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1. Introduction

Let G be a bounded planar region containing the origin in the complex gdlane
For 1< p < oo, the Bergman spackl, (G) consists of all analytic functiong in

G with
1/p
11, = (/Glf(z)l”dA(z)) < 00,

wheredA denotes the Lebesgue measure on the complex plane.
Let ¢ be a smooth function with compact support. The Vitushkin localization
operatotTy is defined by

Ty f(2) =/%:5(Z)5¢d14(w),

wheref is a bounded function with compact support. L&(G) be the space of
measurable functions that are zero Gffand let

1/p
171, = ( / If(z)l”dA(z)> “ .

The Bergman spack’(G) is a closed subspace of the Banach spat@). It is
well known that the operatdf, is a bounded linear operator &f(G) and leaves
LY(G) invariant.

Let H*°(G) denote the Banach algebra generated by bounded analytic functions
onG. A closed subspack of LY (G) is anH>®(G) invariant subspacé it is in-
variant under multiplication by each bounded analytic functioioimhe dimen-
sion of M/zM is no less than 1 since zero isGh An H*(G) invariant subspace
M satisfies theodimension-1 propertij the dimension ofM/zM is 1. LetZ(M)
be the set of common zeros of functionsih We say thatM has thedivision
propertyif f(z)/(z—X)isin M wheneven € G\ Z(M) andf € M with f(A) =
0. In [5] it was shown that the codimension-1 property is actually equivalent to
the division property. Fofy, fo, ..., f, iIn LE(G), let[fi, fo, ..., f,] denote the
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H®(G) invariant subspace generatedfyy f2, . . ., fu, thatis, thel.?(G) closure
of the set

{prfi+ pafo+ -+ pufu, PL, D2 - .., pu € HC(G))}.

A point Ao on the boundary of; is called alemovable point forH *°(G) if every
function in H*(G) extends an analytic function in a neighborhood. gf

The structure of invariant subspaces of the Bergman spaces (in particular, over
the unit disk) has attracted a lot of attention in recent years. For more information,
we refer the readerto [1; 2; 3; 4; 5; 6] and the references therein. Though there are
invariant subspaces that do not satisfy the codimension-1 property, such subspaces
are difficult to construct (see [2], [3], and [4]). Itis always easy to construct invari-
ant subspaces with the codimension-1 property. For example, the invariant sub-
space [] ([ f]is called acyclicinvariant subspace with cyclic vectgh has the
codimension-1 property for eaghin L2 (G). In some cases, such as with the Hardy
spaces and certain weighted Dirichlet spaces on the unit disk, all invariant sub-
spaces are cyclic and therefore have the codimension-1 property. Hence, itis inter-
esting to know when an invariant subspace of the Bergman space has this property.

In [6], considering some local conditions of functions in an invariant subspace
on the boundary, the second author obtained some sufficient conditions for the in-
variant subspace of the Bergman space on the unit disk to have the codimension-1
property. Recently, Aleman and Richter obtained in [1] some local integrability
conditions on functions in an invariant subspace of the Bergman space on the unit
disk—conditions that ensure the invariant subspace has the codimension-1 prop-
erty. However, it seems that their method works only on the unit disk. In this
paper, we continue our work along this line and generalize Aleman and Richter’s
result to the Bergman space over a general region of the complex plane. The main
idea is to use the Vitushkin localization operator to localize functions in the in-
variant subspace and to show that the codimension-1 property depends only on
the local behaviors of functions in the subspace. Even in the open unit disk case,
our proof simplifies Aleman and Richter’s original proof. The main results of the
paper are the following.

THEOREM A. LetV be an open disk with centér € 3G, and let f € LL(G) N

LS(V NG,dA)andg e LE(G) N L*(V N G, dA), wherel/s + 1/s’ = 1/p. Sup-
pose thatH* (G N V) is dense in botlL{(G N V) and L;/(G N V), and thatig

is not a removable point foH *°(G). Then theH *°(G) invariant subspacégf, g]

has the codimensiehproperty.

Notice that the condition tha#>(V N G) be dense irL} (G N V) is very weak
since it holds ifa(V N G) satisfies some wild analytic capacity conditions (see
[7]). The second assumption, thafis not a removable point fall *°(G), is also
wild since most planar regions satisfy the condition.

CoroLLARY B. LetV andag satisfy the conditions in Theorem A. Suppose that a
function f in L7 (G) is bounded oV N G. Then eveny > (G) invariant subspace
containing f has the codimensiehproperty.
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2. Proofs of the Results
The following properties about the Vitushkin operafgrare well known.

LeEmMMA 1. Let¢ be a smooth function with support ¥h The Vitushkin localiza-
tion operatorT, satisfies the following properties

(1) the functionT, f is analytic onG U (suppg)* for each functionf in L7 (G);
(2) T, is a bounded linear operator oh(G);
(3) if feLl(G)N LGN V)wheres > p, then for every compact sét

f ( / ‘ IAC éqb(z)'dA(z)) dA(L) < 0.
K Z—A

LeEMMA 2. LetM be theH*(G) invariant subspace generated lfyandg. Then
M has the codimensiehproperty if and only if there is a poirit € G with (L) #
Oandg(r) # Osuch that

f@g) — g f) .
Z—A

M.

Proof. In [5], Richter showed tha¥Z has the codimension-1 property if and only
if there exists a» € G such that, for bounded analytic functiopsand ¢, if
p)f(A) +q(A)g(r) = 0then

P2 f(z) +q(2)g(2) c

M.
Z—A
However,
() f(z) +q(2)8(2)
Z—A
- - () — LHe(2)
_ Q@) o 4@ =g SO 0 E@)
z—A z—A —A
This proves the lemma. O

Recall thatV in Theorem A denotes the disk with radifisentered at .

LEMMA 3. Let f e LE(G)NLY(V NG, dA)andg € L2(G) N L¥(V N G, dA),
wherel/s + 1/s’ = 1/p. Let ¢ be a smooth function with support i1 Then
(T f)g belongs td g].

Proof. By Lemma 1, we know that there existség < & such thatT, f e
L:((GNV)U{z:68 < |z— Aol < N}), whereN is a constant greater than
the diameter of5. Using thatH > (G N V) is dense inL! (G N V) and thatT is

a bounded operator ab(G N V), we conclude there exists a sequefipg} C
H*(G N V) such thatfy p, converges td, f in L°(G NV, dA) and uniformly on
G \ V. Hence
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/ (Typn)g — (Ty f)gl? dA
G

< sup [Tspn — Ty FUlIglly + IPn — Ts fllcyGov) gl s G,y

zeG\V
— 0.
SinceTy p, € H*(G), we see thafT, f)g € [g]. O
Define F@g() — () fO)——
HLf g i) = [ FEEE SR G aac)

Proof of Theorem AFrom Lemma 2, it suffices to show that the identity

holds forh e G NV andh L M (Note thatH [ f, g, h] (1) is zero offG). Let ¢ be
a C* function with support inv. It follows from Lemma 3 that

/(Td,f)gf_l dA = 0.

Using Fubini’s theorem, we get

/ bfehdA =" / FORD f & 56 (h) dAG) dAG)

S / 3 (L)g () / f ©) 5@ dAG) dA).
b4 Z—A

Similarly, we have

_ 1 (- 8(z) —
dfehdA = —— dp (L) f(L) - /\h(z) dA(z) dA(M).
Hence,
/5¢(/\)H[ﬁg,h](/\) dA(A) =

Thus, by Weyl's lemmaH| f, g, h](X) equals an analytic functioA[ f, g, h](A)
onV a.e. with respect to the area measure.

Claim. The functionA[ f, g, h]()) is the zero function.
For F € H*(G) andA € G, we have
F(z) — F(3)
7 —

€ H*(G).
On the other hand,

F() f(2)g(h) — F(A) f(L)g(2)
Z—A

_F F(x M= fr
(2) — ( )f() (}L)JFF(A)f(z)g( ;_{( )8()

Thus it follows that
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on G. Using the same argument fék[ f, g, ], one can show that there is an ana-
Iytic function A[Ff, g, k] on V such thatH [ Ff, g, h] equalsA[ Ff, g, h] almost
everywhere orV. Therefore,

on G N V. Now assume thad[ f, g, 4] is not zero; then the functiof’ extends a
meromorphic function of¥. SinceF is bounded o7, we conclude thatg is not
apole forF(i). Hence )¢ is a removable point fof/ > (G). This a contradiction.
Thus,H[f, g, h](A) = 0. O

Proof of Corollary B. It follows from Theorem A that the invariant subspace gen-
erated byf andg has the codimension-1 property. Now the corollary follows
from [5].

AckNOWLEDGMENT. We would like to thank the referee very much for giving a
better assumption of Theorem A and pointing out a better argument in the latter
part of its proof.
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