typical fibed ,, then the Hermitian metric is
of the form(v | v')u, = (v | P(z)v')n, with a Hermitian positive definite oper-
ator P(z). If we assume, moreover, thatis a nowhere vanishing-form on M,
then the magf — v ® f defines an isomorphism of

B*(M,H,, P)

= {f €O(M.H,) | i" | 1P@F@IPW A D)) < oo} (1.1.8)

Mg
ontoB2(M, H). If H is aline bundle, then — P(z) is a scalar function with pos-
itive values and1.1.8) coincides with the usual definition efeighted Bergman
spaceswith weight functionP.

If g is a holomorphic diffeomorphism of the complex manifdiiand if w is a
holomorphicn-form, then

/ (s°0) ® (g7°@) = / 08,
M g(M)

which means thag acts unitarily on the classical Bergman space. The state-
ment is immediately generalized to the case of general bundle-valued Bergman
spaces if we assume thaacts isometrically on the Hermitian bundle used in the
construction.
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A situation that will become relevant arises as follows. We assumértlismt
domain in a complex manifold?, H is a Hermitian vector bundle ove¥1, and
" is a semigroup of biholomorphic maps oh that preserve& and acts on the
bundleH with isometric fiber maps.

ProposiTION 1.1.3. The Bergman spadg?(/) is stable under the natural pull-
backw — s*w for s € I', and this action is contractive.

Proof. In the scalar case, we have

/(s*w)@(s*w)=f a)®c?)§/w®c?),
u s(U) u

sinces is a compression dff. The argument carries over to the bundle-valued
case with the obvious changes. O

1.2. Spaces of Square Integrable Half-Forms

DErINITION 1.2.1.  Ahalf-form bundleon a real:-dimensional manifoldV is a
complex line bundlé. over N such that the squate? = L ® L is isomorphic to
the complexified line bundle/\" T*N)C. In other words, the transition functions
hep: Uy N Ug — C* of L satisfy

h2,(2) = Deta (d(¥s o ¥, ) (Y (2)) (1.2.1)

if (U,, ¥a)aca is an atlas fov. A section of a half-form bundle is calledhalf-
form.

ExampLE 1.2.2. Assume thaV is orientable; thus there is a nowhere vanishing
n-form v on N and (w.r.t. an oriented atlas) the bundl&" 7*N). is isomor-

phic to the trivial line bundle, which we denote Ay(cf. Remarkl.1.1). Since

1® 1= 1, itfollows thatl is also a half-form bundle oN. We cannot conclude,
however, that in this situation all half-form bundles are trivial. For exampl¥, if

is the circle then the complexification of the M&bius band (considered as a real
nontrivial line bundle) is a nontrivial half-form bundle.

REMARK 1.2.3. Not every manifold admits half-form bundles, and if they exist
they are not always uniquely determined.

To make this precise, recall that the isomorphism classes of line bundles form
an abelian group, called the Picard group, under tensoring (the trivial bundle be-
ing the identity). This group is isomorphic (M, A*), where A is the sheaf
of invertible differentiable map&C > or holomorphic, depending on whethir
is real or complex). Thus/ admits a half-form bundle if and only if the isomor-
phism class oK j, is a square in the Picard group. Consider the exact sequence

(1) > (21} — A% 225 4% 1

of sheaves of abelian groups. According to [Go, p. 174], we obtain a long exact
sequence of group homomorphisms in cohomology
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Z|—>22

oo > HY M, {£1}) &> HY M, A*) =5 HY(M, AX)
2 H2(M, (41) — -

Thus the canonical bundle is a square if and onlg(iK ;) is the identity in
H?(M, {£1}). Moreover, ifK y is a square, then the set of square roots is param-
eterized by the image ofin HX(M, {£1}).

In particular, we find that if7/(M, {£1}) is trivial for j = 1, 2 thenM admits
a unique half-form bundle.

For two half-formsw™® andw®@, the tensor produes® @ »®@ is adensity that
is, the product is a section of tiiensity bundleé A" |7*N, which is the complex
line bundle defined by the transition functiog\s : U, N Ug — C* given as

gap(2) = |Dety (d(gs 0 9,1 (9a(2)))

where(Uy ., ¢o)uea is an atlas fol. The fiber of| \" |T*N atx € N can be viewed
as the set of maps: (7, N)" — C such that

p(An, ..., An,) = |Det(A)|p(n1, ..., 1)

for all A € End(7,N) (cf. [GS, p. 53]). We call a density real if v(x):
(T,N)* — C takes only real values; we call positiveif v(x): (T,N)" — C
takes only nonnegative values for alE N.

Thus, ifHFy is a half-form bundle o, then

9

@0, 0?) > 2 | ©@)ur, = / o @ o@
N

defines an inner product on the space of continuous sectidtispfvith compact
support, whose completion we denote (N, HF y).

ExampLE 1.2.4 (Trivialization). Assume th#tF, has a nowhere vanishing sec-
tionw,. Thenv := w, ® @, is a nowhere vanishing positive density rdefining
a measurén on N, and

L%(N,dn) — L*(N,HFy), f+> fo,

is an isomorphism of Hilbert spaces (cf. Remark 1.2.1). Densities can be pulled
back under smooth maps via

P (X)L, -y Ma) = V(@) ([dp(x)71, ..., do(xX)n,).
Thus, for any diffeomorphism of N there is a strictly positive functiofig) such
that
gv=j(g - v.
Then
(g- N =jgH? (fog™
defines a unitary action of the gro@pof diffeomorphisms ofV in L2(N, HFy).
It corresponds to an actian — g*w of G on the space of sections By such
thatg* o ® g*w = g¥*(w ® ®).
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In the special case wheré = V is a vector space, the bundi¢' T*V clearly
is trivial and thus the trivial bundle is isomorphic to a half-form bundle. The forms
w, andv can both be chosen to be translation-invariant; we will use also the nota-
tion (dx)¥? for v. Then

L2(V,dx) — L3%(V,HFy), f+— f(dx)Y?

is the trivialization map. We havi g)(x) = |Det(dg(x))|, and thus the action of
G is given in the trivialized picture by

(g Nx) = ldg ) ™2f (g7 x).

In this case, the unitarity of the action can be seen as a direct consequence of the
transformation formula for integrals.

REMARK 1.2.5. In general, given a half-form bundiié-, there is no natural pull-
back action of the group of all diffeomorphismsidf that is compatible with the
natural action on the bund|&" T*N in the sense that* (v ® p) = g*o ® g*p.

However, one is not very far from this situation. One can prove the following.

(1) Asingle diffeomorphism oM can always be lifted to a diffeomorphism of the
half-form bundle that is compatible with the pull-back of holomorphic forms.

(2) The lifting can be done simultaneously for all elements of a connected topo-
logical semigroup in such a way that one obtains a representation of a double
cover of the semigroup.

1.3. Hardy Spaces of Holomorphic Half-Forms

DerFiNiTION 1.3.1. LetM be a complex manifold. A holomorphic line bundle
L — M is called aholomorphic half-form bundlé L ® L is isomorphic to the
canonical line bundl& ,; = A" T*M. A holomorphic half-fornis a holomorphic
section of a holomorphic half-form bundle.

In order to define Hardy spaces, we must integrate holomorphic half-forms over
real forms ofM. For this we need the following proposition.

ProrosiTioN 1.3.2. Let M be a complex manifold andF a holomorphic half-
form bundle onM. If N € M is a real form(i.e., a totally real real-analytic
submanifold witldimg N = dim¢ M), thenHF |N is a half-form bundle on the

real manifoldNV and (HF ® W)|N is a density bundle on the real manifaM

Proof. We can find an atlad/,, ¢,) for M such thatp, (N N U,) € R" for each

of the coordinate functiong,, : U, — C”". In fact, such charts are obtained by
parameterizing a piece @¥ by a real-analytic magy': U — N, whereU is a
neighborhood of 0 iRR", and then complexifyingf to get a holomorphic map
from a neighborhood of 0 i€ onto a piece of. (In a local chart onV, all we

do is write f as a power series in real variables, ..., x,,) and then make com-
plex; the power series will converge in some neighborhood of the origin.) Total



244 WOLFGANG BERTRAM & JOACHIM HILGERT

reality of N ensures that the extendgds locally biholomorphic, and its inverse
is then a local chart oM that is compatible withV.

With respect to this atlagly, N N, @, n)aca With o y: N N U, — R is an
atlas forN and

Yu 095t 9p(Ua) NR" — 9 (Uy) NR".
In particular, forx e N N U, N Ug we find that

Dets (d(@a. v © @) (9p(x))) = Detc(d(ga o 05 (9p(x))) = hpa(x)?
for x e N N U, N Ug. This also implies

ap(x)hap(x) = |Detr (d(@a, v © 05 %) (@p(x)))]

and hence the claim. O

Note that, ifw is a holomorphic half-form an& is as in the proposition, the
restrictionw\ v Is a half-form on the real manifoldy and thus we can integrate

oy ® oy over N. Hardy spaces are defined by a finiteness condition on such in-
tegrals. However, in order to obtain Hilbert spaces, one needs the more specific
geometric situation wher® plays the role of a boundary of the domain on which
the holomorphic half-forms live.

DerINITION 1.3.3. A quadrupl€l{(, N, HF, I') is calledHardy-space data

(1) U is a domain in a complex manifolt,

(2) HF is a holomorphic half-form bundle ové/,

(3) N isareal form ofM such thatVv is contained in the boundapy/ of 4, and
(4) T is a semigroup of compressionsigfacting by local automorphisms éff-.

More preciselys € " acts by a local holomorphic diffeomorphism
s: Dy — s(Dy),

whereD; C M is a domain containingf. The assumption thatis a compres-
sion ofi/ means that(./) C U. Moreover, we assume that, to eacha bundle
isomorphism

s* 1 HF | p,, = HF|p,

is given (thus we assume thato s* = s o p, wherep is the projection onto the
base space dfiF) such that? o s; = (s152)* and

s*(vy ® wy) = 5"V, Q s*w,

for all vy, wy, € HF,.

It is clear that the manifold/ and the domain®; can be replaced by smaller
neighborhoods aff; thus we omitM in our notation and are, in fact, interested
in equivalence classes only when considering two elemgntsas equivalent if
they coincide o1d/.
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We denote by ¢ the semigroup ideal
re={sel |sU) cU.

Then, under the previous assumptiansp is a real form ot/ for all s e T'°. We
are thus in the situation of Proposition 1.3.2, implying that for any holomorphic
sectionw of HF we have a density ® @ ons - N.

DeriNITION 1.3.4.  Given Hardy-space daf@d, N, HF, I"), for any holomorphic
sectionw of HF we set

lwl3, = Sup/ ol y®of
sel'? Js.N
and define adardy space
H2U) == H>*U, N,HF,T) := {we OU, HF) | |o|?, < oc}.

Of course, this definition is void unleg¥’ is non-empty. To see that there are
plenty of nontrivial examples, just note that for any homogeneous complex mani-
fold M = G/H and any open subsemigro§gn G, the S-orbits in M are all open

and can play the role @fi. For a detailed description of a number of examples
satisfying also Assumption 1.4.1 (so thdt even contains approximate identities)
see [HN, Chap. 8], which deals specifically with compression semigroups. To
construct actions of compression semigroups on a half-form bundle, one can use
standard methods involving double coverings. That coverings cannot be avoided
in general can be seen from the examples treated in [BH2] and [K@2].

One can also define general bundle-valued Hardy spaces in the same spirit as we
passed from the Bergman space of scalar-valued forms to bundle-valued forms.
However, in order to keep the notation manageable, we stick to the case of scalar-
valued half-forms. At the moment, we do not even know whether the Hardy space
is a vector space.

ProprosiTION 1.3.5.

(i) The Hardy spacé{?(i), together with| - ||§{, is a normed complex vector
space.
(i) The semigroup acts naturally by contractions on the Hardy space.
(iii) If T is a monoid(i.e., a multiplicative semigroup with a neutral eleméit
and if the element acts as the identity ot and HF, then the groups =
I' N ' * of units acts naturally by isometries on the Hardy space and hence
also on its norm completion.

Proof. (i) Using property (4) of the Hardy-space data, we calculate that

/ ol @6, = / @®a)|, = / sto ® s o = ||(S*0)|N)||iz(N_H,:N);
s-N s-N N

thus,

2
lwll3, = supll(s*®)| Il L2, HEy)-
selre
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Using the triangle inequality i.2(N, HFy), it follows that if ||w|l < co and
lvlly < oo then alsdjw + v||i < oo. The claim follows.
(ii) Using the calculation from part (i), we have

2
Is*wll3, = supll(g*s*®)| y Iz ey = SUPII(E*®)| L2 HEy)
gere gesle

< Sup”(g*w)|N”L2(N,HFN)
ger()

< llol%.
(iii) This is immediate with (ii). O

Note that it is by no means clear at this point that the Hardy sp&a@() is an
inner product space. In other words, we do not have the means to show that the
normi| - ||?H satisfies the parallelogram identity

2 2 2 2
2l + 21013 = llo + o'l + lo — o'l13;.

1.4. The Boundary Value Map

From the theory of Hardy spaces of functions, one expects an isometric boundary
value magph: H2(U, N, HF, T") — L2(N, HFy). We formulate an assumption on
the geometry o/, N, andI" under which this is indeed the case, as follows.

AssumpTION 1.4.1 (Polar Decomposition). In addition to the data given by Defi-
nition 1.3.3, assume thé&k preservesv and thafl" is a locally compact semigroup
for which the groupG = I' N ' 1 is a Lie group such thaf admits apolar
decomposition

I = G exp(iC)

with an Ad(G)-invariant regular (i.e., convex, open, and pointed) céni@ the
Lie algebrag of G. This means that each elemerd I" can be uniquely written as
s = gp, whereg belongs taG andp belongs to a 1-parameter subsemigroup

y (1) of T for which the vector fieldX(x) = i<| _ y(t)x is of the formx —
% —0 €Xp(tY) - x for Y in C. Here multiplication by on the tangent space 8f
is given by the almost complex structuredt

THEOREM 1.4.2. Let (U, N, HF, ') be Hardy-space data satisfying Assumption
1.4.1. Then there is an isometric boundary value map given by

bﬂﬁuMHEmeL%w%m,mememmmw
11—
that is independent of the elemenk int C.

Proof. This can be proved in the same way as the corresponding statement for
Hardy spaces of functions on Ol'shanss&migroups (cf. e.g. [HN, pp. 277-279].

Let us briefly recall the main points. We wrife= G exp(iC) and letX € int(iC).

For a fixedw € H2(U, N, HF, T'), we consider the map

F:{zeC|Rez >0} - L%(N,HFy), zr> (expzX)*w),.
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In this situation, a lemma of Paley—Wiener type due to Ol'shan@fi"[HN,
Lemma 9.11]) implies thaky () := lim._,o F(z) exists inL?(N, HFy). Now it
is proved by standard arguments thgtis an isometry that does not dependXn
(cf. [HN, pp. 278-279]). O

We note the following consequences of Theorem 1.4.2 for later use.

CoroLLarY 1.4.3. Let (U, N, HF, ') be Hardy-space data satisfying Assump-
tion 1.4.1. Then

(i) the Hardy spacé{?(U, N, HF, I") is an inner product spacend
(i) the space of sections ¢F that are holomorphic in some neighborhood of
U is dense iH?(U, N, HF, I).

Recall the basic concepts of the holomorphic representation theory for involutive
semigroups from [N2]. Aimvolutive semigroufs a pair(T, #), whererl is a semi-
group andi: I' — T is an involutive anti-automorphism. Bermitian semigroup
representatiorof a semigroud™ with involution # on a pre-Hilbert spac(® is
a semigroup homomorphism: I' — Bo(H°) preserving the involutions (i.e.,
w(s%) = m(s)*). Here Bo(HP) is the vector space of linear operatars H° —
H° for which a formal adjoint exists. This is an involutive semigroup, so the fore-
going definition makes sense. We calboundedif 7 (s) is a bounded operator
forall s e T'. If T is a topological semigroup with a continuous involution, then
a bounded representatianon a Hilbert spacé{ is calledcontinuousf = : I —
B(H) is continuous with respect to the weak operator topology on the algebra
B(H) of bounded operators oH.

If, in addition, I is a complex manifold and is anti-holomorphic, ther, £)
is called acomplex involutive semigrougnd a bounded representation I' —
B(H) is calledholomorphicif it is holomorphic as a map wheB(#) is endowed
with its natural Banach space structure.

RemARK 1.4.4. Note that the existence of a polar decompositiotirfautomat-
ically shows that we have an involutive self-map- s* of I via (g expX)¥ =
(expX)g~L In fact, we calculate

(s)* = exp(Ad(g)X)g = g(expX)g g = g expX.

But the equality(sys,)* = sgsi cannot automatically be deduced from this defini-
tion unlesd" is abelian. We shall soon encounter various examples of semigroups
with polar decomposition such that the associated involutive self-map is actually
an involution defined as follows: there is a “complex conjugatioréf M with
respect to the real fornv, and then the equatiori = 7 o s~ o 7 holds on some
neighborhood of/.

THEOREM 1.4.5. Suppose that Assumption 1.4.1 holds. In addition, we assume
that (T, #f) is a complex involutive semigroup such that

(gexpX)* = (expX)g " = g texp(Ad(g)X).
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Thenthe representation éffrom Proposition 1.3.5 on the completion&f (U, N,
HF, I') is a holomorphic Hermitian representation.

Proof. We setr (s)w = s*w for w € H?(U, N, HF, I') and use Proposition 1.3.5
to extendr (s) to a contraction on the completidg of 12U, N, HF, T'). In this
way we obtain, again by Proposition 1.3.5, a bounded representatidh —
B(H). Once more from Proposition 1.3.5 we see that the restrictiontofG =

I' N I'Lis a unitary representation.

Using charts and a suitable partition of unity, we can view the integrals that give
the norms of the half-forms involved as ordinary integrals of functions. Since
acts by contractions, we can use Lebesgue’s theorem of dominated convergence
to see thatr is holomorphic (cf. [HN, Lemma 9.7]).

It remains to demonstrate thais®) = n(s)*. The unitarity ofn|G implies
that it suffices to show that (expX) is self-adjoint forX € iC. Consider the
derived representatiofir of g on H. SinceiX € g, we know thatdn (X) is a
self-adjoint operator ofi{, which is the infinitesimal generator of the unitary 1-
parameter group (exp(itX)). Let P be the spectral measure &f (X) and set
A = P(]—00,0])dn(X).

Now, forw € H2(U, N, HF, I'), consider the function

72> F,(2) = m(expzX))w = (expzX)*w

defined onC, = {7 € C | Rez > 0}. ThenF,(z + it) = w(expitX)F,(z), and
Ol'shanski’s Paley—Wiener lemma [HN, Lemma 9.11] shows that there exists a
& € H such thatF,(z) = exp(zA)& for z € C,. SinceF,(0) = w we see that

& = w, which implies

m(exp(zX))w = exp(zA) w.

By continuity, we now findr (exp(zX)) = exp(zA). SinceA is self-adjoint, the
claim follows from the case = 1. UJ

ReEMARK 1.4.6. Thereis ananalog of Theorem 1.4.5 for Bergman spaces: suppose
that (T, ) satisfies the assumptions of Theorem 1.4.5; then the representation of
I" on B%(U{) from Propositiori.1.3 is aholomorphic Hermitian representation. In
fact, we can obtain this result by copying the proof of Theorem 1.4.5 Bt )
instead ofH{?(U, N, HF, T"). It even gets a little simpler, sind8?(1/) already is
complete.

1.5. Completeness of Hardy Spaces

In general, the normed vector space from Definition 1.3.4 will not be complete.
We introduce a sufficient condition on the Hardy-space data that will allow us to
prove completeness in various cases.

DeriNITION 1.5.1.  Hardy-space dai@/, N, HF, ") are calledcompleteif As-
sumption 1.4.1 is satisfied and the inclusion map

H2U, N,HF,T) < OU, HF)
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is continuous, wherg{?(i{, N, HF, I") carries the norm topology ar@(2/, HF)
the topology of compact open convergence.

In the following proposition we use the concept of a reproducing kernel for a
Hilbert space of sections as explained in the appendix.

ProrosiTioN 1.5.2. Let (U, N, HF,T") be complete Hardy-space data. Then
H?(U, N,HF, ") is a Hilbert space that admits a reproducing kernel.

Proof. In view of Theorem 1.4.2, this can be proved just as the corresponding
result in [HN, Thm. 9.31, especially p. 280]. O

In general, it is not easy to check the completeness of Hardy-space data. In fact,
we don’t have a general criterion that covers all the known cases of complete data.

ProrosiTioN 1.5.3. Consider the Hardy-space daté/, N, HF, I') and assume
that:

(a) they satisfy Assumption 1.4folar decomposition and
(b) the mapl’'? x N — U, (s, n) — s -n is a submersion.

Then(U, N, HF, I') is a set of complete Hardy-space data.

Proof. Since the question is of local nature, we may assume that the bHidle
admits a trivialization on some neighborhoodlaf So let us assume thatis a
global nowhere vanishing sectionld on some neighborhood of. Identifying
holomorphic sections of HF with holomorphic functionsf viaw = fv, the
semigroup” acts by

(")) = j(s,2) f(s - 2)

with j(s, z) defined bys*v = j(s, -)v (cf. Remarkl.1.1). Letdu be the measure
defined by the density® v on N. Then the trivialized picture of the Hardy space
H?is
H?= {f cOW) | sup | If(s-wPlj(s. ) duiw) < oo}.
sel'* JN
Now we follow the proof for the case of Hardy spaces on Ol'sharssini-
groups (cf. [HN, pp. 279-280] or [Nel, Lemma 1.3]). The main point is to prove
that, for any compact subs&t c U/, we can find a constart depending only

on K such that
sup f(@)| < cxll fllnz

zek

for all f € H2. For the proof of this estimate, assumption (b) is essential, since it
permits us to introduce local coordinates adapted to the problem and thus to show
that f satisfies a local Bergman-type condition. The absolute value of the cocycle
factor j(s, z) can locally be estimated from above and from below and does not
affect this way of reasoning. O

We note here that assumption (b) of Proposition 1.5.3 is not necessary. In fact, it
is not satisfied for the data leading to the classical Hardy spd@é®) with D
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a bounded symmetric domain of complex dimensiareater than 1 (cf. Section
2.3). In that casel is 1-dimensional; therefor&N is (n + 1)-dimensional and
hence not open in the re@n)-dimensionalD.

RemArk 1.5.4. If one strengthens the assumptiondoby saying thafl” is a
complex Ol'shanskisemigroup (cf. [Nel]), then the proof of [Nel, Prop. 2.4] can
be adapted to yield the following result: If the Hardy-space ddtav, HF, I') are
complete, then the subspak€H?(U, N, HF, T')) C L?(N, HFy) is the largest
subspacé C L2(N, HFy) such that all the self-adjoint operatais, X € C, are
negative onF.

2. Bergman and Hardy Spaces on Tube-Type Domains

2.1. Bergman Spaces on Bounded Symmetric Domains

In the following we assume th@ = G/K is a Hermitian symmetric space. Then

D has a canonical realization as a circled bounded symmetric domain in a complex
vector spac&c = C”" (cf. [L] or [Sa]). The vector spack: is, in turn, realized as

an open dense subset in the compact dug)c of D. The embeddind c V¢ C

(V)¢ is called theBorel embeddingThe space& V)< is a complex manifold and

can be written as the quotie(tc)¢ = G¢/Q of complex Lie groups. The is

a maximal parabolic subgroup Gfc containing the translation group..

There exist unbounded realizations of the Hermitian symmetric spakeas
Siegel domains of the second kind caseG/K is of tube typethis expression re-
duces to a Siegel domain of the first kind, which is (by definition) a tube domain
To = V 4+ iQ over a homogeneous self-dual caneén a Euclidean vector space
V. This space carries the structure of a Euclidean Jordan algebra with unit element
e, and the Cayley transfori@ relating these two realizations ia D) = T can
be written in terms of this algebra 6%z) = i(e + z) (e — z) 7 (cf. [FK2, p. 190]).

One defines a Bergman space of holomorphic functions on the bounded sym-
metric domainD by

B*(D) := {feO(D) | /If(z)lzdz < oo}.
D

If we denote byiz also the translation-invariant holomorphic top-degree form on
Ve, restricted taD, then

B%(D) — B%D), f+> f(dz) (2.1.2)

is an isomorphism of Hilbert spaces. One deduces83aD) is nontrivial be-
causeB?(D) contains all holomorphic polynomials. It follows that the Bergman
kernel K is nonzero. The following explicit formula for the Bergman kernel is
well known. In order to show that it can be proved gggometricmethods, we
sketch a short proof. One defines a polynomialMarby

B(x,y) :=idy, —2xOy + P(x)P(y),
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where(xOy)z = T(x, y,z) and P(x)z = T(x, z, x) are defined via the Jordan
triple productT'(x, y, z) associated to the bounded symmetric donai(cf. [L]
or [Sa], where the notatiofxyz} for T'(x, y, z) is used).

TueorEM 2.1.1. The reproducing kernel oB2(D) is (up to a nonzero constant
factor) given by
k(z, w) = DetB(z, w) %,

and the reproducing kernel d8?(D) is given byK (z, w) = k(z, w)dz X dw.

Proof. The group AutD) acts unitarily on the geometric Bergman space. There-
fore, its reproducing kernel i6-invariant (Theorem A.2.1). Sina@ acts transi-
tively on D, the kernelK (z, z) is uniquely determined by its value at a base point,
and by holomorph¥ (z, w) is then also determined. In other words, the reproduc-
ing kernel is determined up to a factor by its invariance property. In the trivialized
picture, the invariance translates into the covariance property

k(g -z, g -z) = Det(dg(z)) "%k(z, z).

It can be proved by geometric methods that the functies DetB(z,z)* has
precisely this covariance property (cf. [L]; in [B, Sec. 1.4], a more direct proof is
given that does not need the trivialization). Since the Bergman kernel is not zero,
we conclude that there is a scalags 0 with k(z, w) = A Det(B(z, w)) ™ O

Moreover, since the grou@ acts transitively onD by holomorphic diffeomor-
phisms, a theorem of Kobayashi (cf. [K] or [BH1, Thm. 2.5]) implies tB&tD) is
an irreducible unitary;-module. Next one defines a family wkighted Bergman
spacef holomorphic functions by

BX(D) := {f cO(D) | / | f(2)]* DetB(z,2)" tdz < oo}
D

(cf. [FK2, Chap. All]). This is the trivialized picture of the bundle-valued Berg-
man spacé?(D, K1) with values in the line bundl& .2, with the Hermitian
metric given by them — 1)th power of the Bergman kernel function. Since this
metric is G-invariant, we have again a unitary and irreducibleepresentation
on this space.

2.2. The Geometric Hardy Space of a Tube-Type Domain

We shall define Hardy-space data associated to a bounded symmetric domain
of tube type. OnM = V¢ we choose the natural trivial half-form bund## and
denote its translation-invariant section tiz)Y2. (Let n be the real dimension
and letr be the rank of. If V is simple and:/2r is an integer, then one can de-
fine the half-form bundI&lF on all of (V)¢ via an induced representation; if it is

a half-integer, this is no longer possible.) The sp&osill be given by theShilov
boundary which is described in terms of the complex Jordan algébray

Y={zeVc|zt=2}
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this shows thak is indeed a real form oV (if D is not of tube type, then the
Shilov boundary is not a real form dfc). As semigroupl” we take the double
coveringS, (D) of thecompression semigroup

S(D) = {s € G¢ | s(D) C D}.

(For the definition of this double cover and the double cavgof G, see [BH2,
Rem. 2.2.3] or [K@&2].)

LEMMA 2.2.1. The data(D, =, HF, S»(D)) define Hardy-space data a.

Proof. Using the trivializationf — f(dz)Y/?, the groupG acts on the space of
holomorphic sections dfiF | , via

(g- f)@) = (Detdg ™H (@) Y2f (g™ 2). (2.2.2)

The definition of the grouw, assures us that this is indeed a representation. The
mapz — (Detdg~%(z))~*is a holomorphic polynomial ofc that vanishes pre-
cisely at the pointg € V¢ with g71(z) ¢ Ve (cf. [B] or [L]). In particular, it
does not vanish on the open neighborhdgd= g~1(V¢) N V¢ of D. Choose a
connected simply connected open neighborhdai D insideU;. Then the holo-
morphic functionz — (Detdg%(z))¥? has a unique extension to a holomorphic
function onU, and therefore (2.2.1) defines an actiongoby a local automor-
phism of HF in the sense of Definition 1.3.3(4). All arguments go throughGigr
replaced by the semigroufy(D). Thus, assumption (4) of the Hardy-space data
(Definition 1.3.3) is verified. O

DEFINITION 2.2.2. The geometric qudy space given by the Hardy-space data
from Lemma 2.2.1 is denoted y?(D, S»(D)) or just by#H?(D).

THEOREM 2.2.3.

(i) The Hardy spac@({?(D) is complete, has a reproducing kerrfeland admits
a boundary value map.
(if) Thereis a constant € C (A # 0) such that

S® S =AK,

wherek is the Bergman kernel ab. In particular, 2(D) is not reduced to
zero.

Proof. (i) We verify the assumptions of Theorem 1.4.2 and Proposition 1.5.3. Itis
well known thatG (D) preserves, and (according to a result of G. Ol'shangki”

the semigroupS(D) admits a polar decompositiof( D) = G exp(iC), where

C = Cnmax s in fact a maximal invariant regular AG)-invariant cone irg. Thus,
Assumption 1.4.1 is verified. In order to prove completeness of the Hardy-space
data, it remains to show th&it’ x ¥ — D is a submersion. But since any ele-
ment of ' mapsX into D and sinc&s (which is contained i) acts transitively

on D, this is clear.
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(ii) We use the same arguments as in the proof of Theorérh ZThegroupG,
acts unitarily both or#{? and on3?; thus, according to Theorem 2.2.1, the ker-
nelsS andK areGo-invariant. The invariance of implies that als&8 ® S is an
invariant kernel; it is a section gHF @ HF) X (HF @ HF) = Kp XK p and is
uniquely determined by its restriction to the diagonal. This restriction is an invari-
ant section oK j,. SinceG, acts transitively orD, there is (up to a factor € C)
only one invariant section of the line bunde,: S ® S = AK.

It remains to prove that # 0, that is, thatH{?(D) is not reduced to zero. Here
we must use some specific information on the geometric situation. We proceed in
seven steps as follows.

1. We trivializeH?(D) via (dz)Y?. If f is a holomorphic function o®, we let

LFIZ = 17152 == sup [ 1f(s - u)?|Detds(u) do(u),
seSa(D) VX
wheredo is the (normalizedK -invariant measure oR. Then we define a Hardy
space of holomorphic functions

H3(D, $2(D)) := {f € O(D) | || fII? < o0}. (2.2.2)
We claim that

H?(D, S2(D)) — H*(D), f+> f(dz)"?

is a Hilbert space isomorphism. In fact, the grakips a subgroup of the unitary
group of V¢. Therefore the densitylz| = (dz)Y? ® (dz)Y? is K -invariant, and
so is the restriction of this density . It thus defines & -invariant measure on
¥. Because such a measure is unique up to a constant factor, it must be propor-
tional todo. Now formula (2.2.1) shows that the definitions of both Hardy spaces
correspond to each other under the trivialization.

2. Let f be a function that is holomorphic on some neighborhood® ofVe
will prove that then

If w20y < /Zlf(u)lzda(u) = 1fllz2x) (2.2.3)

(actually, we will have equality). Sinc¢ is continuous on the compact space
¥, this integral is finite, and it follows thaf € H?(D, S»(D)). This proves that
H?(D, S,(D)) contains, for example, all holomorphic polyomials and thus is not
reduced to zero.

SinceS(D) = G exp(iC) andG preserves the Hardy-space norm, it is enough
to take the supremum in the definition of the Hardy space ovei€3pBut then,
letting

Fy = [1(exp(tX) ) @) 7 25 ey = /E | f () |?| Det dexp(X)) ()| do (1)

for any X € iC (wherew = f(dz)¥?), it is enough to prove thak, is bounded
from above byl f | 2x, for all r € R*.
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3. The functiorr — F;, as a composition of a holomorphic map and a norm
function, is subharmonic on a half-plane. It is constant in imaginary direction, and
therefore its restriction t®* is convex. We will prove that

lim F, =0. (2.2.4)
—00
Together with the convexity this implies that> F, is decreasing oR™*. Thenits
supremum is obtained by taking the limit for~ 0O, proving that this supremum
is || fllLzcs)- B

4. Since exppX) is a strict compression d? (i.e., exgX) - D C D), by com-
pactness there exists a real number 1 with exp(X) - D C rD. Letd(x, y) be
the distance af andy with respect to the Bergman metric &n Then, on-D, the
Bergman metric and the Euclidean metriclof are equivalent in the sense that
there exist constantg < 1 andc; > 1 such that, for alk, y € rD, the inequality

cod(x,y) < [x —y| < c1d(x,y) (2.2.5)
holds. This follows from the fact that the Bergman metric is given by
he(u, v) = (B(z,2)u, v),

where(u, v) is the Euclidean scalar product &@ (cf. [L, Thm. 2.10]).

5. By a result of Clerc ([CI]; note that its proof requires only standard facts on
the geometry o), the map expX) is a strict contraction of the Bergman dis-
tance onD; that is, there exists a constank 1 withd(exp(X) - x, exp(X)-y) <
kd(x, y)forall x, y € D. Taking powers of expX), we can finds > 0 anda < 1
such that c

d(exp(sX) - x, exp(sX) - y) < ac—od(x, y) (2.2.6)
1

forall x, y e D.
6. Forg = exp(sX) we use (2.2.5) and (2.2.6) to estimate that, foralp €
rD,

lg-x—g- -yl <cid(g-x,g-y) <acod(x,y) <alx —y|.

That is,g is a strict contraction for the Euclidean metric <. (Using Banach’s
fixed point theorem, we can now conclude tpdtas a fixed point inD, but we
don't need this just yet.) It follows that, for ale »D andN € N,

|Detdg™(z)| < a"",

wheren ;= dimV.
7. Using the chain rule, for alV € N andu € X we have

d(exp(NsX) exp(X))(u) = (d exp(NsX))(exp(X) - u) o d(exp(X))u).

Now we take determinants and pMt := sup,.y|Det(d exp(X))(u)|. Note that
exp(X) -u erD. We get

|Det(d(exp(NsX ) exp(X))(u)| < Ma™ .

From this we obtain
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Frosr= / | £ ()2 Det dexp(Ns + D X) ()] o) < Ma™ / )P dow).
x x

Since|| f |l .2(s) < oo by boundedness of on D, this tends to zero a¥ tends to
infinity. Together with the convexity af— F;, this implies thatlim_, ., F, = 0;
as explained in steps 2 and 3, the claim follows. O

REMARK 2.2.4. (i) The proof of Theorem 2.2.3 shows that the dynamical system
exp(R*X) behaves very much like the dynamical systimidy,.: it has precisely

one fixed point inD that is an attractor for all points in some neighborhoo@®of

This makes the proof work. The behavior of 1-parameter semigroups of compres-
sions that are not strict is, in general, much more complicated.

(if) The proof works for anyf € O(D) such thatf has almost everywhere a
pointwise limit onX defining a square integrable function there. It would be in-
teresting to know whether this condition already describes the Hardy space (i.e.,
is the boundary value map pointwise defined almost everywhere?).

2.3. Classical versus Geometric Hardy Spaces

Theorem 2.2.3 gives a satisfactory explanation of Facts 1 and 3 (Section 0) for the
geometricHardy space. Next we will discuss the relation of the geometric Hardy
space with the classical Hardy spaces (Fact 2). Toward this end, we define a semi-

group
C-={z—>1z|teC* |t| <1} C S(D).

It is clear that(D, X, HF, C=) are Hardy-space data dp. The corresponding
Hardy space of half-forms is denoted B (D, C<).

THeoreM 2.3.1. We have an equality of normed vector spaces,
H?(D, $2(D)) = H*(D, C%).

In particular, H?(D, C<) is a complete Hilbert space admitting a reproducing
kernel.

Proof. The inclusion ‘€” follows from the fact that the supremum in the defi-
nition of #2(D, C~) is taken over a subsemigroup §f(D) (strictly speaking,

we should use the pre-image ©f under the covering-(D) — S(D), but this
doesn’t change the Hardy norm). Moreover, this inclusion is isometric. First we
check thatH?(D, C<) satisfies Assumption 1.4.1 and thus admits an isometric
boundary value map (Theorem 1.4.2). Since the boundary value map is indepen-
dent of X € int(C), we choose- X to be the Euler vector field (i.eX(p) = —p)

and have, for allo € H2(D, C*),

||w||H2(D$(C<) = !LVTWOH(GXPIX)*CO)HLZ(:) = ”CUHHZ(D,Sz(D))'

For the proof of the inclusion3” we use the proof of Theorem 2.2.3. There
we saw that the subspa@¢, of sections ofHF that are holomorphic on some
neighborhood oD is contained irf{2(D, S,(D)). On the other hand, according
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to Corollary 1.4.3, is dense irH2(D, C<). ThusH2(D, S»(D)) is dense in
H?(D, C<), and since this subspace is complete, we actually have equalify.

Note that the preceding theorem together with Theorem 2.2.3 showH &)
is a reproducing kernel space and so yields a proof for the formula of the repro-
ducing kernel that is independent of other known proofs. Thus, Facts 1 and 3 are
explained forH2(D).

For the Hardy spac& ?(Ty,) of the tubeTy,, the situation is slightly more dif-
ficult. It is easily verified that Hardy-space data are giverify, V, HF, ty 1),
where

tvrio ={z—z+v+iu|veV, ue}

is a semigroup of strict compressions of the donf&jnc V¢ andHF is the triv-
ial half-form bundle induced fron¥c. Moreover, it is clear thatH 2(Tg) is the
trivialized picture of the geometric Hardy space associated to these data.

The reason for the problems is that the semigroupc, is not a semigroup of
strict compressions of the bounded domair= C(Tg) equivalent tal. In fact,
the points of the Shilov boundary lying “at infinity” (i.e., IB \ C(V)) are not
mapped into the interior ab underCty ;o C 2 In other wordsCty;oCtis a
semigroup belonging to the boundary$(D).

ProrosiTiON 2.3.2. The contractive semigroup representation
$2(D)” — B(H*(D))

has a unique continuous extension to a contractive semigroup representation
S2(D) — B(H2(D)).

The extension agrees with the representatiorfng) on the holomorphic sec-
tions of HF |D given by the formul#2.2.1).

Proof. We know from Theorem 1.4.5 that the representatioﬁz()D)” on#?(D)

is a holomorphic Hermitian representation by contractions. Sipt@)° contains

an approximate identity, we can use [N2, Thm. IV.1.27] to show that a continuous

extension tdh,(D) exists. This extension is unique and automatically contractive.
To show also the last claim, we recall that convergence with respect to the Hardy

norm implies convergence with respect to the compact open topology, so that the

density ofS, (D) in S2(D) and the continuity of the representation (2.2.1) imply

the claim. O

Forw € H2(D) we write||| [l .2z, for the norm of the boundary valbe. Then
the fact that the extended semigroup representation from the preceding proposi-
tion is contractive implies that

sup lIs*o| s llz2cs) < lollzzp;
seS2(D)

on the other hand, by definition of the Hardy space we have the converse inequal-
ity, and thus equality holds. In other words, the Hardy spdéeD) can also be
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defined by taking the supremum over the whole contraction semigroup and not
only over its interior.

THeorREM 2.3.3. We have an equality of Hilbert spaces,
H?(D, S2(D)) = H3(D, C(V), HF, Cty1i0C7Y).
Proof. “C": Note thatC(V) is open dense ix. Therefore,

sup lIs*@liL2cvyy = SUp lIs*oll2s) < Sup lIs*wll 2.
SEV+iQ SElV+iQ s€S2(D)
As we remarked before stating the theorem, the last term defines the Hardy-space
norm of H2(D, S»(D)), and the desired inclusion follows.
“D": This follows by the same arguments as in the proof of Theorem 2.81.

ReEMARK 2.3.4 (Other Hardy Spaces). One may ask which of the preceding re-
sults carry over to the non—tube-type case of bounded symmetric domains. In this
case, the Shilov boundary is not a totally real submanifold/fit contains sub-
spaces of the forn@* with k > 0). One can nevertheless define Hardy spaces in
this case also, and analogs of Facts 1-3 hold: the Bergman kernel is not a square,
but it is still a power of the Cauchy kernel (cf. [FK1; Ko; KoS]). This suggests that
our approach may be generalized by considering more general types of boundaries
and higher roots of the canonical bundle. (We thank Adam Koranyi for pointing
this out to us.)

Another generalization of Hardy spaces are the spHZ&%,,) defined in [FK2,
p. 270], which carry a unitarg;-action. In these cases, the Shilov boundary is
replaced by otheG-orbits N in dTg. However, if N £ X thenN contains holo-
morphic arc components; that is, it is no longer a totally real submanifold. Thus
one could try to interpret these spaces as “Hardy spaces with values in Bergman
spaces”.

3. Bergman and Hardy Spaces on Generalized Tube Domains

3.1. Bergman Spaces

Let E be an open domain in a complex homogeneous space G¢/Hc, where

G¢ isacomplex Lie group anf ¢ a complex closed subgroup. Then the geomet-

ric Bergman spacB?(E) is canonically defined. On the other hand, in harmonic
analysis one considers Bergman spaces of functions defined under the assumption
that there exists & c-invariant measurg on M¢. The Bergman space associated

to such a measure is

B2(E, ) = {feO(E) | /_If(z)lzdu(Z) < oo}

(cf. e.g. [HK; Kr6; P]). The point one must observe here is that the measise
in general not defined by a volume form, and there®f€2, ) is in general not
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just the trivialized picture of3?(E). However, there is an important class of ex-
amples for which one comes close to that situation (cf. [W, Apx.]). Suppese
is reductive, so that its modular functioBeto Ad|~* is the constant function 1.
Then the existence of the invariant measure implies that the image of the complex
representation

8: Hc — C*,  h > Det(d,h)

(determinant of the differential at the base paint ¢H) is contained in the unit
circle. Itis therefore constant on each connected componéht ahd, in particu-
lar, is trivial on the identity component. H¢ has only finitely many components,
thend(Hc) is a finite subgroup of the unit circle and hence the kefhedf § is a
normal subgroup of finite index in Hc. Thus, the map

p. Mc = Gc/H]_—> Mc, gHP—)gH]_
is anm-fold covering.

Suppose thaM¢ is actually a complexification of seal homogeneous space
M; that is, suppose there are closed real fosnd H of G¢ and H¢ such that
M = G/H. Then the restriction of to H is real-valued. This means that the only
possible values fof(h) are+1. If now each component aofi¢ intersectsH, we
conclude thad is at most a double cover af.

The space/l¢ clearly admits a nontrivial holomorphiG c-invariantn-form v
that defines & c-invariant measur@ on Mc. Let & := p~%(E). Now B2(E, )
is the usual trivialization of8?(Z) with respect ta. Up to a constant factor, the
pull-backs

p*: BXE) —» B%E) and p*: B%(E,n) — B%E, 1)

are isometric embeddings whose images are the respective spaces of “even

elements—that is, those that are invariant under the group of deck transformations.
Form > 1the formv is “odd” (i.e.,not preserved under deck transformations),

so the trivialization magf — fi does not respect the spaces of “even” elements.

3.2. Hardy Spaces

The foregoing remarks still apply, but dealing with half-form bundles leads to ad-
ditional and more subtle complications. First, as usual for Hardy spaces, we need
a more specific geometric setup. Here the framewor&oofipactly causal sym-
metric spacess natural (cf. [HO; HO@; O]). To such a spadé = G/H one
associates a domal® = G exp(iW) - o in its complexificationM¢ = G¢/Hc.
Here W is a certain open convex A@)-invariant cone in the Lie algebggof G.
Thenly := G exp(iW) C G is acomplex semigroup. Now one defind3ady
space of holomorphic functiory

H?(E) := {feO(E)I sup | f(sx)2dp(x) < oo},
sel'y JM

wherep is a G-invariant measure ot/ (cf. [HO@]). When trying to relate this
space to a geometric Hardy space, we are faced with two problems as follows.
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(i) Existence We do not know whether holomorphic half-form bundles exist
on E. This can be remedied using the double ca\erintroduced in the preced-
ing section. The canonical bundfe;;  is trivial and admits a nontrivial invariant
section, and thus there is a holomorphic half-form buiktfg with the same prop-
erties. Itis then easy to see thiat, M, HF, I'y) defines (complete) Hardy-space
data onE and that the trivialization map

H?(E) — H*(&, M,HFq, T'y)
is an isometric bijection. As for Bergman spaces, the pull-beick H?(8) —
H2(8) is (up to a factor) an isometric embedding.

(ii) UniquenessWe do not know how many essentially different Hardy-space
data onE exist. This is a subtle question: already in the case where the trivial
bundle overE is a holomorphic half-form bundle, it may very well be that two
inequivalent actions of the same semigraupxist. Once again this can be reme-
died by introducing a double covering &f (as is done by Koufany and @rsted
[K@] for the group cas&f = Sp(n, R) for n even and more generally by Betten
and Olafsson [BO] for the cases which, in the language of [BH2], correspond to
the case § non-admissible, bu} admissible”). The nature of this covering is very
different from the covering needed for problem (i). In fact, in the worst case it
may be necessary to combine both coverings, leading to a covering of order 4 (as
already introduced in [BOJ; this corresponds to the c$&r¥d% non-admissible”
from [BH2]). The questions related to this problem are fairly involved and will
be taken up elsewhere.

3.3. Further Problems

Besides the geometric and group-theoretic problem just mentioned, the major
problem in the theory of geometric Hardy spaces is to explain the analogs of Facts
1-3 (Section 0) for Hardy spaces @&h More precisely, is there an analog of

our Theorem 2.2.3 for Hardy spaces®f In some important cases the answer is
“yes”"—this is just the invariant formulation of the main result from [BH2, Thm. 4].
However, as mentioned in [BH2, Sec. 4], the proof of this result is not yet geomet-
ric, and the general problem of the relation between Bergman and Hardy spaces
remains open.

Appendix. Reproducing Kernels and Semigroup Actions

A.l. Reproducing Kernels on Vector Bundles

We have seen that geometric Bergman spaces and some geometric Hardy spaces
have the property that point evaluations are continuous. This means that they have
areproducing kernelwhich (in the geometric setting we use) is a section of a vec-
tor bundle. Therefore, we quickly recall how the standard theory of reproducing
kernels can be adapted to a vector bundle setting (see [BH2] for details).

Let M be a topological space and §:— M a complex vector bundle. We as-
sume that the fiberg, overz € M are finite-dimensional and denote the complex
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antilinear dual bundle by qV* — M. This means that the fibé&f* of V* con-
sists of the complex antilinear functionals ¥p. The correspondmg evaluation
map will be denoted by, -).: V x V. — C. We will use the canonical identi-
ficationV, < (V)" v > 9, given byd(¢) = &(v), and its global analoy =

V** without further remark. If we reverse the complex structure on the fibers of
V, we writeV instead ofV; thenV is still a complex vector bundle. ¥ is given

by a collection of transition functiong,s: U, N Us — GI(Ck), thenV is given

by the transition functiongeg.

We write C(M, V) for the continuous sections ™ There is a naturadomplex
conjugation mapC(M,V) — C(M,V), f — f. Itis defined by the ordinary
complex conjugation in the local trivializations. With this complex conjugation,
the identificationv, ® V,, = Hom¢(V, V,) can be written as

(f1(2) ® fo(w) () = (1, f2(w))w f2(z) for neVy. (All)

The point evaluationg — f(z) will be denoted ey: C(M, V) — V..

If M is a manifold and/ a smooth vector bundle, we writeé> (M, V) for the
smooth sections. Moreover, M is a complex manifold an¥f is a holomorphic
vector bundle, then we denote the holomorphic sectioNslof O(M, V). In this
case we denote the manifald, when equipped with the opposite complex struc-
ture, byM. Given f € O(M, V), one finds tha!f is an antiholomorphic section
of V or, in other words, an element 6f(M, V).

DerINITION A.1.1. (i) A complex vector subspace € C(M,V) is called a
Hilbert space of section§it carries a Hilbert space structure for which the point
evaluations ev. H — V., f — f(z) are continuous.

(i) A sectionK € C(M x M,V K V) is called apositive definite kernef, for
every finite sequency, ..., &, € V* the expression

n

D (& K(AED, 9EN)Eaco

jok=1
is real and nonnegative.

The basic result is now as follows.

TaeoreM A.1.2. LetM be a topological space ang: V. — M a complex vec-
tor bundle. Suppose th& € C(M x M, V KX V). Then the following statements
are equivalent

(1) K is a positive definite kernel for;
(2) there exists a Hilbert spac®xy < C(M, V) such thatevz|ﬁK: Hx — V. is
continuous and (z, w) = ev; o evt e Home(V, V,) forall z, w € M.

Thereproducing propertyf the kernelK in this context is

(Ke | log = (&, foad®)ae)s (A1.2)

whereK; = evi(§) € Hx € C(M, V) for & e VF. The Hilbert space is called
thereproducing kernel Hilbert spaaessociated to the kernkl andk is called the
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reproducing kernebf $x. Theorem A.1.2 shows that any positive definite kernel
can be viewed as the reproducing kernel of a Hilbert space of sections. Hence we
shall call such a kernel simply a reproducing kernel. The argument given in [N2,
Lemma |.5] shows that, for any reproducing kernel Hilbert spacge C(M, V)
with reproducing kerneK (z, w) = ev; o eV, we havef) = k.

Suppose tha¥f is a complex manifold and — M a holomorphic vector bun-
dle. If a reproducing kernek : M x M — V XV is holomorphic in the first
variable, then the spacdg consists of holomorphic sections ¥fandK is holo-
morphic when viewed as a map: M x M — V K V. Thus, a Hilbert space of
holomorphic sections is given by a positive definite kernédid/ x M,V X V).

A.2. Semigroup Actions and Invariance Properties

In addition to the notation and assumptions introduced so far, we supposeashat
a semigroup acting from the left af* by vector bundle morphismhis means
thatS also acts oM from the left by continuous maps, and we have:

(M) g(s-&=s-q¢&) forallé eV*ands € S;
(i) s.: V¥ = Vi, & s-&isC-linear.

Then the dual maps': V,.. — V., defined by(s. (&), v),.. = (£, s3(v))., yield a
right S-action onC(M, V) via

(f )@ = (5" 0 f(5-2) (A2.1)
forzeM, feC(M,V), ands € S.

THEOREM A.2.1. Let M be a topological space and: V — M a complex vec-
tor bundle. Suppose th&x € C(M, V) is a reproducing kernel space, and let
(S, *) be an involutive semigroup acting from the leftwhby vector bundle mor-
phisms. Then the following statements are equivalent

(1) (s))* o K(s-z,w) = K(z,s*-w) o (s%), forall z, we M ands € S;
(2) $Y is invariant under the right actiorf +— f -5 of S on C(M, V), and this
action defines a Hermitian representationsén $9.

Proof. See [BH2, Thm. 2.1], which is the adaptation to the vector bundle case of
well-known results in the function case (cf. e.g. [N2]). O

If, under the hypotheses of Theorem A.2.1, the positive definite kéfrealtisfies

the equivalent conditions (1) and (2), then we dallan S-invariant kerneland
denote the representation §fon H% by 7. Note that if, in the situation of the
theorem, the semigroup is a group and the involution is the group inversion, then
7k IS a unitary representation 6f then condition (1) takes the form

K(g-z,8 w) = ((g)") o K(z,w)o (g™

for g € G. This means thak is a G-invariant section of the bundé X V over
M x M in the usual sense.
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