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Introduction

Let X be a (not necessarily compact) complex manifold. A fibration on X is by
definition a proper flat holomorphic map f: X — Y with connected fibers from
X onto a complex manifold Y. A fiber f~(y) is called singular if y is a critical
value of f and smooth otherwise. We denote by Sing f the locus of the points of
X where f is not smooth.

Remmert’s proper mapping theorem [1] implies that the set f(Sing f) of critical
values of the fibration f: X — Y is a closed analytic subset of Y.

Let f: X — Y be a fibration. Then, for each y € Y, we have the following
sequence of natural maps:

w1 (F ) = mX) = m(¥) — 1. ()

If the fibration f has no singular fiber, then it can be viewed as a topological fiber
bundle (submersion lemma or Morse theory [4]) and hence the sequence (x) is
exact regardless of the choice of y € Y.

The following result due to Nori gives a sufficient condition for the exactness
of the sequence (x) for the smooth fibers.

Norr’s LEMMA [5, Lemma 1.5(C)]. Let X and Y be smooth connected varieties
over C and let f: X — Y be an arbitrary morphism. Suppose that the general
smooth fiber of f is connected, and let the locus of all y € Y such that f ~(y) dees
not have any simple component be of codimension > 2 in Y. Then the sequence
(%) is exact for all smooth fibers f~1(y).

First, we give sufficient conditions for the exactness of the sequence (x) for any
choice of fiber.

THEOREM 1. Let f: X — Y be a fibration. Let the locus of all y such that
f£~U(y) is not simply connected and does not have any simple component be of
codimension > 2 in Y. Then the sequence (x) is exact forall y € Y.
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THEOREM 2. Let f: X — Y be a fibration from a singular variety X onto a Rie-
mann surface Y. Suppose that the singular locus of X is contained in finitely many
fibers of f and that, for each critical value c, either f~'(c) is simply connected
or there exists a local section of f near c. Then (x) is exact forall y € Y.

The conditions in Theorems 1 and 2 are somewhat stricter than Nori’s, so we do
not use Nori’s result in our proofs.
Next we consider the following sequence of maps:

1 - m(f () » m(X) - m(¥) —> 1. (¥%)

Shimada has given a sufficient condition for the exactness of the sequence ()
for smooth fibers as follows.

THEOREM A [7; 8]. Let f: X — Y be a locally projective fibration. Suppose
that:
(1) there exists a (topological) continuous section s:Y — X of f such that
s(Y)NSing f = @; and
(ii) codimy(Sing f) > 3.
Then the sequence (x%) is exact for all smooth fibers f~1(y).

REMARKS. (1) In fact, Shimada [7] studied the more general case where X is the
complement of a divisor of a complex manifold. We simply restate his result in
our case to derive the simplified form given here.

(2) If the fibration f: X — Y is of relative dimension 1, then the theorem of
purity—due to Dolgachev, Ramanujam, and Simbha [3; 6; 9]—states that

codimy (Sing f) <2 -
if Sing f # 0. So, in Theorem A, if f is not smooth then we need to assume that
dim X > dimY + 2.

Here, we refine Theorem A as follows.

THEOREM 3. Under the same condition as in Theorem A, the sequence (x%) is
exact for all y € Y. In particular, all fibers have the same fundamental group.

Theorem 3 and the following corollary tell us that, under a “mild" deformation,
the fundamental group remains invariant.

COROLLARY. Let f: X — Y be a locally projective fibration, and let f~1(c) be
an isolated singular fiber. Then we have an isomorphism

m(f~1(c)) = mi(a general smooth fiber)

under one of the following three conditions:

(1) dimY =1, dim X > 3, and codims-1(,(Sing f N ) = 2;

(2) dimY =2, dim X > 4, and codim-1.,y(Sing f N f~1(c)) = 1; or

3) dimY > 3, dim X > dimY + 2, and at least one component of f~'(c) is
simple.
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1. Proofs of Theorems 1 and 2

In the proofs of Theorems 1 and 2 we shall use the following fact, whose proof
can be found, for example, in [2].

PROPOSITION A. Let f: X — A be a proper flat holomorphic map from a com-
plex variety X onto a disk that is smooth over A \ {0}. Then the central fiber is a
deformation retract of the total space X.

The following lemma is also needed.

LEMMA 1. Let X be a real manifold, and let Z be the support of a cycle in X of
real codimension > 3. Then (X — Z) = m1(X).

Proof. The inclusion X — Z < X induces a homomorphism 71(X — Z) —
m1(X). This map is surjective if codimy Z > 2 (any loop in X can be removed
from Z having codimension > 2). This map is injective if codimy Z > 3:ifa—f
is the boundary of a disk in X, then it is the boundary of a disc in X — Z.

Proof of Theorem 1

We note that if a fiber has a simple component then there always exists a local sec-
tion near the fiber. This can be seen as follows. Pick a general smooth point of a
simple component at which the map f is smooth; then, near this point, f looks
like a projection from a product space onto a factor and hence has a section.

We will show first that the sequence (%) is exact for all smooth fibers f~1(y).
Let C be the codimension-2 subset of Y outside which all the fibers of f are either
simply connected or have a simple component. By Lemma 1,

M) EmY\C) and m(X) = m(f (Y \ O)).

We may therefore assume that each singular fiber of f is either simply connected
or has a simple component. Let Y’ = Y — {critical values} and X' = f~1(Y").
Then f: X’ — Y’ becomes a topological fiber bundle and hence, for all y € Y/,
the sequence

mi(f7 () = mX) - m@") > 1

is exact.
Consider the following commutative diagram of natural maps:

'

T — mX) —L m@) —— 1

| |
m(fl) —— mX) —E mEy) —s 1.

Since v and p are surjective (see the proof of Lemma 1), and since the top row is
exact, f, in the bottom is surjective. To show the exactness of the bottom row, we
need to show that ker(f,) C im(i,).
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Suppose that y € ker(f,). Pick up a loop ¥’ in X’ such that v(y’) = y. Then
wf.(y’) is the boundary of a disk D in Y. Futhermore, we may assume that the disk
D meets the locus of critical values transversally in finitely many points ¢y, . . ., ¢;.

We write
£y =1]s.

where §; is a small loop in ¥ around the critical point c;. Lift §; to a loop &, which
is null homotopic in X. This can be done as follows. If f~!(c;) has a simple com-
ponent then a local section lifts the small disc surrounded by §; into X, and §; can
then be contracted along the lifted small disc. If £~1(c;) is simply connected, then
any lifting 8/ of §;, being homotopic in X to aloop in f~!(c;), is null homotopic.

Now we see that
y'(TTen™) e ker(£),

and there consequently exists a loop 8 in the fiber £~1(y) such that

iw® =v'(ITTen™).

Now, since all v(8}) are null homotopic, we see that

i(B) = v (B) =v(y) =y.

Hence y € im(i,) and so the bottom row is exact.

Now, let ¢ be a critical value of f, that is, f~!(c) is a singular fiber. Then
there exists an analytic disk A in ¥ passing through ¢ such that f| s~1(4) is smooth
over A \ {c}. Then, by Proposition A, f~I(c) is a deformation retract of f~1(A).
Pick y € A\ {c}. Then every loop in f~!(y) can be deformed into a loop in
f~Y(c). Thus we can replace m1(f ~1(y)) by m1(f ~!(c)), yielding the desired ex-
act sequence. 0

Proof of Theorem 2

Let cy, ..., ¢, denote the critical values of f or the images of the singular locus
of X.LetY =Y \{ci,...,cn} and X’ = f~1(¥"). Consider the commutative di-
agram in the proof of Theorem 1. The proof in this case is exactly the same as the
one given for Theorem 1; we have only to prove the surjectivity of v. Toward this
end, we take a smooth resolution o: X — X and let X’ = (f o o)~ }(¥’); then we
see that X’ = X’ and that the map v is the composite

(X)) = m(X') — m(X) —» m(X)
of two surjective maps. O

COROLLARY 1.1. Under the assumptions of Theorem 1 or Theorem 2, and if, in
addition, at least one fiber is simply connected, then m(X) = m(Y).

COROLLARY 1.2. Let f: X — A be a fibration from an irreducible complex ana-
lytic variety X onto a disc A. Suppose that the singular locus of X is contained in
the central fiber Xo and that f is smooth away from the central fiber X. Suppose
that there exists a section of f. Then the composition of maps
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m(Xy) = m(X) = m1(Xo)

is surjective for all y € A, where the first map is induced by inclusion and the
second by deformation retract.

Proof. Apply Theorem 2 to the fibration f and note that m;(A) = 1. O

2. Invariance of Fundamental Group under a Deformation

Proof of Theorem 3

Let ¢ € Y be a critical value of f. By Theorem A it suffices to show that
mi(f~Y(c)) = m(f~1(y)) for a regular value y € Y. To show this, pick a disc A
in Y passing through the point ¢ such that the restriction f|a: X|a 1= f~1(A) -
A is smooth away from the central fiber f~!(c). Then X|, is nonsingular away
from the central fiber.

Let y € A — {c}. Because there exists a section sja: A — X]|a, Corollary
1.2 implies that the map m1(X,) — 71(X,) is surjective. Consider the following
commutative diagram of maps:

m1(X|a)

s

l — mX,) — mX) — m) — L

Here the bottom row is exact by Theorem A, so the map m1(X,) — m1(X|) is in-

jective. Therefore 71(X,) = m(X.) (Proposition A), and the theorem is proved.
O

Proof of Corollary

Since the fiber f~!(c) is isolated, we may assume, by shrinking Y if necessary,

that f~1(c) is the only singular fiber of f. By Theorem 3, it is enough to show that

each of the three conditions of the corollary implies the two conditions (i) and (ii)

of Theorem 3.

Suppose that one of conditions (1), (2), and (3) holds. Then at least one compo-
nent of £~(c) is simple and hence there exists a local section of f near the point
c. By shrinking Y if necessary, we obtain condition (i) of Theorem 3; condition
(i1) follows obviously. O

ExampLE2.1. Let X be a projective surface with isolated singularities, and con-
sider a 1-parameter deformation f: X — A that is smooth away from the central
fiber X(. Suppose that the central fiber is nonmultiple and that X is smooth. Then,
by Theorem 3, m1(Xp) = m1(X,) forall y € A.
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