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1. Introduction

Let Q be a bounded domain in C”, and let L?(Q) be the usual Lebesgue space
over €. Let A%(Q) be the subspace of L2(Q) consisting of holomorphic func-
tions. We set A2(Q) = {f: fe A%(Q)}. Let P: L*(Q) » A%(Q) be the orthog-
onal projection and let K(z, w) be the Bergman kernel. It is well known that,
if Q is the unit ball, then A%(Q) and A3(Q) (all functions in A%(Q) that vanish
at 0) are orthogonal. In other words, the Friedrichs operator

T(f)(z) = fn K(z, w) f(w)dv(w). (1.1)

is a rank-1 operator (the same result holds for any complete Reinhardt do-
main). It is of interest to determine for which domains in C” the Friedrichs
operator has finite rank. We say that Q C C" is a quadrature domain if there
are finitely many points z,, ..., z,, € {1, nonnegative integers n;, j=1,...,m,
and numbers A; 4, ..., A, o Such that

m glel
fﬂf(z)dv(z)=2 2 A /

) O [s3

This definition was first introduced for » =1 by Shapiro [24], who proved
for a planar domain Q that the operator T has finite rank if and only if Q
is a quadrature domain. In higher dimensions, it was proved by Janson,
Peetre, and Rochberg [11] that: If Q is a bounded Runge domain in C” with
C! boundary then 7 has finite rank if and only if Q is a quadrature domain.
It would be useful to find some characterization for the defining function of
a domain with associated Friedrichs operator having finite rank. We note in
passing that the Friedrichs operator is essentially a Hankel operator in the
sense of [11].

We know from [23] that a simply connected domain D in C has operator
T having finite rank if and only if D is the image of the unit disc A by a

(zj)) VvfeAXQ). (1.2)
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conformal (holomorphic) rational map ¢. Moreover, it was proved in [23]
and references therein that 7" has finite rank on D only if 8D is an irreducible
algebraic curve. A natural question arises concerning what we can say about
the spectrum of 7 when dD is smooth or rough. Alternatively, one may ask
how the boundary regularity affects the asymptotic behavior of the sequence
of singular numbers of T. (See [22] or [6] for a discussion of singular num-
bers.) This problem has been treated by several authors. For example, it was
shown by Friedrichs [9] and Norman [19] that there is a Lipschitz domain in
the complex plane such that the operator T is not compact on A%(Q).

For 0 < p <, we say that a bounded linear operator L from a Hil-
bert space H, to another Hilbert space H, belongs to the Schatten ideal
S,(H,, H,) if the singular numbers {s;(L)}j=, € /¥, where

s;(Ly = inf{|L —M;||: M;: H; — H, has rank at most j}, j=0,1,....

In [17], Lin and Rochberg studied the above problem on a planar domain,
and gave a characterization of S, on a finitely connected domain in C!; asa
consequence of their results, we know that if d{ is C2+¢ with some € >0,
then Te S,(A% A?) for all p>1and Te S, if @ has C**¢ boundary. Their
arguments are based on the conformal map (the Ahlfors map) from the unit
disc to the domain Q. However, for a general domain in C”, their method
is not applicable because there are no biholomorphic mappings between
generic domains—even domains of the same topological type. This leads us
to try to understand the operator 7 itself. It is clear that the definition of T
depends only on the Bergman kernel or Bergman projection. We shall pro-
duce a method, based on Bell’s ideas concerning Condition R (see [3]), which
will help us to handle many interesting problems concerning 7.

According to Bell [3], we say that a smoothly bounded domain @ C C”"
satisfies Condition R if P(C®(Q)) = A2(Q)NC=({). Now we can state the
main results of the present paper as follows.

THEOREM 1.1. Let Q be a smoothly bounded domain in C" satisfying Con-
dition R. Then Te S, for all p > 0.

We point out here that all pseudoconvex domains of finite type (in the sense
of D’Angelo and Catlin) satisfy Condition R [5]. Ad hoc arguments show
that all smoothly bounded domains in C satisfy Condition R.

THEOREM 1.2. Let Q be a bounded domain in C' with C'** boundary.
(@) If « =1, then Te S, for all p > 1.
(b) If0<a<l,then TeS, forall p>1/a.

As noted earlier, any simply connected planar domain D with finite rank
Friedrichs operator D must have algebraic defining function. We may show
that if D is a smoothly bounded domain in C” that is biholomorphically
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equivalent to the unit ball in C” by a mapping ¢ and if the Friedrichs oper-
ator T associated to D has finite rank, then det(¢’(z)) is rational. But, unfor-
tunately, we cannot conclude that 3D is an algebraic surface (except possibly
for a small exceptional set). For example, for any holomorphic function f on
the disc A, ¢(zy, 25) = (2;+f(25), 25) is a biholomorphic mapping (a skear)
with det[¢’(z)] =1 on C2 Let Q = ¢(B,). Then the Bergman kernel for Q is

K(z, W) = c3(1— 2aWy — (21— f(22)) (W, — f(wy)) >

and, for z € B,, we have

T(h)(é(2)) =f9 K(6(2), w)h(w) dv(w)

=, fB cx(1— <z, w) 3R (w)) du(w)

= ¢, h(¢(0))
= ¢, h((£(0), 0)).

Therefore T has rank 1. But the boundary of Q can be very rough (depending
on how rough f is near the boundary of A). Therefore, the above example
gives a significant difference between the situation in one complex variable
and that in several complex variables. It is obvious that not all bounded
domains in C” with real analytic boundary have Friedrichs operator with
finite rank. (In fact, it is not even true in one dimension—by virtue of the
“irreducible algebraic curve” criterion. A multi-dimensional example, with
smooth boundary, may be obtained as follows. Let D = {ze C;r(z) <0}
be a 1-dimensional example. Set D, = {(z, w) € C*: ze D, r(z) +|w|* < 0}.)
However, we do have the following refinement.

THEOREM 1.3. Let Q be a bounded domain in C" with real analytic bound-
ary. Then the singular numbers s; of T satisfy

si(T) = O(c"j“") as j— o
Jorsome 0 < c<1.

This paper is organized as follows: In Section 2, we shall prove Theorem 1.1.
Theorem 1.3 will be proved in Section 3. In Section 4, we consider the prob-
lem on strictly pseudoconvex domains in C” with C* boundary, and we give
a sufficient condition so that 7€ S,,. Finally, in Section 5, we give an estimate
on the Bergman kernel of a domain in C with C'*® boundary; as an appli-
cation, we shall prove Theorem 1.2.

We thank John P. D’Angelo for a useful conversation.

2. Proof of Theorem 1.1

In this section, we shall complete the proof of Theorem 1.1. First we need
the following theorem of Paraska [20].
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LeMMA 2.1. Let Q be a bounded domain in R", and let L(x, y) be an in-
tegrable function in L*(@xQ). Let s;=5,= -+ =5§,= --- be the singular
numbers of the integral operator T; with kernel function L. If k is a non-
negative integer and if L e W>*(Q x Q), then

n+2k
2n

si(Ty=o0(j7"), r=

We also need the following theorem of Bell [3].
THEOREM 2.2. Let Q be a bounded domain in C" with C** boundary.
Then there is a function ®(z) such that

|V/®(2)| = Cio(2)F 1) zeQ,
and

[ Fonyavny = [ Fonom doow)
Q Q
for all fe A2 Q)NWLYQ), where 8(z) is the distance from z to 39.
We need the following result from Bell and Boas [4].
LeEMMA 2.3. Let Q@ be a smoothly bounded pseudoconvex domain in C".
Then Q satisfy Condition R if and only if, for any multi-index
o = (0], ..., 0p),
there is a number m(a) > 0 such that
aaK(z, ')

3z%dwB < C, x6(z)~m)—mB)

L2(@)

forall ze Q.

Now we are ready to prove Theorem 1.1. Let fe A*(Q). Then

T(f)(z) = fn K(z, w) f(w) dv(w)
= fﬂ K(z, W) f(w) B (w) dv(w)

- fQL(z, w) F(w) dv(w),

where
L(z,w) =K(z,w)®(w).
Thus, if @ satisfies Condition R and dQ is C* then, for any / > 0, there isa
$ e C*(Q) such that
|2(2)] < C;8m 0+,
where
m(2!) =2max{m(x)}, C; =max C(x).

Y || =1
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Thus, by Lemma 2.3, we have
3**PL(z,w)
dz*dwh

ILColwese s |
la), |Bl=tvQ Y0
9 rPK(z, w)

<C ff . s(w)" 2D +=1 gy (w) dv(z)
llal,IEBISI aJo| 9z*WF

dv(w) dv(z2)

9Bk (z, w)
<C f f e dv(2)8(w)™?) dy(w)
I|a|,|2.8|sl aJo| 0z*Wwh

<C 3 [ a(wymled=m gy dy ()
|B|<lYQ

= C'CIIQI'
Of course we have used Lemma 2.3. Therefore L(z, w) e W"3(Qx Q) and,
by Lemma 2.1, we have
_ n+2l
2n

Since / > 0 is an arbitrary integer, the proof of Theorem 1.1 is complete.
O

sp=0(j7") as j—ooo, r

3. Proof of Theorem 1.3
In this section, we shall prove Theorem 1.3. We need the following.

THEOREM 3.1. Let Q be a bounded domain in R". Let L(x, y)e L*(Q xQ),
and assume that the support of L is contained in Qg for some 8° > 0; here
Q50 = {z€Q:6(2) = 8%. Let T, be the integral operator defined on A*(Q)
using the kernel L. Then the singular numbers s; of T}, have the asymptotic
behavior

sj=0(c'f”") as j—oo

for some 0 < ¢ < 1 (depending only on Q and §°).

Proof. For a positive integer k, we choose N, points in Q0 such that Qs C
Uik B(z;, ry) C 250,. For each positive integer /, we let Py ; be the projec-
tion of 4%(Q) to the subspace M, where (I — P, )(f) and its derivatives up
to order / are zero at z;. (Note that M=A2(Q)@(I—Pk,,(A2(Q))); Ny, 1y,
and / will be chosen later.) Thus Py ; is an operator whose rank is at most
I"Ny. Hence, by choosing ry > 0 such that |Q|/2 < N r2" < (diameter of
Q)”, we may conclude that

IKT—TPY(N)||42 = | TU—PY )52

<c| W-PyNHPav)
Q50 Ny
< C(a{))—l—(n+l)/2 "f”Az E r}i

i=1
< C(ao)—-!—(n+l)/2 ”f"Aszrlgr[?n
< C(50)*’—("+])/2||f|]A2r1£.
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We set I"Ny = k, 5o r, = (c/N)V*" = (cl"/k)"?". Therefore
(891~ + /2] < (80D 2 (s = C(ey kY,
where ¢; = C(6°)~2 Now we let /" = k/2c,; then
(c1l/k) = (1/2)! = (1/2)K 720" = ok,
where
cy = (1/2)V2e)"" < 1,

Combining the above arguments, we see that the proof of Theorem 3.1is
complete. d

We are now ready to prove Theorem 1.3. Since Q has real analytic boundary,

there is a positve 6° > 0 such that, for all 0 < ¢ < 6° the domain Q, has real

analytic boundary. Let 4 be a smooth function on @ with support in Q0.
For each 0 < ¢ < §° we write

dv(z) = g,(2)do,(z)dt, 6(z)>t.

Then g,(z) is real analytic near the boundary d€2,. We consider the following
Cauchy problem:

Au'=h  near 9%,,
u'=0 on 9%,,
D,u'(z) =g,(z) on 89,.
It is known that this Cauchy problem has a C® solution #/, and that
l#®licx@, < Ci

(see [10] or [8]). Here Cy is a constant depending only on k£ and Q. Now we
consider the operator 7. Since 9(2 is real analytic, it follows that Q is of fi-
nite type and satisfies Condition R. Note that, for each fe A%(Q), we have

T(f)(z) = fﬂ K(z, w) f(w) du(w)
= Kz, w)fw)dv(w)+ f K(z,w) f(w) g, (w) do,(w) dt
Q50 0 aq,

50
= | K(z,w)f(w)dv(w) +f K(z,w) f(w)D, u'(w)do,(w) dt
Q0 0 aQ,

50
=| K(z,w)f(w)dv(w)— f f K(z, w) f(w)Au'(w) dv(w) dt
Qg0 0 Q,

= K(z, w)fw)dv(w)— f f K(z, w) fiw) g(w) do(w) dt
Q40 0o Yo,

= | Kz w)fw)dvo(w)— f 8°K (2, w) f(w) h(w) du(w)
Qz0 Q
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= [ K(z, w)@so(w) = hw)) fiw) o)
Q

= fﬂ L(z, w) f(w) dv(w).

Here @40 is given by Theorem 2.2 for the domain Q. Therefore our kernel
L satisfies all the conditions of Lemma 2.1. The proof of Theorem 1.3 is
complete. O

4. Finite Smoothness of dQ
In this section, we shall assume that Q@ has C*® boundary.

THEOREM 4.1. Let Q be a bounded domain with C** boundary. If

| fﬂ K (2, 5)]|KE, ]| K (2 m)] |2 ()] |8(5)] don) due)
< CK(Z, z)l-—(2k+2«x—2)/(n+l)’
then Te S,(A% A(Q)) for all 2= p > max{n/(k+a—1),2n/(n+1)}.

Proof. We know that Te S,(A% A?) if and only if T*Te Spr2(A%(9), Az(ﬂ))
Let H=T*T. Then His a posmve operator on 4A%(Q). Thus Pe S (A2 A?)
if and only if H?’2€ S,(A?%). By Lemma 2.1, we have

T(K;)(w) =fﬂ K (&) K(&, w)@(w)du(§) = fﬂ K(&,2)K(&, w)@(w)du(§).
Also

f | TK,(w)|? dv(w)

Q
= f fﬂ K(z,£)K(w, wE) du(g) an(n,z)K(n,W)de(n)dv(W)
= [ [ [ k@ o kw0 K, 20Kir, ) do(n) 2 &) Ty dotn) o)

= f f K(z, £)K(1,2)K(n, £)®(£) B () du(n) du(E).

In addition,

tr(HP"?) < f CHk,YP*K (2, 7) dv(z)
Q
= fg (Tk,, Tk,;Y""*K(z, z) dv(z)

- f (TK, TKY?*K(z,2)' " dv(2)
Q
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< Cf K(z, 2)!~P/2K(g, 2)P/2~ Pk +a=D/n+1) gy o)
Q

< Cf K(z, z)! Pk +a=D/n+D) gy 2y
Q

<C

=Lp
if p>n/(k+a—1). Thus He S,,; and so T € S,,. Therefore the proof of the
theorem is complete. (]

COROLLARY 4.2. Let Q be a strictly pseudoconvex domain in C" with C**
boundary, k = 4. If 2 = p > max{n/(k+a—1),2n/(n+1)} then Te S,.

Proof. By using the asymptotic expansion of the Bergman kernel given by
Fefferman [7] (or Ligocka [16]), one can verify the hypotheses of Theorem
4.1. The proof is complete. O

5. Proof of Theorem 1.2

In this section, we shall consider a bounded domain in the complex plane
and prove Theorem 1.2. In order to achieve this goal, we need to estimate
the Bergman kernel for domains with C“ boundary.

THEOREM 5.1. Let Q be a bounded domain in C with C"® boundary, o >0.
Then

|K(z, w)| < C(|z—w|*+8(z)2+6(w)?) L.

The proof of Theorem 5.1 can be effected using classical techniques (con-
formal mapping or estimates on the Green’s function); alternatively, the
techniques in Fefferman [7] can be specialized down to one complex vari-
able. As a third method, one can prove Theorem 5.1 by using the technique
of Kerzman and Stein [12], which was presented also in Ligocka [16].

By Theorem 5.1, one can easily check that the following holds:

| K@ BlIKE DK G nlsn s ot dow) < C.

By Theorem 4.1, we have that T€ S,(2) when p >1 and « = 1. Therefore
the proof of (a) of Theorem 1.3 follows.

Now we prove part (b) of Theorem 1.2. We first need the following suffi-
cient condition of Russo [see [2]).

LEMMA 5.2. Let (X, @, u) be a o-finite measure space, and let k(x, y) bea
measurable function on X X X satisfying

, p/p’ 1/p
I » = ( f ( f |k(x, 1P d,u(x)) dp( y)) <o
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and
1/p

, p/p’
Lo P (f(ﬁk(y,x)lp dp.(X)) dpt(y)) < oo

Jor some 2 < p < . Then the associated integral operator I, defined on a
dense subspace of L*(p) by

LS () = [ Sk, 7)),
is in the trace ideal S,; moreover
I Zklls, = (&l o167 7, 272

Now we return to the proof of part (b) of Theorem 1.2. We first consider the
case p > 2. We know that T is an integral operator with kernel function

k(z,w) = K(z, w)®(w) = K(z, w) O(6(w)?).

By Theorem 4.1 we have, since pa > 1, that

, p/p’
f(f |k(z, w)|? dv(w)) dv(z)
a\’a

s(w)® p’ p/p’
SCfg[fg(IZ""le‘i'6(2)2+6(W)2) dv(w)] dv(z)

<C f §(2) @~ DP+2P/P' gy ()
Q

=C| st du(n) <C,.
Q
Similarly,

, p/p’
f (f |k(z, w)|? dv(z)) dv(w) < C),.
e\’q

Therefore, by Lemma 5.2, the proof of part (b) of Theorem 1.2 is complete
for the case p > 2.

Next we prove the case 1 < p < 2. One could verify directly the hypotheses
of Theorem 4.1 and then prove the theorem. Instead, we give a slightly dif-
ferent proof. First we need the following lemma, which is similar to lemmas
in [2; 14; 15].

LEMMA 5.3. Let Q be a bounded domain in C". If
f IT(KIN%2K(z, 2)' "2 dv(z) = C,
Q

then Te S (A% A%) forall 0< p <2.
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Proof. For completeness, we present the proof in full. Since

IT|ls, = tr(T*T)*")

- L (T*T)?*(K,), K,y dv(z)

- fQ«T*T)P/Z(kz), kYK (z, 7) dv(z)
< fﬂ(T*T(kz), k,YP"*K (2, 7) dv(2)

= fﬂu T(k||22K (2, 2) dv(z)

= [ IT WK 1= du(a)
Q
we see that the proof of the lemma is complete. 1

We are now ready to prove the case 1 < p < 2 of part (b) in Theorem 1.2.
Since @ has C"* boundary, we have |®(w)| < C8(z)*. Thus

1T (K)||.a2 =

‘ fQK(-,s)K(z,sms)dv(s)

AZ

< fﬂlK(z,E)H‘I’(E)IIIK(':S)"Az dv(£)

< fnlx(z,s)||<1>(z)u<<s,s)"2dv(s)

< CK(Z, z)l/Z—a/Z.
Therefore

f IT(K)N52K (2, 2)' ~#"2 dv(z)
Q2

< C [ (K 2)|"2~*PK (2,2~ dv(2)
Q
sf K(z,2)!7*"? dv(z)
Q

< Cf 6(Z)-—2+ap/2 dU(Z)
Q

=Cp.

Here we have used the fact that 1 - pa/2 < 1/2, that is, pa > 1. The proof
of Theorem 1.2 is complete. O
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CL0SING REMARKS. It is clear from the statements and the proofs of Theo-
rems 1.1 and 1.2 that one could sharpen the statement of Theorem 1.2 in the
following fashion:

Let Q be a bounded domain in the complex plane C** boundary. If
p>1/(k+a—1), then Te S,.

The version of Theorem 1.2 that we have already proved gives the case
p > 1. For the case p <1, one can establish this sharper statement by im-
proving Lemma 2.1, and then applying the argument of the proof of Theo-
rem 1.1. We shall investigate these matters in future papers.
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