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1. Introduction

Let H be a complex, separable, infinite-dimensional Hilbert space; L(H), K(H)
denote (respectively) the algebra of all bounded linear operators acting on H and
the ideal of all compact operators.

Let og(T') denote the isolated eigenvalues of T of finite multiplicity. If A belongs
to 0o(T), let E7{A} denote the Riesz projection corresponding to the eigenspace
for A. When X is a compact subset of the plane, let X" denote the polynomially
convex hull of X.

An operator T is strongly irreducible if the only idempotent operators in {7}
are 0 and I, where {T'}, denotes the commutant of T'. Let 2 be a bounded con-
nected open set in C. Recall that B,,(2), the set of Cowen—Douglas operators of
index n (1 < n < 400), is the set of those operators B on H satisfying

(i) o(B) D Q;
(i) nul(A — B) =ind(A — B) =n, (A€ Q);
(iii) \/{ker(A — B); » € Q} =H.
Note that (iii) can be replaced by
(iii") \/{ker(ho — B)* : k > 1} = H for some Ay € Q.
A nest N in H is a linearly ordered (by inclusion) family of subspaces con-

taining {0} and H. The nest algebra associated with A/ is the family of operators
defined by

TWN)={T € L(H): TN C N forall Nin NV }.

In what follows, N € A denotes both a subspace and the orthogonal projection
onto it; 7" € (SI) means that T is a strongly irreducible operator on its acting space.
Foreach N € N, let

N_=\/{N'eN, NS N}.
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If N_ # N then N © N_ is called an atom of N If all the atoms of N are |-
dimensional, N is called maximal. If N’ = {0; N, (n > 1); H}, N, < N4,
anddim N, < 400 (n = 1,2,...), then NV is the nest of type w + 1. For more
information about nest algebras see [D].

The authors have proved [JJW1] the following result.

THEOREM JIW. Each nest algebra contains at least one SI operator.

In the same paper they described the (SI) operator in 7 (N') with A of type w + 1.
The following theorem was proved in [JW].

THEOREM JW. Given an operator T € L(H) with connected spectrum o (T),
there exists an operator A € (SI) such that A(T) = A(A) and T € S(A), where
S(A) denotes the closure of the similarity orbit S(A) of A and A(T) denotes the
spectral picture of T, that is, 61,.(T), ps—r(T) plus the index function.

ps—r(T)y={A €C: A —T issemi-Fredholm}; 01,.(T) =0(T)\ ps_r(T).

In order to answer a question raised by Arveson in 1981, Herrero [H1] proved the
following theorem.

TaHeorREM H1. Let N be a nest in H.
(1) If N is well-ordered and all its atoms are finite-dimensional, then

UN) =UJN) =UN) = QT.
(ii) If Nt is well-ordered with finite-dimensional atoms, then
UN) =UN) =UWN) = QT*.

(iii) If neither (i) nor (ii) holds then letd = ) ,_ , dim A, where A denotes

the set of atoms of N'. It follows that:
(ilia) when d = co, UIN') =UP(N) = U,(N) = L(H);
(iiib) when d < oo, UN') = UP(N') = L(H)q and U, (N') = L(H).

Here U(N) denotes the norm closure of {UTU* : T € T(N'), U unitary),
UWN) = {UTU*+ K : T € T(N), U unitary, K compact}, and US(N') =
{A € L(H) : foralle > 0, there are T in T(N'), U unitary, and K compact
such that |K|| < eand A = UTU* + K }. Moreover:

NLt =(N; Nt e TW)};
OT)={T e LH):ind(T — A1) >0VA e ps_r(T) };
(QT)* ={T € LH): T* € (UB)}
={T e LMH):ind(T —1)<0VA e ps_r(T)};

L(H)g = {T e L(H): Z ran E-{A} < d] .

Aeoo(T)\oe(TY
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It is natural to ask the following questions. (1) Givena T € 7 (V') with connected
spectrum o (T'), does there exist an operator A € 7 (N') N (SI) such that A(A) =
A(T)? (2) What is the closure of the unitary orbit of the class of (SI) operators in
TN)?

THEOREM 1. Let N (or N'*) be maximal and well-ordered, and let T € T (N')
with connected spectrum o (T'). Then there exists an A € T(N) N (SI) such that
A(A) =A(T)andT € S(A).

THEOREM 2. (i) If N is well-ordered with finite-dimensional atoms, then

UT N)N(SD) = (QT). é {T € QT : o(T) and 6,,(T) are connected },

where 0, (T) = ﬂke,cm) o (T + K) is the Weyl spectrum of T .

(ii) IF N is well-ordered with finite-dimensional atoms, thenU (T (N)N(SI)) =
A

(OT); ={T :T* € (QT).}.
Let the nest A/ be maximal and of type w + 1. Thatis, N' = {0; P, (n > 1); H},

where P, © P,y = \/{e,} (n = 1,2,...) and {e,}°°, is an orthonormal basis
(ONB) of H.
THEOREM 3. Let 2 be a bounded analytic Jordan domain in C, and let

T1 T|2 “e *

T = I
Tm—-l,m

0 Ty
with respect to decomposition H = @, H; (in < +00), where T; € B (2) with
o(T;) =Q U =1,2,...,m). Then, for each ¢ > 0, there exists a compact K

with |K|| < & suchthatT + K ~ A € T(N) N (SD).

CoROLLARY 4. Let Q2 be a bounded analytic Jordan domain in C, and let T €
B, (2) (n < +00) with a(T) = 2. Then, for each € > 0, there exists a compact
K with |K || < & such that T + K € (SI).

2. Preparation

In this section, let A be always maximal and of type w + 1, and let T4 _p be the
bounded linear operator on £(?) such that t4p(X) = AX — XB.

PrROPOSITION 2.1. Assume T € L(H) and pi_p(T) # . Then T ¢ (SI), where
ps_p(T) is the set of singular points of T

Proof. Without loss of generality, we can assume that 0 € p$_.(T). Let

7, T, Ts\ H
T=(0 T, Ts)| H

0 0 T/ H
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be the Apostol’s triangular representation of 7', where

H, = \/{kerM—T): 1€ p5_p(T)}, H={ker(h—T)" : 1€ ps_p(T)},
ps—r(T) = ps—r(T)\ ps_p(T),

and Hy = H © (H, ® H;) [H4]. Since 0 is an isolated point of o (Tp), there ex-

ist Hy, H, € lat Ty such that Hy = H,\+H,, o(Th) ={0}, 0 ¢ o(T>), and Ty =

T\+T, ~ T\ ® T, by Riesz’s theorem, where Ty = Ty|g, and T» = Ty|y,. Thus

T, Ap Az A\ T,

0 T, 0 Arg H,

0 O T, Ay | Hy'

0 O 0 T; T,

Note that 0, (7,) Noy(Ty) = o,(T1) Noy(T;) = @. By Rosenblum’s theorem [R],
77,7, and 77,7, are surjective. Thus

(T A A13 Al I, O * *
- T, Aoy 0 ., 0 0
0 0 T2 A34 0 0 Tg *
\ 0 0 0 T; 0O 0 0 T
/Tl 79 0 0 T, % =*
~ * * =Tl 0 Ay, x]. 1
0 0 4 x ( 0 0 T )
\0 0 0 T f

Proposition 2.1 implies that even in B(H), not every fine spectral picture can be
realized by (SI) operators.

PROPOSITION 2.2.  Assume that T € T(N'). Then 0,(T*) N p§_p(T*) = @

Proof. Since T admits an upper triangular matrix representation with respect to
the ONB {e, };2 |, one can choose {A¢}72, C p5_p(T) No,(T) such that

\/{ker(T—kk)":kzl, n>1}=H

By Apostol’s triangular representation, H; = 0; thatis, 0,,(T*) N p5_p(T*) = 8.
i

n=I»

COROLLARY 2.3. Assume that T € T(N') N (SI). Then
minind(A — 7) = min(nul(A — 7), nul(A — T)*) =0

An operator T is called almost normal if T can be written as the sum of a normal
operator and a compact operator.

PrOPOSITION 2.4 [JJW2]. Let o be a connected compact subset of C, and let
{Ak)p2, be a dense subset of o. Then there exists an almost normal operator
T € T(N) N (S]) such that

(@) o(T) = 0ye(T) = o,

(b) 0,(T) D {Ae}i2,, and

() Viker(T —A)", k>1,n>1}=H
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PROPOSITION 2.5. Assume T € T(N) N By(D) with

(e o]
A(T) =Y (PO P )T(P,©P)=0 and o(T)=

n=1

Then

where D ={A€C:|A| <1}and o, = (Teyy1,e,) (n=1,2,...).

Proof. Since T € B(D), it follows that 0 < r < |a,| < ||T|| for some positive
number r and that T has right inverse B. Computation shows that

* *
/ I €1
1 1 ¢,
B=|90 & * es
i
0 0 01_3 €4

\:o
ForeachA € D, A — B) = (AT — I)B = A(T — —)B Since T' — 3 is invert-
ible, A € ps_r(B) and md()t — B) = —1. Therefore o(B) D D. If Al > 1
then (A — B) = A(T — )B Slnce + € D, A — B is a Fredholm operator and
ind(A — B) = 0. Therefore o.(B) = BD and og(B) C C \ D. Thus there exists
a compact K such that o (B —I— K) = D [H4, Prop. 3.45]. For each ¢ > 0, fix ng
such that || P,, KP,, — K|| < 5. Theno(A) C D, where A = B + P,,KP,, and
D, ={AeC;|\]| <1+¢€}.
Calculation shows that the (ng + m + 1, ng) entry of A™*! is

1

Ung+1 ° Apg42 °° * Upg+m+d

This implies
— 1 .
lim ™! < lim "W A" < 1+ ¢,
m—0o Cpg+1 ° Opg42 * ° ° Cpg+m+1 m—>00
SO
Iim ” ! <1+
1m =m o, = E.
m—>00 nk:l |ovg |
That is,
. 1
lim lag| > ——
m-—0oQ0 1 +

and then, by the arbitrariness of ¢,

tim ([ lewl = 1.

m—00
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Since the (1, m 4 1) entry of T™ is «; . .. o,,, we have /|y ... on] < Y/\T™]
and

m
1 m <
ml-l—l;réo IH |ak| =L
The proof of Proposition 2.5 is now complete. U

COROLLARY 2.6. Assume that Q is an. analytic Jordan domain. Let T\, T, €
TN)NB(Q) witha(T)) = o () = Qand A(T)) = A(Th) = A € Q. Then

n

[Jlewl® =7 (=1,2)

k=1

lim *
n—oo

for some r > 0, where a,ﬁi) = (Tiexy1,ex) k=1,2,...,i=1,2).

Proof. Let f be the analytic homeomorphism f: Q — D, with f(32) = D
and f(Ao) =0.Then A; € TIN)NB(D), A(A;) =0, and o (A;) = D, where
A= f(T) (i =1,2). Let B9 = (Ajeny1,e) ( =1,2,n =1,2,...). Then

lim *
n—>00

[T1B®=1 (=12
k=1

by Proposition 2.5. Set g = f~'. Since g(A;) = T;, we have a®) = g'(0)89.
Thus

n

k=1

PROPOSITION 2.6. Let 2 be an analytic Jordan domain, and let
(Tilie, CTW)NBI(Q), A(Ty)=1r0€Q,

and )
o(ly))=2 *k=1,2,...).

Then, for each € > 0, there exists {Cy )72, C K(H) with ||Cll < &/ 2k such that
BkITk-{—CkET(N)ﬂB}(Q) (k=1,2,)
and ker tg, g, = {0} (i # j).

Proof. Let ozf,k) = (Trept1,€n) (k,n =1,2,...); then, by Corollary 2.5,

SO
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n 1/n
,}L“;o(l_l ) =1 e
Claim: There exists a sequence { ﬂ,’j}ﬁf’kzl of complex numbers satisfying (i)

i=1

n (9] &)

N (1 — B

lim a’.( 'B’.) =00 (k<)
€))] )

e o; ( _,B,' )

e

1

(i)
;

and ) "
n al{ )(1 _ ﬁi( ))
n—>00 j_—] Oltgj)(l —_ ﬁt-(j))

=0 k<)),

and (i1) lim,,, ,3,(1") = 0 and supnlﬁflk)| <g/2k(k=1,2,...).

We define {B®} inductively. Set BV = 0 (n = 1,2,...). Assume that
{B®}> (k < I) have been defined and satisfy (i) and (ii). Setd; = 1 — g/2/*.
Since y

n | &) (k) "
] o; (11— ,3,' )
’}g&(]_[ 20 =1 k<l

i=1

and

n
. o
lim ( I I
n—o0

i=l

we can find n; such that

Define B» =1 —d; (1 <n < n). Since

. ul
Jim, (H

1

i

11

i=n|+1

(1= )
91 - g9)

o;”(1— )

01
ai a5

1/n
) =d2 < 1,

we can find n, > n; such that

ﬁ A= 1y A= 1,
| O _ gD | 1 <5 (k<D
i=1 | &; ( ﬁi ) i=ny+1 ; da

Define ,B,S” =1—1/d, (n1 < n < ny). Continue the process, defining

ﬁ(l) . { 1 - din Rok—2 < N =< Nok—1,
. =

1 —1/d,, ny_1 <n =< ny,
such that

n2h—1

a1 — )
o’ (1 - )

h

i=1
and
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1—[ (1 - B
i o (1= )

where i = 1,2, .... Therefore {8}, (j = 1,...) satisfy (i) and (ii).
Define

<27" (k <),

Cren=—aP®e, | (n=1,2,..., k=1,2,...).

Then Cy is compactand ||Cy || < €/2F (k = 1,2, ...). Therefore, By = T, + Cy €
TN) N B ().

If X € kerzp, p; (ie., if BX = XB;), then computation shows that X admits
a representation by an upper triangular matrix

X111 X112
X = X22

0
with respect to the ONB {e, }2 ;. Calculations indicate that

» |=mﬁ o) (1 - ")
T adi e = BO)
Thus X, =0 (m =1,2,...), by (1). Similarly,

x|l (m=1,2,...).

e = [| iG] | UBD

izt o (I1—=8") =iy o (L= B;7)
and x, oy = 0(n = 1,2,..., 1 = 1,2,...) by (i). Thatis, X = 0 and
ker zp, g, = {0} (kK # J). O]

PROPOSITION 2.7. Let T € Boo(2); then there exists A € T(N) with A ~ T.

Proof. Without loss of generality, we can assume that 0 € Q and set H, =
ker T" ©ker T"! (n = 1,2, ...). Then T admits the representation by an upper
triangular matrix

0 T12 T13 Hl
0 T23 H2

I= 0 Hj

with respect the decomposition H = @;-, H; of the space. Let {7} be an
ONBof H; (i = 1,2,...), and let B be therightinverse of 7. Set N| = \/e(])and
x? = Bel". Since TB = 1, x> ¢ N1.Set N, = \/{N;, xP}, N3 = \/{ V2, eV},
and x(z) = Be;]) Slnce TB =1, x(z) ¢ N3. Set Ny = \/{N3,x(2)} Let x (3)
Bzefl), similarly, x® ¢ Nj. Define N5 = \/{Ny, x 3)} and Ng = \/{N5, 1.
Set x? = Be", Ny = V{Ns, xP}; 1 = B2e§”, Ns = V(N7 x9; x(4)
B3e§]), 9 = \/{Ng,xf4)}; ... Thus M ={0; N, (n > 1); H}. Hence there is
a unitary U such that UTU* € T (N). O
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3. Proof of the Main Theorem

Proof of Theorem 1. First, we assume that N is maximal and of type w + 1.
By Proposition 2.4, we can assume that ps_p(T) No(T) # © and that {Qk}i:]
(1 <1 < o0) is the class of the connected components of ps_g(T) N o(T).
By Proposition 2.2, min{ind(T — A), A € Q¢} > 0. Set &, = (Q)° (k =
1,2,...,0). Let (A 301, (0 < py < 00) and {ug}F2, (p2 < 00) be dense subsets
of U,‘L:] @\ ch:l Qi and o (T) \ U,{,:l &y, respectively. Set By = M7 (P;)
(k=1,2,...,1), where M (®F) is the Bergman operator on Lﬁ(sz) and where
O = (A A€ D} (k=1,2,...). Thus By € B;(P;) and o (By) = Q.

In [H3], Herrero gave the following example. Define v = 1, v, = %, e
Vv, = (v ...v,-1)", and let {o;,} be the sequence

Vi, V2, ..., Vg,
Vi, V2, ..., Voo,
Vi, V2, ... 5, V900,

...............

Let V be the backward unilateral weighted shift with weights {«,}. Then V is not
compact quasinilpotent and V* is not compact for any power k > 1. Define B,, =
kk—l—VandBMj -‘—",LLj—|-V(k= L...,pi,j=1,..., p2).

Define

A= (B' ® (EB’LZ B’Enk)) 0 ) .
0 ( If;l B/\k) ® ( f=21 Bﬂj)

Thus A, is an upper triangular operator with o,,(A|) = o (A) connected, where
o (A1) denotes the Weyl spectrum of Ay, thatis, 6,,(A;) = ){o (A +K), K €
K(H)}.

By [H2], for each ¢ > 0 there exists a compact K with | K|| < ¢ such that G =
A} + K € Bi(2)). Since G, B; € B(€2;), they admit upper triangular matrix
representations

Ao &1 * Ao b *
Ao & Ao by
G = . and ‘o bs

Ag
for some Ao € 2, with respect to some ONBs of their acting spaces, and 0 < r <
|gn] < RandO <r < |b,| < R(n=1,2,...) for some r and R. Assume that

(The proof is similar for the opposite inequality.)
By arguments similar to those used in the proof of Proposition 2.6, we can find

(BPY2, (=1,2,...) satisfying (i)
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n

n @)
lim 18| — = o0 and l_ial_[tﬂ—k.lz()
n=e0 i be(1 = )] oo it =B
and (i) img_, 00| 85| = 0 and sup | 8| < £/2' (i = 1,2,...). Define com-
pact operators Cy, Cs, ..., Cy—1 with ||C;|| < &/2" such that T; = B, + C; €
Bi(€21) i =1,2,...,n — 1), ker r;;,¢ = {0} and ker t7,7; = {0} (i # Jj). Since
o, (G) Noy(T;) # O, there exist compact operators Dy, D, ..., D,,_; such that

D; ¢ rantgr, and || D;|| < &/2' (see [F]).

Case I: n; = o0. Define

(i #J)

G D, D, Ds
T,
1

>
Il

T3
0
If P € {A) then P2 = P. Assume that

POO PO] P02 .o
P = (PIO Py P2 )

Py Py Py
with respect to the same decomposition of the space. Then, since ker 17,6 =
ker T = {0} (@ #j)wehave P,; =0(G >1, j >0,i # j).Since G, T; €
B (€2)), it follows that G, T; € (SI) (i = 1,2,...); see [FJ]. Since P;; (i =
0,1,...) is idempotent and Py € {G}), we have P; € {T;} (i = 1,2,...) and
P;; = 6; (6; = 0 or I). Assume that §g = O (otherwise, consider I — P). Since
D; ¢ rantg,;1;,, Py =0and Py; =0 ( = 1,2,...), thatis, P = 0. Therefore
A € (SI). It is not difficult to see that A € B (). By Proposition 2.7, A ~ A €
T (NV) N (SD). Furthermore, A(A) = A(T).

Case II: ny < oo. Define
G Dy D, ... Dy
T,
T,

o
Il

Tn| -1
Then A(A—L)_ = A(T). By the same argument used in case I, A € (SI). Since A €
Bnr,(21), A admits an upper triangular matrix representation
Ao _ ker(A — o)
A= Lo ker(A — 1o)? © ker(A — A¢)

Since dimker(A — Ag)* < oo (k=1,2,...), A~ A e TWN).

Second, we assume that N is well-ordered with 1-dimensional atoms. Then
N = €B£=, Na, where N, has order type w + 1 and B is a finite or countable
ordinal.
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Without loss of generality, we assume that 8 is a limit ordinal. Let T € 7 (N);
then pg_ (T) = @. By the arguments used in the first step, we can find an (SI)
operator A € T(N;) N B, () that satisfies A(A) = A(T) and p;f_F(T). Pick g
pairwise distinct points {)La}f;]l in 07,.(T) and let

e 1 @
Ao 3 @
€
A, = 1 (o) ,

where e* is an ONB of N, and each \/{e{®} is an atom of A,,. Then A, belongs
to 7(N,) N(SI), 0(Ay) = 01re(Ag) = Ay, and 6, (A) N o1(Ag) # . Thus there
exists a compact J, such that J, ¢ rantz,_ and ) ||Jyll < +oco. Since Ac
B,(R2) and @ N {A)22] € 2N 0y,.(T) = @, we have ker ,_; = {0}. Set

A Ji b
Ay
A= A,

As in the proof of the first step, we can deduce A € 7(N') N (SI) and A(A) =
A(T).

Finally, we assume that A/- is well-ordered with 1-dimensional atoms. Accord-
ing to the above proof, we can find an (SI) operator A € 7 (N1) such that A(A) =
A(T*); furthermore, A* € T(N) and A(A*) = A(T). From the construction of
A and by the similarity orbit theorem [AFHV, Thm. 9.2], it is not difficult to see
that T € S(A). The proof of Theorem 1 is now complete. g

Proof of Theorem 2. (1) For each T € T (N') with connected spectrum o (T),
by Theorem 1 there exists A € 7(N') N (SI) such that A(A) = A(T) and T ¢
S(A); that is, there exists a sequence {X, ]2, of invertible operators such that

n=
B, = X,AXy' — T.
Since B, is an upper triangular operator, there exists a unitary U, such that
C,=UB,U; €eTWN) (n=1,2,...),

that is, C, € T(NM) N (SD) and UC,U, — T. Hence the closure of the unitary
orbit of the class of (SI) operators in 7 (N') contains all the operators in 7 (N)
with connected spectrum.

(2) For each quasitriangular operator B on ‘H with connected spectrum o (B)
and Weyl spectrum o,,(T), and for each £ > 0, there exists a compact Ky with
| Koll < € such that (B + Kp) = 0, (B + Kp). Since B + K is quasitriangular,
there exists a compact K, with || K[| < & such that
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Al * \ fi

A2 f2

B+ Ko+ K, = A3 f3
0 )

with respect to an ONB {f;}72, of H, and o (B + Ko + K|) C o(B),. Since
ao(B + Ko + K1) C {A;}72,, we can “adjust” the diagonal—that is, we can find a
compact K, with || Kz |l < & such that og(B + Ko + K| + K3) C o(B). Thus C =
B + Ky + K| + K, admits an upper triangular matrix representation with respect
to the ONB {f;}72, with connected spectrum o(C) = o,(B) and ||B — C| <
3e. Therefore, the closure of the unitary orbit of the class of operators with con-
nected spectrum in 7 (N') contains all the quasitriangular operators with connected
spectrum and Weyl spectrum.

Parts (1) and (2) imply that the closure of the unitary orbit of the class of (SI)
operators containing 7 (A) is the class of all quasitriangular operators on H with
connected spectrum and Weyl spectrum.

(3) Suppose that A belongs to the closure of the unitary orbit of the class of
(SI) operators in 7 (N'). Then there are A, in 7 (N) N (SI) and U,, unitary (n =
1,2,...) such that lim, U;A,U, = A. It is easy to see that o (UyA,U,) =
ow(U;A,U,) and that they are connected. Since A, (n = 1,2, ...) are all qua-
sitriangular, it is not difficult to show that A is quasitriangular and that o (A) and
oy (A) are connected. Thus, Theorem 2 is proved. tl

Proof of Theorem 3. Without loss of generality, we can assume that 0 € 2. Thus
T; admits the representation

0 %
Tk = 0

0

with respect to some ONB of H;. Thus 7; € 7 (N;) N B (2), where N is the
maximal nest of type w + 1 related to the ONB. For each ¢ > 0, there exists a
compact Cy with ||Ci]| < &/2F such that By = T; + C; € T (N;) N B () and
ker tp, 5, = {0} (k # j). Since 0, (Bg—1) Noy(By) # ¥ (k > 1), there exists Dy
with || Di|| < &/2* suchthat By_jy = D+ Ti—1x ¢ rantp,_p, (k=2,...,m).

Set

C, D, 0
K = C2 ;

- Dy

0 Cm

then K € K(H) and || K| < &. Define
Bl B|2 . Kk
A=T+K = B,
Bm—l,m

0 B
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By the same argument used in the proof of Theorem 1, A € (SI). It is not difficult
to prove that A € B,,(Q). Let Ny = ker A, N, =ker A2, ..., Ny = ker A, .. ..
Then \/{N; : k=1,2,...} = H and dim N; = mk, and A admits the represen-
tation

0 A12 A]3 e Nl
0 A23 . N2 S/ Nl
A= 0 N3O N
0 . .
Let M denote the maximal nest refined from M’ = {0; N, (k > 1); H]}. Then
A € T(M). Thus we can find a unitary U such that UAU* € T(N). O

Proof of Corollary 4. Assume that 0 € Q. Set Hy = \/2, B*e, where B is the
right inverse of T and e € ker T. Then H; € (LatT) N (Lat B) and T has the

representation

It is not difficult to prove that 7} € Bi(R2), o(T}) = Q, and L, € B,_(RQ).
Repeating this argument, 7' can be expressed as

T] * H]
15 H,
T = ) .
T,/ H,
where Ty € B{(Q) witho (Ty) = Q (k = 1,2, ...). By Theorem 3, for each ¢ >
0 there exists a compact K with || K| < e such that T 4+ K € (SI). O
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