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1. Introduction

Cocycles appear in many areas of analysis (harmonic analysis, representation
theory, operator theory, ergodic theory, etc.) and, indeed, they are present when-
ever a group or a semigroup acts as a transformation group on some space. In a
sense, cocycles are generalizations of the exponential function and provide a mea-
sure of “normality” of the underlying group action. We are primarily concemed
with the semigroup action provided by a holomorphic flow on a domain in the
complex plane.

The properties of semigroups of holomorphic flows may be studied by replacing
these semigroups by any member of a large class of isospectral operators gener-
ated from the above semigroups by certain types of cocycles called coboundaries.
This motivation has led us to investigate when cocycles are coboundaries, and in
doing so, we are led to a complete description of all holomorphic flows on C. Our
approach and techniques are quite direct and independent of operator-theoretic
considerations.

The relatively recent study of holomorphic flows was initiated by Berkson and
Porta [BP], who showed the strong continuity of these flows on Hardy spaces.
Cowen [C1] provided an interesting application of holomorphic flows on Hardy
spaces to prove, among other things, that the Cesaro operator is subnormal.
Siskakis [S1; S2] extended the results of [BP] to Bergman spaces and applied
weighted holomorphic flows on Hardy spaces to the study of the Cesaro operator.
Konig [Ko] investigated weighted holomorphic flows on the unit disc and gave a
characterization of the smooth cocycles on the Hardy space. Some of our results
complement those found in [BP] and [Ko], but our techniques are considerably
different. Related ideas also appear in [EJ; F; H; J; JY; SM; Y]. An extensive ar-
ticle outlining the history of translation flows and their applications to dynamical
systems is given by Latushkin and Stepin [LS].

Our notation and terminology are as follows. Let G be a domain (open, con-
nected and nonempty) in the complex plane C, and let H(G) be the set of holo-
morphic functions on G. We shall use A to denote the open unit disc in C. A
one-parameter family ¢(#, z) of nonconstant holomorphic functions from G to G
that satisfy ¢ (0, z) = z and (s + ¢, 2) = ¢(s, ¢(t,2)) foralls,t > 0andz € G
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is called a semigroup flow. Likewise, if 5,¢ € R then this is called a group flow.
For technical reasons, we will require the flow to be continuous on [0, co) x G.
We say zg is a fixed point for ¢ if ¢(¢, z9) = zo forallz > 0.

A continuous complex-valued function m on [0, c0) X G is said to be a (multi-
plicative) cocycle for ¢ when m satisfies:

m(t,-y € H(G) forall t >0,
m0,z) =1 forall z € G, (1.1)
m(t+s,z) =m(s,2)m(t, ¢(s,z)) forall t,5s >0,z €G.

When ¢ is understood from the context, m will simply be called a cocycle. The
third equation above is often called the cocycle identity; it implies that m(0, z)
is 1 or 0, so the second equation is simply a nontriviality condition. Konig [Ko,
Lemma 2.1(b)] shows that the cocycle condition implies that m is nonvanishing.

Every function of the form m(¢, z) = exp(itA) for all z € C and some fixed
A € C is a cocycle for every flow; cocycles of this type are called constant cocy-
cles. Conversely, every cocycle m(t, z) that is constant in z for each fixed # > O is
a constant cocycle.

A continuous complex-valued function m on [0, 00) x G is said to be a cobound-
ary for ¢ when there exists a nonvanishing function « € H(G) such that

_a(p, 2)
- a(@

It is easy to verify that every coboundary for ¢ is a cocycle for ¢. The constant co-
cycle exp(itA) is a coboundary for the particular flow ¢(¢, z) = z — ¢ on C, since
exp(itA) = exp(—iA(z —t))/exp(—iArz). However, the constant cocycle exp (itA)
is not a coboundary for all flows, as shown in Section 5.

Finally, it is also convenient to introduce the additive analogs of multiplicative
cocycles and coboundaries. We shall say that a(¢, z) is an additive cocycle for a
semigroup flow ¢ if a(0, z) = 0 and a(¢, z) satisfies the cocycle identity

m(t, z) for all (¢, z) € [0, 00) X G. (1.2)

a(t +s,2) =a(t,z) +a(s, p(t,z)) forevery s,t >0, z € G. (1.3)

Similarly, a is an additive coboundary if there exists a function 8 € H(G) such
that

a(t,z) = B(p(t,2)) —B(z) foreach t >0, z €G. 1.4

It is easy to see that letting m (¢, z) = exp(a(t, z)) relates the two notions of
cocycles. We distinguish between the additive and the multiplicative cocycles by
specifying additive where appropriate. Thus, “cocycle” shall refer to the multi-
plicative cocycles.

Cocycles of the type we are discussing arise naturally in the theory of semi-
groups of weighted composition operators. The family (7;),>o of composition
operators on H(G) is given by
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(T:f)(z) = flp(t,2)) forevery t >0, f € H(G).

The semigroup property Tr.s = 7,7 is satisfied because ¢(¢, z) is a flow. If
(m(t, 2)):>0 is a family of holomorphic functions on G, then we can define a
family (S;);>o of weighted composition operators on H(G) by

($:f)(2) =m(t, 2)(T; f)(z) foreach t >0, f e H(G).

It is easy to show that (S;);>0 is a semigroup if and only if m is a cocycle for
¢ [EJ, Thm. 2.1]. If m is a coboundary then S has the simpler representation
(S: ) (@) = a1 (z)(T;af ) (z), which can be abbreviated as

S; = a1 Ta.

This relation establishes a similarity between the operators S and T that allows
one to determine properties of S from known properties of T'. This reduction is fa-
miliar in the contexts of matrix and operator theory. Consequently, it is important
to determine which cocycles are coboundaries.

Our terminology is adapted from group cohomology (see [E], [EM], or [Ku]).
The group R or the semigroup [0, co) is regarded as acting on the (multiplicative)
coefficient group H ~}(G) of nonvanishing holomorphic functions on G by means
of the flow. Thust € [0, co) actsonk € H™Y(G) by (¢ : h)(2) = h(p(¢, z)). From
this viewpoint the “cocycles are coboundaries” results are simply statements that
the first cohomology group is trivial. Most of the results and arguments in this pa-
per are readily adapted to the coefficient group M (G) of meromorphic functions
on a domain G in the Riemann sphere S2. However, replacing H~'(G) by a more
restricted coefficient group, say the bounded invertible holomorphic functions on
G, leads to considerations beyond the scope of this paper.

This paper is organized as follows. In Section 2 we provide a complete char-
acterization of group and semigroup flows on C. We show that every semigroup
flow on C automatically extends to a group flow, and that these flows take one of
two forms based on the number of their fixed points. We combine this result and
the known result showing that flows on simply connected proper domains in C
(e.g., the disc) are generated, under conjugation with conformal maps, by restric-
tion of exponential and translation flows to invariant subsets of C to calculate the
form of flows on the disc. In Section 3 we consider the question of which cocy-
cles are coboundaries for group flows on C. We show that, under an integrability
hypothesis, cocycles are always coboundaries. Since group flows are semigroup
flows, we treat the more general case of semigroup flows in Section 4. Section
4 provides a complete answer to the question of which cocycles for semigroup
flows are coboundaries. The answer here is given in terms of existence of fixed
points of the flow. Finally, motivated by an example, in Section 5 we find a simple
condition that enables one to construct cocycles by modifying projective cocycles.
This construction exploits the geometry of the level sets of harmonic functions.
The triviality of the second cohomology group of the reals acting in the nonzero
complex numbers makes a cameo appearance.



242 F. JAFARrI, T. TONEV, E. ToONEVA, & K. YALE

2. Holomorphic Flows

In this section we will describe the holomorphic flows on C and on simply con-
nected proper domains in C. To do so we need several elementary lemmas.

LEMMA 2.1. Let G C C be a domain, and let ¢: [0, c0) x G — C be a jointly
continuous family of holomorphic mappings of G into C. Then ¢'(t, z) = %‘f—(t, z)
is also a jointly continuous family of holomorphic mappings of G into C.

Proof. Let s,t > 0 and let z and w be contained in a small open disk D, C
Dy, € G of radius ¢. From Cauchy’s integral formula for derivatives, we obtain
the estimate

B
96,0 = ¢, Wl < 5 - f & — )20t &) — & — 220, H)IIdE],
Y

where y = 9Dy, and B = max{|1/(¢ — w)?(¢ —2)?| : £ € y}. Fix (s, w) €
I x D, where I € R is a closed interval. The integrand is continuous and hence
bounded as a function of (¢, z, £) on the compact set I x D, x y. The result fol-
lows from the bounded convergence theorem. ]

We remark that, under the hypotheses of Lemma 2.1, the same conclusion holds

for ?;‘,{’ (t,z) forevery n € N.

LEMMA 2.2 (Univalence of holomorphic semigroup flows). Let G € C be a con-
vex domain, and let ¢: [0, 00) X G — G be a holomorphic semigroup flow. Then
o(t, -) is univalent in G for every t € [0, 00).

Proof. Since ¢(0, z) = z, we have ¢'(0,z) = 1 and QR%%(O, z) =1forall z € G.
Assume that there exist a, b € G such that ¢(¢, a) = ¢(¢, b) forsome t.Lett > 0
be the infimum of these ¢. By continuity, ¢(r,a) = ¢(z, b). Consider a com-
pact convex set K C G that contains ¢ ([0, ] % [a, b]). By joint continuity of
@(t, z) and Lemma 2.1, ¢'(¢, z) is jointly continuous in ¢ and z and hence there
exists tg > 0 such that S‘t%‘f(t, z) > 0forall0 <t <ty and z € K. Thus, by
the Noshiro—Warshawski—Wollff theorem (or by the complex Rolle’s theorem for
more general domains [EJP]), ¢(¢, -) is univalent for each 0 < ¢ < 75 in K. Note
that 1o < 7 and

gO(t(), (p(T — lo, a)) = (p(T’ a) = (0('5, b) = ‘P(IO’ QD('L' — 1o, b))

by the flow property. This is impossible since @(t — ty, a) # ¢(t — to, b) are in
K and ¢(tg, -) is univalent in K. O

We note that the convexity assumption in Lemma 2.2 is unnecessary if we replace
the Noshiro—Warshawski—Wolff theorem by the more general theorem of [EJP].
Since a group flow is a semigroup flow, Lemma 2.2 also holds for group flows on
G C C. Using different methods, Berkson and Porta [BP] also note the result of
Lemma 2.2 for the case of the open unit disc.



Holomorphic Flows, Cocycles, and Coboundaries 243

Observe that if ¢(t, -) is a holomorphic semigroup flow on C, then Lemma 2.2
shows that ¢(t, -) is univalent in C and therefore oo is the only pole for ¢(z, -) for
each ¢ € [0, 0o). Hence every holomorphic semigroup flow ¢(z, -) on C consists
of linear functions; that is, ¢(t, z) = a(t)z + b(¢). In particular ¢(t, -) maps C
onto C for every ¢ € [0, 0o) (also see [BP, p. 110]). For proper subdomains of C
the flow need not be onto, as demonstrated by the following simple example. Let
G=A={ze€C:|z] <1}, and put ¢(¢t,z) = e~ *z. Then, for every t > 0,
Im(ep(¢, -)) is a proper subset of A.

THEOREM 2.3 (Characterization of semigroup flows on C). If ¢(t, ) is a non-
trivial holomorphic semigroup flow on C, then ¢ can have at most one fixed point
in C and one of the following holds:
(1) If ¢ does not have a fixed point in C, then ¢(t, z) = z+ Kt for some K € C,
K #0.
(ii) If @ has one fixed point at K € C, then ¢(t, z) = e* 7+ K(1 — e**) for some
xeC,a#0.

In particular, every semigroup flow on C extends to a group flow on C.

Proof. By Lemma 2.2, ¢(t, -) is univalent and so ¢(#, z) = a(t)z + b(t) for some
continuous functions a(t) and b(t). Note that a(?) # O since ¢(t, z) is univalent.
Employing the semigroup property of the flow yields

ait+s)z+b(+s) =a()a(s)z+b(s))+b(t) = a(s)a@®)z+a@)b(s) + b(2).
Equating the coefficients of the equal powers of z, we have
a(t +s) = a(t)a(s) 2.1
and
b(t + s) = a(t)b(s) + b(1). 2.2)

Clearly, (2.1) and the continuity of a force a(t) = e*, ¢ € C. If ¢ = 0, then
a(t) =1, p(t,z) = z + b(t), and (2.2) becomes b(t + s) = b(s) + b(¢t). Hence
b(¢) is a continuous linear function in ¢ with 5(0) = O; that is, b(¢) = Kt for some
K € C. Therefore, in this case ¢(t, z) = z + Kt.

If « # 0 then a(t) = ¢*, and plugging this expression for a(¢) into (2.2) gives

b(t +s)e ™™ =b(s)e ™ + b(t). 2.3)
Letting s = 1 in (2.3), we have
bt + De® —b(l)e” =b(t) Vit =0, 2.4)
and letting t = 1 in (2.3) gives
b(1 +s5)e* —b(s)e* =b(1) Vs =>0. (2.5)
We solve (2.5) for b(s) and change s to ¢ to obtain
b(t +1) —b(D)e ™ =b(t) Vi=>0. (2.6)

Eliminating b(t + 1) from (2.4) and (2.6) gives b(¢) = K(1 — ™) with K =
b(1)e*/(e® — 1). Hence ¢(t, ) = e*z + K(1 — ™) and we have (ii).
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Finally, we observe that the semigroup flows derived from these calculations are
all group flows. Thus every holomorphic semigroup flow on C is naturally (em-
bedded in) a group flow on C. O

Note that Theorem 2.3 states that flows on C are either translations or (complex)
dilations and conversely. This result can also be obtained by the techniques de-
veloped by Berkson and Porta in [BP]. Because all semigroup flows on C are
necessarily group flows, we may refer to semigroup flows on C simply as flows.

On the extended complex plane, the point at oo is a fixed point for both flows
described in Theorem 2.3. Thus, in this setting one may assert that flows have ei-
ther one or two fixed points. Replacing these fixed points by arbitrary points in C,
it is easy to describe the flows on 52 as follows.

(i) Flows with fixed points a, b € C:
a(z—b)—e*"(z—a)b _ (be* —a)z+ (1 —e*)ab

v, 2) = z—b—e¥(z—a) (e —Dz+b—ae™ 2.7
(ii) Flows with fixed points at a € C and at oo:
o(t,2) = e“z+a(l —e*). (2.8)
(iii) Flows with a single fixed point at a € C:
- TR W g
(iv) Flows with a single fixed point at oco:
o(t,z) =z + Kt, (2.10)

where «, b and K are constants.

Observe that the flow ¢(t, 2) = ¢*z + K(1 — e*') obtained in Theorem 2.3
is constructed by pre- and post-composition with respect to z of the exponential
flow with a translation; namely, if ¥1(t, z) = e*z and ¥»(¢,2) = z — K then
@(t,2) = ¥y o ¥y o Ya(t, 7). Also, the flows obtained in Theorem 2.3 do not
share any common structure. Composition of flows from different classes do not
commute; moreover, addition, multiplication, and/or division of flows from the
different classes in this collection do not generate new flows.

Let G be a simply connected proper domain in C. Since conformal conjugation
preserves the flow properties, without loss of generality one can consider G to be
the open unit disc A. Clearly, if ¢ is univalent then ¢ is a homeomorphism from
A onto J¢(A). Thus IJ¢p(A) is simply connected, and hence ¢(t, -) is a Riemann
map from A onto a simply connected subset of A for every ¢t > 0. For the case
in which the range is onto, Berkson, Kaufman, and Porta [BKP] give a complete
and detailed description of flows consisting of Mdbius transformations of the unit
disc. Briefly, a family of Mobius transformations

Z— 0O
1 —o;z’

o(t, z) = e )| <1, 6 R,

of A onto A forms a holomorphic flow on A if and only if
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'Ot =070)(1 + oy %) = 1 + a7,
o,e” 0% 4 o
1+ oae7i6’

For a more detailed description, see [BKP]. In general, we have the following
theorem.

Uiy = g = 0, 90 =0.

THEOREM 2.4 (Semigroup flows on A; see [C2] or [S2]). Let¢(t,-):C — Cbe
a flow on C. Then, under conjugacy with conformal maps and restrictions of ¢ to
invariant subsets of C, ¢(t, -) generates flows on A. Conversely, every semigroup
flow on A is generated in this way.

It is easy to see that the map
be 'z
(e?—Dz+b
with |b| = 1 is a semigroup flow on A with fixed points 0 and b, while
et—1+( "+ 1)z
(et —=Dz+E*+1)
is a semigroup flow on A with fixed points at a = 1 and b = —1. These flows

arise from restrictions of the exponential flow on C. On the other hand, if « > 0
and

@, 2) =

o(t,z) =

t.2) = z(ot —2) — at
P2 = el — (@t +2)

then @ is a flow on A that is generated from ¢ (¢, z) = z + «t on C restricted to
the right half plane. This flow, which has a Denjoy—Wolff point at z = 1, arises
from the fixed-point free flow on C. Likewise, for any real «,

z—tanh(af)  (e** 4+ 1)z —e? 41
1 — (tanh(ar))z €24 +1 — (2 — 1)z

is a flow on A that is generated by the flow ¢ (¢, z) = e 2%z + 1(¢7>*' — 1) on C.
This flow has two fixed points at £1, where 1 is a repelling fixed point and —1 is
an attracting fixed point—the Denjoy—Wolff point.

Finally, it is worthwhile to note that the unbounded sets S, = {x + iy :
x > —c}, ¢ > 0 are invariant for the flow ¢(¢t,2) = e ¥z (@ > 0) and S, ; =
{x+iy:x>c, y>d}(c,d € R) are invariant for the flow ¢(¢, z) = z + Kt,
0 < arg K < w/2. By conjugacy, such sets may be used to construct a panorama
of flows on A. Since flows on subsets of C are homotopy preserving, it may be
interesting to extend these results to flows on multiply connected subsets of C or
to Riemann surfaces.

p(t,2) =

3. Group Flows on C, Cocycles, and Coboundaries

In this section we deal with the question of when cocycles of group flows on C
are coboundaries. We provide an answer to this question under an integrability
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assumption on the cocycle and consider various examples to show that the same
may be true under more relaxed conditions. We shall treat the same question for
semigroup flows on general simply connected domains in C (including C itself)
in Section 4 and shall present a complete answer.

ExAMPLE 3.1. The following example demonstrates that the answer to the above
question is, in general, No. Let (¢, z) = ¢’z and let m(¢, z) = exp(ze’ +t — 2).
It is easy to verify that ¢(z, -) is a group flow on C, m(¢, -) is a cocycle for ¢,
and m(¢,0) = e’ for all #+ € R. Suppose m(t, z) is a coboundary for ¢ and « is
such that m(¢, z) = a(p(t, 2))/a(z). Then m(t, 0) = a(p(t, 0))/x(0) = 1 for all
t € R. This contradicts m (¢, 0) = e forall ¢t e R.

However, under an integrability assumption, we have the following.

THEOREM 3.2. Let m:R x G — C be a cocycle, and suppose that m(-, z) €
LY(R) for every z € G. Then there exists a A € R such that

e a(p(t,2))
m(t,z)  a)

for some a € H(G).

Proof. Let I,(f(¢)) denote the Lebesgue integral of f € L1(R). Fix zg € G. Since
m(-, z) # 0 (as an L!(R)-function) we can fix a real A for which the Fourier trans-
form I,(m(t, zg)e ") # 0. Define a: G — C by a(z) = I,(m(t, z)e~***). Then,
by the cocycle identity and the translation invariance of I,
a(z) = I(m(t, 2)e™™)

= L(m(t + s, 2)e” 1)

= L(m(s, 2)e """ m(t, (s, 2))e~*)

= m(s, 2)e " L(m(t, (s, 2))e”™")
“Ma(p(s, 2)). (3.1)

A simple application of Morera’s theorem shows that « is holomorphic. L

=m(s, 2)e

Observe that the zeros of « are isolated since a(zg) # 0. Moreover, since
m(s, 2)e "¢ is zero-free for each s > 0, we see from (3.1) that the zeros of «
must be fixed points for ¢. Hence, on the complement of the fixed points of ¢, the
cocycle e*/m(t, z7) = a(p(t, z))/a(z) is a coboundary.

Note that m (¢, z) is a coboundary in case « is zero-free and the constant cocy-
cle e*! is a coboundary. We also note that the construction in Theorem 3.2 is valid
if m(-, z) is a nonvanishing, continuous, almost periodic function on R for each
z € G and if

1 T
Loy = Jim o [ fo)ds

is the invariant mean.
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Finally, we consider a cocycle that, although it fails the hypotheses of Theo-
rem 3.2, is a coboundary. We use this result as a motivation to prove various
cocycles-are-coboundaries theorems for semigroup flows in the next section.

ExAMPLE 3.3. Define aflow p:R x C — Cby
o(t,2) =z — (1 +i),
and let
m(t,z) = exp(t2 —tx+y)+it(x—y) = exp(t2 —t(1 —i)2).

It is easy to verify that m is a cocycle for ¢, and that m(t, z) exp(itA) is neither al-
most periodic nor integrable in ¢ for any A € C. Thus, Theorem 3.2 does not apply.
However, it is easy to verify that m is a coboundary with

2 _ .2 2
a(z):exp(xy+iy 2x ):exp(—i%).

The smoothness in ¢ of the cocycle in Example 3.3 plays an essential role here.

4. Semigroup Flows, Cocycles, and Coboundaries

In this section we develop various cocycles-are-coboundaries theorems under
fixed-point conditions on the semigroup flow and smoothness conditions on the
cocycles. Here, smoothness shall mean differentiability and existence of a limit
of the derivative as ¢t Y\ 0. We note that the results presented here overlap some-
what with Konig’s results (see [Ko]); however, our conditions and techniques are
quite different. We begin with a basic proposition that expresses the singularity

condition (i.e., %‘f (0, zp) = 0 for some z¢) for flows in terms of fixed points.

PrOPOSITION 4.1. Let G C C be a domain, and suppose that ¢ is a semigroup
flow on G. Then ¢ is singular at zo € G if and only if z¢ is a fixed point of the
Sflow .

Proof. By Theorem 1.1 of [BP], the flow is continuously differentiable in ¢. If zg
is a fixed point of ¢, then clearly %‘f(t, z9) = 0. Hence g is singular at z¢. Con-

versely, suppose that a3‘;‘3(0, z*) = 0 for some z*. Differentiating the semigroup
property for ¢ with respect to ¢, we arrive at

% dg dg
t =
5 8.2 2z (5, 9, 2)) - (¢, 2),
and letting ¢+ = 0 in this equation yields
o __dg dg
Y (s,2) = 52 (s, 2) o ©, 2).

For z = z* this in turn implies

dp

Py (5,2) =0 forevery s >0.
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Thus ¢(s, z*) = c € G. Letting s = 0, we get 7* = ¢(0, z*) = ¢(s, z*); that is,
o(s,z") =z*foralls > 0. |

The following theorem demonstrates that, for fixed-point—free flows, smooth co-
cycles are always coboundaries.

THEOREM 4.2. Let G C C be simply connected. Let ¢(t,z) be a flow on G C
C without fixed points (or, equivalently, let E’%(0, z2) # 0 forall z € G). Then
every smooth additive cocycle a(t, z) is an additive coboundary with the unique
decomposition

Cl(t, Z) = /B((p(t7 Z)) —'ﬁ(z)s (41)
with B € H(G) given by
z 380, w)
= [ 2 - C, 4.2
) f oy 4.2)

where 7 is a point in G and C is an arbitrary constant.

Proof. Leta(t, z) be asmooth additive cocycle, and let 8 be defined by (4.2). Con-
sider the coboundary b(t, z) = B(¢(t, 7)) — B(z). By the fundamental theorem of

calculus,
vt 9(t,2) g_a((), w)
b(t,z):f ,B(w)dwzf = dw
z z %?(Oa w)

Then, for every z € G we have

b . 520, 9(,2) dp
TR T T

By smoothness of ¢ (cf. [BP, Thm. 1.1]),

d¢ dp da da
Y = — o WY, ’ = —( 2),
as (09t 2)) = —-(t,2) and 5y (0. 0, 2)) = (1, 2)

since
da . da
—(0, ¢(z, 2)) = lim — (s, ¢(¢, 2))
as s—0 Js
d
= lim —(a(s + 1, Z) - a(t7 Z))
s—0 3.5‘
da da
= lim — ,2) = —(t, 2).
lim as(s+t 2) Bt( )
Hence

20, o(, 2)) 3¢ )
3 14
720, 9(t, 2)) 0t
%4(t,2) dp

da
8 (t,z) dt at

%(t, 7) = 2)
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Thus £(t,z) = 2(t,2) and b(t,z) = a(t,z) + y(2). Since b is an additive
coboundary, g is an additive cocycle. Hence y(z) = 0. So b(t, z) = a(t, z) and
therefore a(t, z) = B(p(t, z)) — B(2) is an additive coboundary.

Now let a(#, z) be a smooth additive coboundary, and let 8 be as in (4.1). Then

d 0
—af;—(t, z) = B (ep(t, z))a—f(t, z) forevery t >0 and z € G.
Att =0,
da 10 ap
—0,2)=p8 ,2))—(0, 2) = B'(2) —(0, 2).
at(,Z) B (e Ifl))(,’t(0 z) ﬂ(Z)at( z)
By 22(0,z) = %(t,2)|,_, # 0, we have

%(0,2)
200,2)°

which readily implies (4.2). O

B'(2) =

Consequently, if %‘;"-(0, z) # 0 for all z € G, then every smooth ¢-cocycle is a
coboundary. For example, in the disc all smooth cocycles associated with flows
having only a Denjoy—Wollff point on the boundary of the disc are coboundaries.
On the other hand, the flow ¢(¢, z) = e’z occurring in Example 3.1 fails to be
nonsingular since %?(0, 0) =0.

The following theorem provides a necessary and sufficient condition for cocy-
cles to be coboundaries when the flow has a fixed point.

THEOREM 4.3. Let G € C be simply connected, and let ¢: [0, 00) x G — G be
a flow with a fixed point at 7o € G. Let a(t, z) be a smooth additive cocycle. Then
a is an additive coboundary if and only if

(1) there is a holomorphic function h € H(G) such that

a(t,z) = / h(p(s, z))%(s, 2)ds 4.3)
0 as

or equivalently,
(i1) there exists an h € H(G) such that

da o

’ 05 == 01 h . 4.4

Bt( z) at( z)h(z) (4.4)
Note that (ii) is the same as saying that the order of zero of %—‘t’ (0, z) at zg is no less

than the order of zero of %%(0, Z) at zg.

Proof. (i) Let a(t, z) be an additive coboundary; that is, let
a(t,z) = ple(t, 2)) — B(2)

for some 8 € H(G). Then, for every z € G, we have
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a:
a(t, z) = Ble(t, 2)) — B(p(0,2)) = fo 2. PG, ) ds

t P ! 0
= / ﬁ'(¢(s,z))3"i(s, z)ds = f h(p(s, D) 22(s, 2) ds,
0 S 0 as

where h(z) = B'(2).

Conversely, if # € H(G) and B is a primitive of s on G, then reversing the above
argument gives the conclusion. It is easy to check that f 0’ h(p(s, 2)) %—‘f (s,z)ds is
a smooth additive cocycle for every h € H(G).

(ii) Note that, by (i),

da ol g _ 4
3;(0, Z) = 5;([) h(p(s, z))gs—(s, ) dS) = (h(w(t, z))—fg(t,z))

t=0 =0

d d
= h((©, 2) 3‘;’-(0, 2) = h(2) —3?(0, 2.

That is, (4.4) holds fc;r every additive coboundary a(z, z).
Conversely, if %—‘:(O, Z) = %—‘f(O, Z2)h(z) then

0 0 d
a—f(t, 2) = 8—“(0, 0(t,2) = 20, p(t, ) h(9(t, 2))
Ky as .
= h(p(t, z))%—?(t, z) forevery t > 0.

Hence a(t, z) = fot h(p(s, 2)) %‘f(s, z)ds + y(z) and, as in Theorem 4.2, y = 0.
Hence a(t, z) is an additive coboundary. O

Observe that, according to Theorem 4.2, the identity (4.3) gives a description of
every additive coboundary (and therefore for every cocycle) of a flow ¢(¢, z) with-
out fixed points. We also note that the condition of smoothness on cocycles in
Theorems 4.2 and 4.3 may be eliminated. This topic will be treated elsewhere.

Revisiting the additive analog of Example 3.1 in the context of Theorem 4.3
illustrates a useful point.

ExampPLE4.4. Leto(t,z) =e'zbeaflowonC, andleta(z, z) = ze! +t —z be
an additive ¢-cocycle. Then

20,20 z+1

= H(C
o0~z #HO

and so this cocycle fails to be a coboundary. Theorem4.3(ii) asserts thatifa(z, z) =
fot h(p(s, 2))ds with h € H(G), then a(t, z) is a coboundary if and only if

50,2 _ hp©.2) _ _h@
%0,20 20,2 20,2

€ H(G),

which is equivalent to stating that the order of zero of & at zp is no less than the
order of zero of %—‘f @, zop).
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In view of Theorem 3.2, the question arises of which constant cocycles are co-
boundaries. If a is an additive cocycle for ¢ and if ¢ has no fixed points, then
every constant cocycle a(t) = ct is a coboundary by Theorem 4.2. The particu-
lar form of the function 8 is given by (4.2). If ¢ has a fixed point zp and if ¢ is a
constant additive coboundary, then at z = z¢ we have

a(t) = B(p(t, 20)) — B(zo) = B(z0) — B(z0) =0 Vt.

Thus, for flows with fixed points, the zero cocycle is the only constant cocycle that
is a coboundary.
We obtain the same result from Theorem 4.3 by letting z = z¢ in the equation

ct = a(t) =f h(p(s, z)) (s z)ds.

5. Projective Multipliers and Coboundaries

The cocycle exhibited in Example 3.3 has its source in the following question.
Suppose that u, v is a harmonic conjugate pair of functions on G, and define 4, K
by

A(t, 2) = exp(itv(z)) (5.1
and

K, z) = exp(tu(z)) (5.2)

for (t,z) € [0,00) x G. If A is a cocycle, does it follow that K and hence
(AK)(t, 2) = exp(t (u(z) + iv(z))) is a cocycle?

The following example shows that K need not be a cocycle but, for this particular
example, a suitable modification of X is a cocycle.

ExampLE 5.1. For the flow ¢(t, z) = (x — t) +i(y — ct) and for conjugate har-
monic functions #(x, y) = —x — ¢y and v(x, y) = cx — y of Example 3.3, it is
easy to verify that A is a cocycle and that X is a projective cocycle in the sense
that

K(s+1,2) = w(s, 1)K, 2) K(s, (2, 2)), (5.3)

where w(s, t) = exp(—(1 + c?)st). Thus K fails to be a cocycle, since the mul-
tiplier w is not identically 1 for any real c. However, w is trivial in the sense

that

PP _
w(s,t) = p(S TP ’ 5.4)

where p: R — R is given by p(t) = exp((1 + ¢?)t2/2) for t € R. Note that
(5.3) and (5.4) imply that B(t,z) = p(t)K(z, z) satisfies the cocycle identity.
Consequently, m(t, z) = A(z, z) B(t, z) is a ¢-cocycle given explicitly by

c2
m(t,z) = exp( ) ) exp(t(—x — cy)) exp(it(cx — y))

2442
=exp((1 + et ) exp(—t(1 — ci)z).
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For ¢ = 1, we have
m(t,z) = &' exp(t(—x — y)) exp(it(x — y)) = &' exp(—t(1 — i)z).

If we let a(z) = exp(—i(z2%/2)), then m(t, z) = a(p(t, 2))/a(z) is a coboundary.

The function w is an example of a projective multiplier or a 2-cocycle, and the
statement that w is trivial is simply the statement that a certain second cohomology
group is trivial.

Our considerations suggest the following general question: Given 2 € H(G),
can one find a weight p: [0, c0) — C\ {0} such that m(z, z) = p(¢) exp(th(z))
is a p-cocycle? We do not have a complete answer to this question. However,
weights of a quadratic type can always be found if the flow ¢ and the holomorphic
function # are strongly related as in Example 5.1. We have the following result.

PROPOSITION 5.2. Leth € H(G), and suppose that ¢ = [h(p(s, 2))—h(2)]1/2s is
constant on [0, 00) X G. Then p(t) exp(th(z)) is a ¢-cocycle if and only if p(t) =
exp(ct? + dt) for some d € C.

Proof. Let p(t) = exp(q(t)), and suppose that q(¢t) 414 (z) is an additive cocycle.
From the additive cocycle identity we obtain

gt +5) — q(s) — q(0) = t(h(@(s, 2)) — h(2)) = 2cst = (s +1)* — s> —17],

and so
gis+1t)—cls+ H? = [q(s) — cs?]+ [q(®) — ct?).

Hence g(s) — cs? is additive and consequently linear (since g(0) = 0). There-
fore, q(s) — cs® = ds for some d € C. The converse is a straightforward verifica-
tion. 1

We note that, if ¢ has a fixed point at zp then ¢ = [h(p(s, z0)) — h(20)]/25s = 0
and so g(s) = ds.
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