On the Fitting Ideals in Free Resolutions

HsiNn-Ju WANG

Introduction

Throughout this paper, all rings are commutative with identity. If R is a ring
and if ¢: F — G is a map of finitely generated free R-modules, then we define
I;(¢) (i =0) to be the ideal of R generated by the i X/ minors of a matrix
representing ¢ and the rank of ¢, denoted by rank ¢, to be the largest num-
ber ¢ such that I,(¢) # 0. The ideals I;(¢) are called the Fitting ideals of ¢.

Let (R, m, K) be a d-dimensional complete Noetherian local ring con-
taining a field with maximal ideal m and residue class field K = R/m. The
purpose of this paper is to study a conjecture of C. Huneke concerning the
behavior of Fitting ideals in free resolutions of finitely generated modules
over R. In the meantime, a question about the annihilator ideal of the func-
tor Ext%“(—, -) is also considered. In order to present these questions, more
definitions are needed.

Let R be as above. Then, by Cohen structure theorem,

R= K[lea --'anI]/(fl’ ---hf!)
for some indeterminates Xj, ..., X,, and some power series

fl’ ...,_f,eK[IXl, ...,an].

Therefore, from this representation, we may define the Jacobian ideal of R
to be I,(3(f}, ..., f1)/9(X], ..., X)) R, that is, the ideal of R generated by the
image of A X h minors of the Jacobian matrix (3a(f1, ..., f1)/0(Xi, ...s Xp))s
where h = height(f}, ..., f;). Furthermore, we denote by I(R) the ideal de-
fining the singular locus of R; that is, I,(R) =\ p¢Rregr P. If M is a finitely
generated R-module then M is said to have a well-defined rank r if, for any
Pe Ass(R), Mp is free and up(M) =r. Finally, we denote by (F., ¢.) the
following acyclic complex of finitely generated free R-modules:

N RN B E NN LN
Let us state the questions as follows.

CoNJECTURE 1. Let (R, m, K) be a d-dimensional complete Noetherian lo-
cal ring containing a field and let J be the Jacobian ideal of R. Let M be a
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finitely generated R-module and let (F., ¢.) be any finitely generated free
resolution of M. Assume that M has a well-defined rank. Then

J < Ii(¢;)
JI,(¢)) € 1,(9;)

I, _1(¢)) < 1,(¢))
for all j = d+1, where ¢; = rank(¢;). In particular, Jkc Ii(¢)) for all k < ¢;.

QuESsTION 2. Let (R, m, K) be a d-dimensional complete Noetherian local
ring containing a field, with J the Jacobian ideal of R. Then does it hold
that J Ext4*!(-,-) =0?

We would like to introduce several results related to the above questions, as
they are helpful to our work. The following theorem [2, Thm. 1], due to
Eisenbud and Green, was concerned with Fitting ideals and was initially
conjectured by C. Huneke.

THEOREM 1. Let R be a Noetherian ring containing Q and let M be a finitely
generated R-module. Let I = anngy M and let (F., ¢.) be a finitely generated
Jree resolution of M. Assume that I contains a non-zero-divisor. Then

I(6) C Ly () ¥i=0,....t;—1 and vj=1,

where t; = rank ¢;.

On the other hand, according to Popescu and Roczen [5, Lemma 2.2], Ques-
tion 2 has a weaker solution.

THEOREM 2. Let (R,m,K) be a d-dimensional reduced complete Coher—
Macaulay (CM) local ring containing a field and let I(R) be the ideal defin-
ing the singular locus of R. Assume that K is perfect. Then there is a positive
integer k such that I,(R)* Exth(M, N) = 0 for any finitely generated R-mod-
ules M and N, with M a maximal CM module.

Here, a finitely generated module M over a CM ring R is called a maximal
CM module (MCM) if depth M = dim R.

We should remark that the proof of Theorem 2 given in [5] was not quite
correct. However, the theorem remains valid and we shall give a complete
proof in section 5.

The main results of this paper are as follows.

1. If R is a CM ring and J is the Jacobian ideal of R, then

JExt¢t' (M,N)=0

for every pair of finitely generated R-modules M and N. Moreover, if M isa
finitely generated R-module having a well-defined rank and (F., ¢.) is any
finitely generated free resolution of M, then
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(fJ—I)JI,(¢J)§I,+1(¢J) Vi=0,...,tj—1 and vj=d+1,

where ¢; = rank ¢;.
2. If R is equidimensional and either char K = 0 or K is perfect, then there
exists an integer k such that:

(a) J¥Ext4* (M, N) =0 for every pair of finitely generated R-modules
M and N; and
(b) if M is a finitely generated R-module having a well-defined rank and
(F., ¢.) is any finitely generated free resolution of M, then
(5= () S L1 1($) Vi=0,...,5;—1 and Vj=d+1,

where ¢; = rank ¢;.

1. Characterization of ann, Exth(M, -)
and anng Tor (M, -)

Let R be a commutative ring. Then it is well known that projective mod-
ules are flat and that finitely presented flat modules are projective. In other
words, for an R-module M, we have:

(1) if Extk(M, -) = 0 then Tor{(M, -) = 0;
(2) if Torf(M, -) = 0 and M is finitely presented, then Extk(M, -) = 0.

In what follows, we shall generalize statements (1) and (2).
We begin this section by proving the following two lemmas.

LEMMA 1.1. Let R be a commutative ring and M an R-module with free
presentation F 2, G— M—0. Let xe R be such that x Exth(M, -) =0.
Then there is a R-homomorphism : G — F such that ¢oy o = x¢.

Proof. Let A and i be the canonical homomorphisms in the following dia-
gram:

F*G—M—0
AN Ai
Im ¢.
Consider the short exact sequence
0— Im¢ > G — M —0.
Applying *:= Homg(-, Im ¢), we obtain the exact sequence
Homg(G, Im ¢) ~—> Homg(Im ¢, Im ¢) = Exth(M, Im ¢) —> 0.

If x Extp(M, -) = 0 then 7 (xl;,4) =0, and so there is a j € Homg(G, Im ¢)
such that jei = x1j;, 4. Further, since G is free, there is a Y € Homg(G, F)
such that Ay = j. Consequently,

¢°¢°¢=i°A°¢/°i°A=i°‘]‘°i°/\=X(i°A)=x¢. O
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LEMMA 1.2. Let R be a commutative ring and M a finitely presented R-mod-
ule with a finite free presentation F 2> G "> M. Let M’ = coker ¢*, where
*:=Homg(-, R). Then Tor{(M, M’) = Homg(M, M)/{f e Homyj(M, M) | f
Jactors through a finite free R-module).

REMARK 1.3. Let K denote the set { fe Homp(M, M)| f factors through a
finite free R-module} and K’ the set { fe€ K| f factors through R}. Then it is
easy to check that K is a submodule of Homg(M, M) and that K can be
generated by K’ as an R-module.

REMARK 1.4. If M;, M, are R-modules, then for R-modules
Homg(M,, R)®rM, and Homg(M,;, M;)

there is a natural homomorphism 6: Homg(M,, R) ®g M, - Homz(M,, M,)
such that for ge Homgz(M;, R), xe M,, and y € M; we have 8(gQx)(y) =
g(y)x. Moreover, if M, is a finite free R-module then 6 is an isomorphism.

The proof given below is similar to the one given in [7, Lemmas 3.8 & 3.9].
Proof of Lemma 1.2. Consider the following exact sequence induced by the
presentation of M:

0 — Homg(M, R) = Homg(G, R) £ Homg(F, R) — M'— 0.
Then, applying ®z M, we obtain a complex

Homg(M, R)®z M =2 Homg(G, R)®x M
2O, Homg(F, R) Qg M — M'Qg M —> 0.
Hence, by the definition of Tor¥, Torf(M, M’) = Ker(¢*®1,,)/ Im(n*®1,,).

Furthermore, by Remark 1.4 there are R-homomorphisms §;, 1 =1,2,3,
which make the following diagrams commute:

Homg(M, R)@x M 2% Homg(G,R)@zxM L2 Homg(F,R)QxM

lel laz le,

0— Homgp(M,M) 222M, Hom(G,M) 22CM,  Homg(F,M)

As 0, and 6, are isomorphisms (since F and G are finite free R-modules) and
the bottom row of the previous diagram is exact, it follows that

Ker(¢p*®1,,)/Im(7*®1,,) = Ker(Hompg(¢, M ))/Im(050(7* Q1))
= Ker(Hompg(¢, M))/Im(Hompg(w, M)<0))
= Homgz(M, M)/Im6,.

However, Im 8, is the submodule generated by the elements of K’. Therefore,
by Remark 1.3, Im 6, = K and the assertion follows. O

Using Lemma 1.1 and Lemma 1.2, we are able to show the generalization of
the facts stated in the beginning of this section.
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PRropPOSITION 1.5. Let R be a commutative ring, M an R-module, and x € R.
Then the following statements hold:

(1) if x Exth(M, -) = 0 then x Tor{{(M, -) = 0;

(2) ifx Torf(M, -) = 0 and M is finitely presented, then x Exth(M, -) = 0.

Proof. Let (F., ¢.) be a free resolution of M with n: F;— M the augmenta-
tion map.

If x Extk(M, -) = 0 then, by Lemma 1.1, there is a R-homomorphism
Fy— F|such that ¢,°y,e¢; = x¢;. Hence inductively, by using the projectiv-
ity of F;_,, we can construct R-homomorphisms y¢;: F;_;—»F;, i=1,2, ...,
such that x1g, = ;o ¢;+ ¢;4 12 ;4 foralli = 1. Thus x TorR(M, -) = 0 for all
i=1.

Conversely, if M is finitely presented and x Tor{(M, -) = 0, then by Lem-
ma 1.2 x1,, can be factored through a finite free R-module. More precise-
ly, there are free R-modules R” and R-homomorphisms o: M — R" and 3:
R" — M such that Bea = x1,,. Moreover, since R" is free and F,— M is onto,
there is a R-homomorphism A: R"” - F;; such that wecA=0. Let 7 = Aeq;
then it is easy to see that wen = xl,, and wenew = X7, so that by the pro-
jectivity of F;_, we may construct y;: F;_; > Fj, i =1,2, ..., such that x1g =
7]°7T+¢1°I//1 and XIF‘ = \/’i°¢‘i+¢i+l°¢i+l foralli=1. ThUSXEXt;g(M, —) =0
foralli=1. ]

In fact, the proof shows more.

COROLLARY 1.6. Let R be a commutative Noetherian ring and M a finitely
generated R-module. Then the following hold:

(1) anng Ext}}(M, -) € anng Ext,’é(M, -)forall j=i=1;
(2) if My is afirst syzygy of M, then anng Exth(M, -) = anng Exth(M, M;).
(3) if M is finitely generated, then anng Exth(M, -) = anng Tor{(M, -).

The next corollary is an immediate consequence of the previous proposition.

CoROLLARY 1.7. Let R be a Noetherian ring and M a finitely generated R-
module. Let x€ R be such that M, zs projective. Then, for some integer n,
x" Exth(M, -) = 0 and the map M 2~ M factors through a finitely generated
free R-module.
Proof. Let M, be a first syzygy R-module of M; then

(Extz(M, M\)), = Extk (M, (M),) =0.

Hence there is an integer n such that x” Extk(M, M;) = 0. The rest follows
from Lemma 1.2 and Corollary 1.6. O

2. anng Ext}(M, -) and the Fitting Ideal of M

In this section, we will extend Theorem 1 by showing that if M has a well-
defined rank then the conclusion remains valid for 7 = anng Extk(M, -), and
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we will see at once that Question 2 is essentially stronger than Conjecture 1.
However, before doing so, let us give more applications of Corollaries 1.6
and 1.7.

PRroPOSITION 2.1. Let (R, m) be a d-dimensional complete Noetherian local
ring, I,(R) the ideal defining the singular locus of R, and M a finitely gen-
erated R-module. Then there exists an integer k such that

L(R)XExt4tY(M, -) = 0.

Proof. We may assume that /,(R) S m and that d is positive; otherwise, the
result is obvious. Let M; denote an ith syzygy module of M. Then, for all
xeI(R), (M,_,), is projective since R, is a regular ring of dimension <
d—1. Hence, by Corollary 1.7, a certain power of x kills Ext4(M, -) =
Extk(M,_,, -); there is therefore an integer & such that I,(R)* Ext(M, -) =
0. Thus, by (1) of Corollary 1.6, we have I,(R)* Ext3*(M, -) =0. O

REMARK 2.2. The proof in fact shows that if R is not regular then, for
any finitely generated R-module M, there exists an integer k£ such that
L(R)*Ext4(M,-) = 0.

PROPOSITION 2.3. Let R be a complete local CM ring, I.(R) the ideal defin-
ing the singular locus of R, and M a finitely generated maximal CM module.
Then there exists an integer k such that I,(R)* Exth(M, -) = 0.

Proof. Let xe I(R); then Rp is regular for any P e Spec(R,), so that the
MCM Rp-module Mpis free and hence M, is projective. Therefore, by Cor-
ollary 1.7, a certain power of x kills Extk(M, -). Thus, since I,(R) is finitely
generated, I,(R)* Extk(M, -) = 0 for some k. O

The preceding proposition is indeed the same as [5, Lemma 2.1]. However,
the original proof given in [5] did not touch the real point.
We now turn to our goal of this section.

ProposITION 2.4. Let R be a Noetherian ring, M a finitely generated R-
module, and xe R. Suppose that M has a well-defined rank and that
x Exth(M, -) = 0. Then, for any finitely generated free resolution (F., ¢.) of
M, we have (t;—i)xIi(¢;) S I;+1(¢)) forall i =0, ...,t;—1 and for all j = 1,
where t; = rank ¢;.

For the proof we need the following lemma.

LEMMA 2.5. Let R be a commutative ring and x € R. Let ;€ Homz(R", R%),
¢, € Homg(R",R™), ¢, € Hompg(R*, R™), and V,e Homg(R™, R") satisfy
the following conditions:

(1) @io0,=0;

(2) ¢1°¢1+¢2°¢2 == lem; and

(3) trace(¢,0y,) = tx for some integer t.
Then (t—i)xI;(¢,) S I;1(¢,) foralli=0,...,t—1.
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Proof. See [2, Theorem 1.1]. O

Proof of Proposition 2.4. Let (F., ®.) be a finitely generated free resolu-
tion of M and let F,—— M be the augmentation map. Let xe R be such
that x Exth(M, -) =0; then, by (3) of Corollary 1.6, x Tor{(M,-) =0,
so that by the proof of Proposition 1.5 there exist ;: F;_, — F;and n: M -
Fy such that wen =x1y, Xlg,=nem+¢°y, and X1g = Yo d;+ ;11094
for all j = 1. Therefore, by applying the above lemma, it remains to show
that trace(¢;°y;) = ¢;x for all j = 1. However, M has a well-defined rank,
and we see that, for all j = 1, ¢;+¢;, | = rank(F}) and

rank (Fj) x = trace(¢;oy;) + trace(d; 1°¥;+1);
thus it 1s sufficient to show

trace(o o y;) = £ x.

To see this, let W= R\Upcass(r) P; then My, is free and trace((new)y) =
rank(My)x in Ry, so that trace((¢;°¥;)w) = rank(Fy) x—trace((nem)y) =
rank(Fp)x—rank(M)x = (£;x)w in Ry,. Because W consists of non-zero-
divisors, we conclude that trace(¢,°y;) = £, x. Ll

COROLLARY 2.6. Let R be a d-dimensional Noetherian local ring, I,(R) the
ideal defining the singular locus of R, and M a finitely generated R-module.
Suppose that M has a well-defined rank. Then there is an integer k such that,
forall xe I(R) and for any finitely generated free resolution (F., ¢.) of M,
(ti—=)xI(¢)) € I;11(9;) forall i =0, ...,t;—1 and for all j = d+1.

Proof. From Proposition 2.1, we know that there exists an integer kX such
that I,(R)* Ext4*!(M, -) = 0. Therefore, by applying Proposition 2.4 to the
d-syzygy R-module of M, we obtain the result. O

To end this section, we give the following example.

ExaMmpPLE 2.7. Let K be a field, A=K|[| X, ..., X,,|1, and R = A/(f). Then
J Exth(M, -) =0 for any MCM module M, where

af af
== .. R.
/ (aX1 aX,,)

Proof. Let M be a MCM module; then from [1] it is known that M has a
free resolution of the form

S RERSR M—0

such that there are li~ft~ings B and € of B and C respectively in A with the
property that BC = CB = fI,, where I, denotes the 7 X ¢ identity matrix. Let
denote d/9.X;; then B'C+ BC’= f'I,, so that in R we obtain a homotopy

—+R RS R SM—0
Sy | I By
— R' > RS R — M — 0;

hence f'Exth(M, -) = 0 and therefore J ExtL(M, -) = 0. 0O



594 Hsin-Ju WANG

3. One-Dimensional Case

Let (R, m) be a 1-dimensional complete Noetherian local domain, let R de-
note the integral closure of R, and let € = {re R|rR < R} the conductor of
R into R. Then, by a theorem of Lipman and Sathaye [3, Thm. 2], it is
known that if R contains rational numbers then the Jacobian ideal J of R is
contained in €. Thus it seems appropriate to ask whether € Ext3(-, -) = 0.
This indeed is true, even when R is reduced.

ProposiTION 3.1. Let (R, m) be a 1-dimensional reduced complete Noethe-
rian local ring, R the integral closure of R in the total quotient ring of R,
and § the conductor of R into R. Then CExth(M, -) =0 for any finitely
generated MCM module M.

Proof. We break the proof into two parts.

Step 1: Let M be a finitely generated R-module having a well-defined
rank; we shall show that € Ext3(M, -) = 0. For this, let

o R RTALRT M0 )

be a finitely generated free resolution of M, where A and B are matrices
representing the corresponding boundary maps. Because ®z R is right exact,
we have the exact sequence

R" 2, R" — M®z R— 0.

Note that, for any maximal ideal P in R, Rpis a discrete valuation ring and
so (Im(A®gR))p is free. Moreover, since M has a well-defined rank and R
is semilocal, it follows that Im(A®g R) is free. Hence there exist a free R-
module R” and a matrix B’ such that

0—R B R A R" ~ M®RR—0 )

is exact, and it is then easy to see that r = rank B’=rank B < fand I,(B’) = R.

Let xe €. Then, to show xExt3(M,-) =0, it suffices to show that
xAExti(M,-) =0 for any rxr minor A of B’ as I,(B') = R; or (equiva-
lently) we must show that for any » X r minor A of B’ there exists a matrix D
with entries in R such that BDB = xAB (see the proof of Proposition 1.5).
Write B’ = (3%), where By is a matrix consisting of the first r rows of B
Then, without loss of generality, we need only prove the case when A is the
determinant of B,.

Now, by the exactness of (2) and the fact that AB =0, there is a matrix
U’ with entries in R such that B = B'U". If we write B = (¥), where U is &
matrix consisting of the first » rows of B, then U = ByU’ and we therefore
obtain

XAB=xAB'U’ =xB'AU’'=xB’(ad) Bg) BoU’ = xB’(adj By)U. (3)
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On the other hand, since the entries of xB’(adjBy) are in R and since
AxB’(adj By) =0, from the exactness of (1) there is a matrix Y with entries
in R such that

xB’(adj By) = BY. 4
Together (3) and (4) yield

xAB=BYU = B(Y |0)(¥) = B(Y | O)B.
Thus, by setting D = (Y | O), we complete the proof of x Ext3(M, -) = 0.

Step 2: Let M be a finitely generated MCM module; then there exists an
element y € m such that y is a non-zero-divisor on M. Note that R is reduced
and hence Rp is a field for all Pe Min(R), so M, is locally free as a R,-
module and is therefore projective. Thus, by Corollary 1.7, thereisan ne N
such that y" Exth(M, -) = 0.

We now consider the short exact sequence

0— M5 M — M/y"M — 0.

Let N be any R-module. Then, by applying Homg(-, N), we obtain a long
exact sequence

. — Exth(M, N) X> Exth(M, N) — Ext3(M/y"M,N)—> ---;

therefore, since the first map is 0, Extk(M, N) is isomorphic to a submodule
of Exti(M/y"M,N). Moreover M/y"M has a well-defined rank 0, so by
step 1 we get € Ext3(M/y"M, N) = 0. Finally, as N is arbitrary, we conclude
that € Exthk(M, -) =0. O

COROLLARY 3.2. Let (R,m) be a 1-dimensional reduced complete Noe-
therian local ring. Then € Ext3(M, -) = 0 for any finitely generated R-mod-
ule M.

Proof. Let M be a finitely generated R-module and M, a first syzygy R-
module of M. Then, since R is CM, M, is a MCM module. It follows from
Proposition 3.1 that € Ext3(M, -) = € ExtL(M,, -) = 0. O

CoOROLLARY 3.3. Let (R, m) be a 1-dimensional reduced complete Noethe-
rian local ring and M a finitely generated R-module. Suppose M has a well-
defined rank. Then, for any finitely generated free resolution (F., ¢.) of M,

(tj—i)@I,((,bJ) c I,'+1(¢j) Vi= O, eesy tj—l and Vj = 2,
where t; = rank ¢;.
Proof. By Corollary 3.2, € Ext4(M, -) = 0. Therefore, by applying Propo-

sition 2.4 to any first syzygy R-module of M, we obtain the desired result.
O

The previous corollary, however, can be improved in the case when R is a
domain.
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ProrosiTION 3.4. Let (R, m) be a 1-dimensional complete Noetherian lo-
cal domain and M a finitely generated R-module. Then, for any finitely gen-
erated free resolution (F.,¢.) of M, CI;(¢;) € I;\(¢)) foralli=0,...,1;—1
and forall j = 2.

LEMMA 3.5. Let R be a commutative domain, I an ideal of R, and Be
M, ,(R) of rank r. Suppose that for each xel there are matrices Y, €
M,y (R) and W, e M,_, x,(I) such that BY, = ( ) where I, denotes the

rXr identity matrix. Then

[I,(B)QIH_](B) Vi=0,1,...,r—1.

Proof. Let us write B = (), with U = (u;;) € M, ,(R) and with V = (v;)) €

M(n—r)xt(R), and set
UlxI,
Be= (Vf—w)'

Note that the columns of (37~) are generated by those of (¥), so I;(B,) =
I;(B) for all i and for all xe I in particular, I € I,(B). Moreover, since for
eachxelandl=<si<r-—1

Uiy ... Uy 0
Uy ... Uy . .. . .
xdet| : .. i | =det € I;11(By) = Ii11(B),
Ui coe Ui 0
Uy ... U
Uit oee Uig1,i X

we have IT;(U) € I; . ((B).

If r =1 then the assertion is obvious because 7 € I;(B). Hence we may
assume r = 2. Let 1 < i< r—1. Then to show the lemma it is enough to show
that /det C < [;,(B) for any i X i matrix C of the form

' N

Ujik, -+ Ujk,

C = ujskl ujs‘kl
’

v"?]kl vmlk,
Uik, - Uik,

where s+/=1i. We shall proceed by induction on /. If /=0 then IdetC <
II(U) C I; . (B), from the above discussion. If / = 1, we let x € I and assume
for simplicity that
~
Uy ... ul,-w

Ugy ... U
vy ... Uy

LU[] 1)1,'_)
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we further set

s 7
U Uy 0
Ug) Usi 0
D= sy oo Usyr,i X
Uit .ee Vi Wy sq
L Un e Ui Wisyr
Then D isa (i+1) X (i+1) submatrix of B,, hencedet De I;, (B,) = I;;1(B).
Furthermore, let A}, ..., A; be the iXi minors of D corresponding to

Wi, s+1s +--s Wi s41. LDEN, SINCE Wy g4, ..., Wy 54 €1, by induction w; ;,,4A€
I (B) forall j=1,...,/, and consequently we have xdetCe [;, (B). U

Proof of Proposition 3.4. Adopting the proof of Proposition 3.1, we know
that I,(B’) = R. Since R is local, some of the r X r minors of B’ are units;
thus we may assume that B’ is of the form (%‘l’) with By = I,. It follows that
B = B'U, and for each element x € € there is a # X r matrix Y, such that xB’' =
BY,. If we set W, = xB,, then W, e M, _,,(€) and the condition Y, = (f,f)
in the lemma is satisfied, so that the assertion follows. E]

4. Jacobian Ideals and Jacobian Criteria

In view of Example 2.7 and Proposition 3.1, we realize the importance of
having a regular local ring (RLR) related to a given ring, because every
module over a RLR has finite projective dimension. In this paper, as we are
concerned with complete Noetherian local rings, the candidates of RLRs are
obvious.

DEFINITION 4.1.  Let (R,m,K) be a d-dimensional complete Noetherian
local ring containing a field. A RLR 4 of the form K[| X, ..., X,|] is called
a (Noether) normalization of R if A € R and R is finite over A.

By the Cohen structure theorem, if xi, ..., x;is a system of parameters (s.0.p.)
of R then K[|xy, ..., x,4|] is a normalization of R; in fact, every normaliza-
tion of R can be constructed in this way.

In order to establish our main results, we are obliged to develop in this
section some properties about Jacobian ideals, especially those which are
related to normalizations. To attain this aim, we first study the relation be-
tween the Jacobian ideals and the following ideals.

DEFINITION 4.2. Let A be a Noetherian ring and R a finitely generated A-
algebra. Let R = Al X,, ..., X,1/(f1, ..., f;) be a presentation of R over A.
Then the ideal in R generated by the n» X n minors of the Jacobian matrix
(0f;/0X;) is called the Jacobian ideal of R over A, denoted Jg 4.
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LEMMA 4.3. Let (R,m, K) be a d-dimensional complete Noetherian local
ring containing a field, and let J be the Jacobian ideal of R. Then J =3, 4 Jg /45
where the sum is over all normalizations of R.

Proof. To show J 2 Jg,4, let A=K]|Y},...,Y,|] be a normalization of R
and R = A[X,, ..., X,1/(fis ..., ). Then R =K[|Yy, ..., Yy, Xps - ., X[V
(f1, ..., f7). Since the height of (f}, ..., f;) in K[|Y), ..., Yy, X}, ..., X,|1 is n,

fi (S -+, 1) )
Jra=I,| — |R S |, R=J.
Ria "<3X]) n(a(Xl’---ans Yls---sYd) /

Conversely, let n = u(m)—d; then by prime avoidance, we can choose a
minimal set of generators xy, ..., X4, such that (x;, ..., x; ) is a s.o.p. of R
whenever 1<ij<i,<--<ig=n+d. Let R=KI[| X}, ..., Xp1a|)l/(f15-» [
be a presentation of R such that the image of X;in R is x; for all /, and let
A;, ...i,=KI[|Xj, ..., X; |]. Then it is easy to check that

J=2h<i<<igsnralrsa, ., - U

If in the previous lemma, V7 happens to be the defining ideal of the singular
locus of R, then the conclusion simply says that if P is a regular prime ideal
then there exists a normalization A of R such that Jg,, ¢ P. However, in
order to obtain the main result about non-CM rings, we must find for each
regular prime P a normalization A of R satisfying not only Jg,4 ¢ P but also
that Rpn 4 is CM. Fortunately, this can be done when R contains rational
numbers.

ProrosiTION 4.4. Let (R, m, K) be a d-dimensional complete Noetherian
local ring containing Q and let J be the Jacobian ideal of R. Let Pe
Spec(R) —{m} be such that Rp is regular. Then there is a normalization A of
R such that (1) Jg,4 @ P and (2) Rpn 4 is CM.

Proof. Let PeSpec(R)—{m} be such that Rp is regular, and let I, be the
ideal defining the non-CM locus of R; that is, Iy = (g espec(r)|R oisnotem) @-
Then I, is not contained in P or in any minimal prime ideal, and we can
choose x € Ip\Ug ¢ min(r) QU P. Assume that ht P = h. Then by prime avoid-
ance we can further choose xy, ..., x; € P so that

(i) ht(xg,...,x;)=i+1foralli=<h and

(Ii) (x], ...,Xh)Rp = PRP
This is possible because for each i/ we can choose x; € P which is neither in any
minimum prime over (X, ..., X;—;)R nor in the ideal P®+(x,, ..., x;_;)R.
(One should notice that, by the choice of x;, P is not in the union of the
minimum primes of (X, ..., x;_;)R.) Now extend Xy, ..., X; t0 2 5.0.p. Xy, ...,
Xy and let A = K[| xo, ..., X;_1]]; then we are done if we can show that 4
satisfies (1) and (2). Condition (2) is immediate, since xo ¢ PN A and x, € 1.
As for (1), let R = A(Y,,...,Y,1/(f3, ..., f;) be a presentation of R over 4
and R'= R,/qR,, where g = PN A. Then R’ =«k(g)[ Y}, ..., Y, )/ (f1, .., [D)-
Since R’ is finite over «(g), dim R’=0, so the height of (f}, ..., f;) in
k(LY ..., Y,]) is n. Furthermore, by (ii) we have
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(X1, -y Xp)Rp € qRp S PRp = (X4, ..., Xp)Rp,

hence Rp = Rp/qRp = Rp/PRp = «k(P) is a field and therefore 0-smooth
over k(gq) because char R = 0. Thus, by [4, Thm. 30.3], 1,(df;/dX;)R'¢ PR/,
which is equivalent to saying that J,,4 € P. |

If one applies the above proof to the case when char R = p then the only
apparent problem is that x(P) is not smooth over «(g). To conquer this
difficulty, we add some mild conditions on R.

ProprosITION 4.5. Let (R,m, K) be a d-dimensional complete Noetherian
local ring containing a field. Assume that R is equidimensional, char K = p,
and K is perfect. Let P € Spec(R) —{m] such that Rp is regular. Then thereis
a normalization A of R such that (1) Jg;u € P and (2) Rpn 4 is CM.

As the proof requires knowledge of universal-finite modules, we should
postpone it for the moment. At present we would like to give the definition
of universal-finite module and list some properties related to it. For some of
the proofs, we refer to [6].

DEerINITION 4.6. Let K be aring and R a K-algebra. A K-derivation R - M
is called finite if M is a finitely generated R-module; a finite K-derivation
dr/k: R — Dg(R) is called universal-finite if for any finite K-derivation 6:
R — M there exists a R-homomorphism 4: Dg(R) — M such that § = hedpg .
If dp/x exists then we call dgp/k the universal-finite derivation of R over K
and Dg(R) the universal-finite module of R over K.

REMARK 4.7. If dg/ exists then it is unique up to isomorphism, and
Dg(R) = Rdg/k(R).

ProrosITION 4.8. Let K be a valuation field and R a local analytic K-alge-
bra. Then the universal-finite derivation of R over K exists.

REMARK 4.9. Here, an analytic algebra R over a valuation field K is de-
fined to be a finite algebra over a convergent power series ring (see [6]).
In particular, any complete Noetherian local ring containing a field is an
analytic algebra with trivial valuation.

ProrosiTioN 4.10. Let (R, m) be a Noetherian local K-algebra, P € Spec(R),
and S = R/P. Assume that dg g exists. Then ds,x exists and Dg(S) = Dg(R)/
(Rdg/k(P)+ PDg(R)).

Proof. Let M = Dg(R)/(Rdg,x(P)+ PDyg(R)). Then M is a finitely gener-
ated R/P-module and there is a natural K-derivation d: S — M which sends
a+P to dg/xka+ Rdg,x(P)+ PDg(R) for all ae R. Therefore we have the
following commutative diagram:

R = S
dr |, ld
Dg(R) ™ M,

where 7 and =’ are the canonical surjective maps.
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Let 6: S— N be any finite K-derivation. Since N is finite as a R-module,
6om: R— N is a finite K-derivation and so, by the definition of dy/k, there
is a R-homomorphism /: Dg(R) — N such that é6en = hodg/. Note that
h(PDg(R)) € PN =0 and h(dg,x(P)) = 6°w(P)=0; hence 4 induces a S-
homomorphism 4’: M — N such that & = h’-x’. It follows that

(h’°d—5)°7l' =h'odemr—ben =h’°7l"°dR/K_'6°7l' =h°dR/K'—5°7l' = 0.

Since = is surjective, h’d = 6. Thus we conclude that d: S — M is the uni-
versal-finite derivation of S over XK. 0

COROLLARY 4.11. Let (R, m) be a reduced Noetherian local K-algebra. As-
sume that dg g exists. Then, for all Pe Min(R),

Dg(R/P)p = Dg(R)p.

Proof. Let Pe Min(R). Then, from Proposition 4.10, to show the assertion
it suffices to show that (PDy(R))p = (Rdg/,x(P))p = 0. Since R is reduced,
PRp =0, so (PDg(R))p =0. On the other hand, let a ¢ P be such that aP =
0; then, for any xe€ P, adg/;xx+ xdg,xa =0, so that dp/x(x)Rp =0 as
XdR/K(a)Rp = (0 and GRP = Rp. Therefore (RdR/K(P))p =0. O

DEerINITION 4.12. Let K be a valuation field and R a d-dimensional local
analytic K-algebra. Assume R is reduced and equidimensional. Then a s.0.p.
X1, ..., Xz of R is called separable if the total quotient ring of R is separable
over the quotient field of K[|xy, ..., x4|].

PRrOPOSITION 4.13. Let K be a valuation field and R a d-dimensional local
analytic K-algebra. Assume that R is a domain with quotient field L and
that x,, ..., xzis a s.o.p. of R. Then x, ..., x, is separable if and only if

(Dg(R)/(Rdg/k X1+« + Rdp/k x4))®r L = 0.

THEOREM 4.14. Let K be a valuation field and R a d-dimensional local
analytic K-algebra. Assume R is reduced and equidimensional. Then:

(1) R has a separable s.o0.p.

(2) Let xy,...,x; be as.o.p. of R; then x,, ..., x4 is separable if and only
if (Dg(R)/(Rdg/xx1+ -+ +Rdg,xxq))p =0 for every minimal prime
ideal P.

Proof. (1) follows from [6, Lemma 7.2]. As for (2), let F be the quotient
field of K[| x, ..., X4|1, Min(R) = {P, ..., P}, and Rp = K;. Then, by Defini-
tion 4.12, we know that x, ..., x; is separable if and only if K; is separable
over F foralli =1, ..., t. Further, let R; = R/P;and h;: R — R; be the canoni-
cal maps; then (by Definition 4.12 again) we see that K; is separable over F
and A;(x;), ..., hj(xy) is a separable s.0.p. of R; are equivalent. Furthermore,
by Proposition 4.13, the latter is equivalent to saying that

(DK(Ri)/(RidR,/K(hi(xl)) + - +RidR,/K(hi(xd))))P, =0.
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However Dg(R;)p, = Dg(R)p by Corollary 4.11 and we have the following
commutative diagram:

R In R/, — Rp

drix l l dr,/x l

Dg(R) — Dg(R/P;)) — Dg(R)p.
Thus we conclude that xy, ..., x, is separable if and only if
(DK(R)/(RdR/le +--- +RdR/KXd))p, =0 vi=l1,...,t td

Now, we are ready.

Proof of Proposition 4.5. Let Pe Spec(R)—{m} and ht P = A; then, ac-
cording to the proof of Proposition 4.4, we can choose x;, X, ..., X, so that:
(i) ht(xg,...,x,) =h+1;

(i1) (xy,...,x,)Rp = PRp; and

(iii) xge IoNm, where I is the ideal defining the non-CM locus of R.
Let Min(R/(xy, ..., X3)R) ={Q,, ..., Q;} and R; = R/(Q;N---NQ;). Then,
since R is equidimensional and catenary, and since xj, ..., X, is part of a
s.0.p. of R, R, is equidimensional and reduced; thus, by Theorem 4.14, R,
has a separable s.0.p. ¥y, ..., ¥4_p such that

(Dx(R)/(Rydr g1+ -+ + Ridr ik Ya-1))g, =0 Vi=1,..,s.

Let x be the image of x; in R; then, by condition (i), x is a non-zero-divisor
on R;. We claim that there is a separable s.0.p. yi, ..., ¥j_, of Ry with y{=x7"y,.
To see this, let y{ = x?y, and choose y; as follows: Let Py, ..., P;, P;, 1, ..., P
be minimal primes over y{such that y,e P/N---NP;and y, ¢ P;,;U---UP;
then we may choose y; = y,+2”, where zemN P, N---NP\P,U---UP,
It is obvious that (yi, ¥3)R’ is a height-2 ideal and that dg ,xy5 = dg /x>-
Similarly, we can construct 3, ..., y5_p such that dg /x (¥/) = dg,x y; for all
i=2,...,d—handyj,..., yg_pis as.o.p. of R,. Finally, since dg /x(x*y,) =
xPdpg,/xy, and x? is a non-zero-divisor on Ry, (R,dg /x¥1)g, = (Ridg,/x Y1),
for every i; hence

(Dx(R)/(Rydg,xyi+ -+ +Rdg xYi-1n)o,=0 Vi=1,...,s5,

and it follows from Theorem 4.14 that yj, ..., y;_,is a separable s.0.p. of R,.

Now we may lift yy, ..., yj_,to 24, ..., 24—, in R such that z;e I; let A =
K| X15 «ovs Xns 215 ...sZqa—p|]. It remains to show that A satisfies (1) and (2).
Letg=PNA;thenqg=(xy,...,x;)A. This is because R/P is finite over A/q
and

h=htg=d—dimA/g=d—dimR/P=htP=h.

Therefore (2) is obvious, as z;e€ Iy and z;¢ g. As for (1), let R, =R/(xy, ..., Xp);
then, by condition (ii), (R,)p = (Ry)p = «(P) which is, by the definition of
separable s.0.p., separable over k(g). On the other hand, let

R =A[U1, ceey Un]/(fis 9f1)
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be a presentation of R over A. Then

R2=K[|Z1, cuey zd—hl][Uls ceey Un]/(fls seny f})
and

(RZ)q = K(q)[Uls sees Un]/(fls ---yft);

hence, by [4, Thm. 30.3] and the fact that (R,)p is separable over «(g), we
get 1,(3f;/0U;)(Ry)q & P(R3)q. Thus 1,(3f;/0U;) R, € PR,, and assertion (1)
follows. 0

S. Main Theory

We shall prove our main results of this paper and in so doing will see that
the conjecture holds when R is CM of characteristic 0.

THEOREM 5.1. Let (R, m, K) be a d-dimensional complete CM local ring
containing a field, let J be the Jacobian ideal of R, and let M be a finitely
generated R-module. Suppose M has a well-defined rank. Then, for any fi-
nitely generated free resolution (F.,¢.) of M,

(tJ—I)JI,((bj) - It+l(¢j) Vi = 0, ceey tJ'—l and Vj = d+1,
where t; = rank ¢;.

THEOREM 5.2. Let (R,m,K) be a d-dimensional equidimensional com-
Dplete Noetherian local ring containing a field, and let J be the Jacobian ideal
of R. Assume that either char K =0 or K is perfect. Then there exists an
integer k such that, for any finitely generated R-module M having a well-
defined rank and for any finitely generated free resolution (F.,¢.) of M,

;=) J*I($)) S L1 ((¢)) Vi=0,...,t;—1 and Vj=d+1,
where t; = rank ¢,.

According to Proposition 2.4, to show the above two theorems it suffices to
show the following theorems.

THEOREM 5.3. Let (R, m, K) be a d-dimensional complete CM local ring
containing a field, and let J be the Jacobian ideal of R. Then J Ext4+*\(M, -) =
0 for any finitely generated R-module M.

THEOREM 5.4. Let (R,m,K) be a d-dimensional equidimensional com-
plete Noetherian local ring containing a field, with J the Jacobian ideal of
R. Assume that either char K = 0 or K is perfect. Then there exists an integer
k such that J*Ext4* (M, -) = 0 for any finitely generated R-module M.

First we give a definition.

DEFINITION 5.5. Let A be a commutative ring and R an A-algebra. Let R¢
denote the envelope algebra RQ 4 R and let p.: RQ 4 R — R be the augmented
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map defined by u(x®y) = xy for x, y € R; let I be the kernel of n. Then the
Noetherian different ideal of R over A, denoted %, is the ideal p(annge I).

We now prove some useful lemmas about 91X.

LEMMA 5.6. Let S be aring, I an ideal of S, and R = S/1. Then
(anng I) Ext{(R,-) = 0.

Proof. Let w: S— R be the canonical surjective map. Then, from the short
exact sequence

0—I—S-—>R—0,

we know that as an S-module 7 is a first syzygy module of R. Hence, by
Corollary 1.6,

anng Exty(R, -) = anng Exty(R, ) 2 anng /. O

By applying this lemma to the case when S = R we obtain the following
corollary.

COROLLARY 5.7. With the same notation as in Definition 5.5,
(annge I) Extke (R, -) = 0.

LEMMA 5.8. Let A be a Noetherian ring and R a finitely generated A-alge-
bra. Then Jg,4 < NEK.

Proof. Let R =AlX,, ..., X,)/(f1, ..., f;) be a presentation of R over A.
Then the module of differentials Qz,4 = R"/X3f;/0X;>; =1, ...,1,j=1,...,n» 5O that
Qr,4 has the following presentation:

1 8f,73X)

R Rn—>QR/A—’0.

Let I be the kernel of the augmented map p. Then 7 is generated by 1&Q x;—
x;®1 as a R®-module, so that I has a presentation of the form

(Re)s 82, (Rey" — 1—> 0.
Since Qg4 = I/1%, by @z R we get another presentation of Qg /4:
RSM Rn‘—’ QR/A — 0.

Therefore, by the invariant property of Fitting ideals, we get I,(n(g;))R =
In(I?ﬁ/an) = Jr/a- Because I,(g;)I =0, Jp=p(l,(g;) S planng. ) =
3. O

ProrosiITION 5.9. Let A be a Noetherian ring and R a finitely generated A-
algebra. Then, for any finitely generated R-modules M and N,

9% ann 4, Ext4(M, N) € anng Exth(M, N).

We now need a couple of lemmas.
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LEMMA 5.10. Let S be a Noetherian ring, I an ideal of S, and R = S/1. Let
M, —‘b-»Mz—'—p»M3 be a complex of S-modules and . := Homg(R, -). Then
there are two short exact sequences,

Ker . Homg (R, Ker ) 0

Im (,f)* HOms(R, Im ¢)

O“_>C]*"’

and

. Homg(R, Ker ) Kery
Homg(R, Im ¢) " Imé¢

such that Cy and C, are both killed by anng I as S-modules.

0 ———+HomS<R )——>C2—>O,

Proof. Let I be the kernel of the canonical map n: S — R. Notice that, for
any S-module M,

Homg(R,M) ={xeM|xI =0}

is a R-module; the S-module structure that comes from being a submodule
of M is the same as the one via . Also, for any S-homomorphism f, f, =
Homg(R, f) is a R-homomorphism; hence, in particular, ¢, and ¢, are R-
homomorphisms. Now, factoring the complex in the assumption, we get

Ker¢ — M, 2 M, ¥ M,

M f

Im¢ — Kery.
Then, by the left exactness of Homg(R, -),
Im ¢, & Homg(R, Ker y) = Ker ¢, € Homg(R, M)
and Im ¢, = ImA,. Let C; denote the cokernel of A,; that is,

C = Homg(R, Im ¢)
1= ImA, |

Then
Ker ¢ Homg(R, Ker ¢) 0
Im ¢, Homg (R, Im ¢)

is exact. Moreover, since Ml—’\—>Imq!> is onto, C, can be embedded into
ExtL(R, Ker A) as S-modules, so that by Lemma 5.6 we obtain

(anng I)Ext{(R,-) =0
and hence (anng /) C, = 0. On the other hand, the short exact sequence

Ker ¢
m¢

0

0 — Im ¢ — Ker y =

induces a long exact sequence
0 — Homg(R, Im ¢) — Homg(R, Ker y)

Ker ¢
Imo

”—;>HomS(R, )——»Extfg(R,Im¢)—>
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By setting C, = coker(w,) we get the second short exact sequence, and it is
easy to see from the above long exact sequence that C, can be embedded
into Exty(R, Im ¢) as S-modules and that anng 7 kills C,. 1

COROLLARY 5.11. Let A be a Noetherian ring and R a finitely generated A-
algebra. Let M, 2, M, 2, M; be a complex of R¢-modules and .=
Homge(R, -). Then there are two short exact sequences,
Ker ¢, Hompg(R, Ker )

—_ —_—
Im ¢, Homg:(R, Im ¢)

0——*(:1—_>

and
Hompg. (R, Ker ¢) Ker ¢
Hompg:(R, Im ¢) Imé¢

such that C, and C, are both killed by NE as R-modules.

0

—»HomRe<R, )—»c2—>0,

LEMMA 5.12. Let A be a Noetherian ring and R a finitely generated A-
algebra. Let M be a finitely generated R-module and N a R-module. Let
l.:Iy—>I,—1,— --- bean injective R-resolution of N, with H the homology
of the complex

HomA(M, Io)i’ HOITIA(M, [1) L HomA(M, 12).

Then (anng Homge(R, H))NR Exth(M, N)=0, and H can be embedded
into ExtY(M, N) as A-modules.

Proof. Notice that, for any two R-modules M; and M,, Hom 4(M;, M,)
is a R°-module. The R®-module structure is given by [¢(x&® y)](m) =
[¢(xm)]y for any ¢ € Hom,4(M,, M,), x,ye R and m € M, so it follows
that Homge(R, Hom 4(M,, M,)) = Homgx(M,, M,) is a R-module. Hence,
by applying . := Hompg(R, -) to the above complex, we get a complex of
R-modules

Homg(M, I) &> Homg(M, I,) ¥ Homg(M, I,).
Hence, by Corollary 5.11, we obtain two short exact sequences,
Hompge(R, Ker )
HomRe(R, Im ¢)

0— C,— Exth(M, N) —

and

HomRe(R, Ker l,b)
0— —H (R,HYy— C,— 0,
HomRe(R, Im ¢) Ot ( ) 2

with C, and C, being killed by 918 as R-modules. Therefore,
anng(Hompg(R, H))NE Exth(M, N) = 0.

Moreover, from the factorization

IO — 11 — 12
N 7
I,/N,
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we know that Kery =Hom (M, I,/N) and Im¢ = Im(Hom4(M, I) -
Hom 4(M, I,/N)). Thus, from the long exact sequence

0 — Hom (M, N) — Hom (M, I)
— Hom (M, Iy/N) — Ext4y(M,N)— ---,

we conclude that H can be embedded into Ext4(M, N) as A-modules. O

Proof of Proposition 5.9. Let x € ann,Ext4(M, N); then by Lemma 5.12
we have xH =0, so that xe anng(Homg.(R, H)). Hence (by Lemma 5.12
again) x9UR Exth(M, N) =0, and therefore

IR ann 4 Ext4(M, N) € anng Extk(M, N). a
Now we are able to prove Theorem 5.3.

Proof of Theorem 5.3. Since R is CM, every dth syzygy module is a MCM
module; thus it is sufficient to show that J Extk(M, -) =0 for any MCM
module M. Let M be such a module. Then, for any normalization 4 of
R, M is finitely generated free as an A-module and so ExtL(M, N) =0 for
any R-module N. Hence, by Lemma 5.8 and Proposition 5.9, Jg,4 € NR <
anng Exth(M, -). It follows that J € anng Exth(M, -). O

COROLLARY 5.13. Let (R, m) be a complete CM local ring containing a field.
Then R Exth(M, -) = 0 for all MCM modules M, where R =3, , N. and
the sum is over all normalizations of R.

For non-CM rings, the previous proposition allows us to study ann 4 Ext},(-, -)
instead of anng Extk(-, -). In fact, when A4 is a RLR, we have the following
uniform property on ann, Extk(-, -). In the sequel, let M, denote any dth
syzygy R-module of M.

LEMMA 5.14. Let R be a d-dimensional complete Noetherian local ring
containing a field, and A a normalization of R. Let xe€ A be such that
xExty(R,-) =0. Then x?Ext4(M,,-) =0 for any finitely generated R-
module M.

Proof. Let (F., ¢.) be a resolution of M such that Ker¢,_; = My; let M; =
Kero¢;_,, i=1,...,d. Notice that we have the following exact sequences:

.- — Ext§(Fo,-) — Exti(M,,-) — Exti*'(My,-)— - (1)
+« — Ext§1(F), -) — Ext§ ™ (M, -) — Ext4(M;,-) — - (2)

.+ — Ext4(Fy_;, -) — Ext4(My, -) — Ext3(M,_,,-)— ---(d).

By assumption, x Ext4(R, -) = 0; hence, by Corollary 1.6(1), x Exté4(F,, -) =
x Ext4(R, -) = 0. Since A4 is a d-dimensional RLR, Ext4*(M,, -) = 0; there-
fore, from (1) we know that x Ext4(M,, -) = 0. Similarly, from (2) we get
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x? Ext4~Y(M,, -) = 0as x Ext4(M,, -) = x Ext4~!(F,, -) = 0. Inductively, we
obtain that x Ext} (M, -) = 0. a

Proof of Theorem 5.4. We first show the following claim: If P e Spec(R)
is such that J ¢ P, then there exists an element x € J\ P such that
x Exth(M,, -) =0 for any finitely generated R-module M. To prove this
claim, note that by Propositions 4.4 and 4.5 we know there is a normal-
ization A of R such that (1) Jz,4 € P and (2) Rpn 4 is CM. If g = PN A and
if Q is any prime of R lying over g, then R/Q is finite over A/q, so that
dim R/Q = dim A/q. Moreover, since R is equidimensional and catenary,

htg=d~dim A/q =d—dim R/Q =ht Q;

therefore, any s.o.p. of 4,is a s.0.p. of Ry = (R,)g. However, Ry is a CM
ring by (2), hence any s.0.p. of A, forms a regular sequence on R,. It follows
that R is free as an A ;-module, and so (Ext4(R, -))¢ = 0. Following the same
argument of the proof of Corollary 1.7, we see that there exists y € A\g such
that y Ext4(R, -) = 0; thus, by Lemma 5.14, we obtain y? Ext4(M,,-) =0
for any finitely generated R-module M. Finally, by (1) we can choose an ele-
ment z € Jg,\P and set x = y9z. Then xe J\P, and by Lemma 5.8 and
Proposition 5.9, x Extk(M,, -) = 0.

Let J, = N, anng Ext4!(M, -), where the intersection is over all finitely
generated R-modules M. Then, by the claim, for any prime P » J there is
an element x ¢ P such that x Extg*(M, -) = x Extk(My, -) =0 for any fi-
nitely generated module M, which means x € Jy and hence P 2 J. It follows
that J C VJ,, or JXC Jo for some integer k, and then Jk Extj’g“(M, -)=90
for any finitely generated module M. 0

From Propositions 4.4 and 4.5 we know that, under the assumptions of
Theorem 5.4, VJ = I,(R). We therefore have the following corollary.

CoOROLLARY 5.15. Let (R,m, K) be a d-dimensional equidimensional com-
plete Noetherian local ring containing a field. Assume that either char K =0
or K is perfect. Then there exists an integer k such that I,(R)* Ext3* (M, -) =
0 for any finitely generated R-module M.

A Noetherian local ring R is called generalized CM if Rpis CM for all Pe
Spec(R) —{m]}.

COROLLARY 5.16. Let (R,m, K) be a d-dimensional complete Noetheriarn
local ring containing a field, and let J be the Jacobian ideal of R. Assume
that R is an equidimensional generalized CM ring. Then there exists an inte-
ger k such that J* Ext3*Y(M, -) = 0 for any finitely generated R-module M.

Proof. Let PeSpec(R) be such that J¢ P; then P+ m. In view of the
proof of Theorem 5.4 and since R is equidimensional, we know it is enough
to show that there exists a normalization 4 of R such that (1) J;,4 € P and
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(2) Rpn 4 is CM. But condition (2) is redundant, as P # m guarantees it;
hence the assertion follows from Lemma 4.3. U
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