Properties of Laplacians and
Riesz Potentials on Manifolds with Ends

ROBERT LOCKHART

0. Introduction

As is well known, the Laplacian on a compact Riemannian manifold (M, g)
is a Fredholm operator from H?, (M) to H?(M), where HP (M) is the ¢th-
order L? Sobolev space on M. Furthermore, its Fredholm inverse is a com-
pact operator on HP(M). For noncompact manifolds, the situation is more
complicated.

To begin with, one must be careful in defining the Sobolev spaces; unlike
the compact case, not all definitions are equivalent (see [1] and [2]). In order
to have any chance of having A, be Fredholm, one must take H, P(M) to be
the largest domain in L”(M, dV) for A*% and take ||u]|, s = |l + | A2y,
It turns out that an equivalent deﬁmtlon can be made in terms of Bessel po-
tentials (see [9]).

However, even if one does this, it is not always the case that

Ag: Hf, (M) — HP (M)

is Fredholm. And if it is, it is not necessarily the case that the Fredholm in-
verse is a compact operator on H?(M ). Obviously, therefore, one would like
to find simple geometric criteria for deciding when A,: Hf, (M) — HP (M)
has any of these properties.

In [6] an upper bound for the infimum of the essential spectrum of A,
denoted 7,(p), was found in terms of certain isoperimetric inequalities.
(Note the details given later.) Thus 7,(p) > 0 is a necessary condition for A:
H} (M) - L*(M,d V,) to be Fredholm, and 7,(p) = is a necessary condi-
tion for the Fredholm inverse to be compact on L2(M, d V). As we shall see
in this paper, these results can be extended to A,: HE, (M) — HP(M) for
1< p<oo.

A natural question to ask is whether these necessary conditions are also
sufficient. As was shown in [6], the answer is negative. However it was also
shown there that if M has finitely many ends then a refinement of 7,(p), de-
noted by 7,(p), could be made. (Again, the details will be given later.)

I conjecture that, for manifolds with finitely many ends, 7,(p) > 0 is both
necessary and sufficient for A,: H?, ,(M) — Hf (M) to be Fredholm and that
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74(p) = oo is both necessary and sufficient for the Fredholm inverse to be a
compact operator on H?(M).

The main purpose of this paper is to offer evidence supporting this con-
jecture. Namely, it will be shown that the conjecture is true for metrics that
are quasi-isometric to ones that are warped products on the ends of M. More
precisely, let @ C M be an open subset and p: @ — R be a compact exhaustion
of Q. This means that p is C® and p~!((—oo, r]) is a compact subset of Q for
each re R. By Sard’s theorem, p~!(7) is a smooth compact submanifold for
almost all ¢. For such ¢, take du, to be the measure on p~!(¢) induced by g
and set P(¢) = [ -i,|Vo|du,. Also, for a < r, take ¥,(r) to be the volume of
p~([a, r]) and V,() to be the volume of p~!([r, =)).

The isoperimetric inequalities we deal with are given in the following def-
inition.

DEerFINITION 0.1. For a complete metric g on a noncompact manifold M,
2 an open subset of M, and p: 2 — R a compact exhaustion:

(1) bex(R, g, p) =1im, _, o, sup, V,(r) [ 1/P(¢) dt; and
(2) beo(Q, 8, p) =lim,_, . sup, V() [, 1/P(¢) dt.

In the definition the subscripts “ex” and “co” stand for expanding and con-
tracting, respectively. The motivation for this is the example @ = M =R x S/,
g =dr2+e*’de?, and p(r,0) = |r| for |r| > 1. Then b.(M, g, p) is finite if
and only if £ > 0, whereas b.,(M, g, p) is finite if and only if £ < 0.

DEerINITION 0.2. For a complete metric g on a noncompact manifold M
and p: M — R a compact exhaustion,

7o(p) = max(1/be(M, g, p), 1/b.,(M, g, p)).

As mentioned above, one of the main results of [6] is that 7,(p) is an upper
bound for the infimum of the essential spectrum of A, on an arbitrary com-
plete and noncompact manifold M. However, when M contains an open
submanifold M, with the properties (i) M, is compact, (ii) dM, is a compact
(n—1)-dimensional manifold, and (iii) M \ M, is diffeomorphic to R* x aM,
—that is, when M has finitely many ends—then one can improve this bound.

DEerINITION 0.3. Let M have finitely many ends and let g be a complete
metric on M. For each end E of M (i.e. component of M\ M), let pz: E—R
be a compact exhaustion

7g(p) = ming max(1/be(E, &, pg), 1/beo(E, &, pE)),

where the min is taken over the set of ends.

We shall say that an end is expanding if b..(E, g, og) is finite and contract-
ing if b.(E, g, pg) is finite. With this terminology, the conjecture can be
stated as follows.
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CoNJECTURE 0.4. Let (M, g) be a complete Riemannian manifold with fi-
nitely many ends, and let 1 < p <. Then Ag: Hf ,(M)— Hf (M)

(1) is Fredholm if and only if each end is either expanding or contracting
forall p,

(2) is an isomorphism if and only if each end is either expanding or con-
tracting for all p and Vol(M) = oo,

(3) has a Fredholm inverse that is a compact operator on HP?(M) if and
only if 7,(p) = o for all p.

For a > 0, the oth Riesz potential associated with A, is the operator 3, =
(Ag)"*/2. In other words, the orth Riesz potential is the (a/2)th power of the
Green operator for A,. Whenever the conjecture is valid for a set of com-
plete Riemannian manifolds, an important and easy consequence is the clas-
sification of the Riesz potentials associated with the set that are bounded
operators.

THEOREM 0.5, Let G be a set of complete Riemannian manifolds for which
the conjecture is valid. Suppose that (M, g) € &. Then the Riesz potentials
associated with g are bounded operators on HP(M) if and only if each end
is either expanding or contracting and Vol(M ) = «. Furthermore, these po-
tentials are compact operators if and only if, in addition, 7,(p) = .

A metric g is a warped product on the ends of M if for each component I
of dMywe have g = dr?+ h}(r) df% on the end E = R* X T, with A a positive
C* function and d## a metric on I'. The metric g is quasi-isometric to g if
there is a ¢ > 0 such that g/c < g < cg. For example, when R” is equipped
with polar coordinates then the Euclidean metric is g = dr?+r? df2%.-1 and
so is a warped product. A metric g is quasi-isometric to g provided the eigen-
values of g(x) are bounded above and below by constants that are indepen-
dent of x. The associated Laplacians are precisely the uniformly elliptic op-
erators of the form —(det g)™"2 9;,g”~/det g d;.
The main result of this paper is given by the following.

THEOREM 0.6. The conjecture is true for metrics that are quasi-isometric
to warped products.

The proof will consist of two parts. The first is the reduction of the problem
to the L? case. When M has infinite volume, either A,: H7 (M) — L*(M, dV,)
is an isomorphism or is not Fredholm. In this situation we can reduce to the
L? case by using results of Strichartz that are based on the Stein interpola-
tion theorem for analytic families of operators [9; 7]. Once this is done, the
result can be extended to manifolds with finite volume by using a simple sur-
gery and a modification of a theorem of Donnelly and Li [3].

The compactness results will be proved by using Krasnosel’skii’s extension
of the Riesz-Thorin theorem [5]. As with the reduction of the problem to
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the L? case, this proof, which is done in the first section, holds for arbitrary
complete, noncompact Riemannian manifolds—not just those with ends.

To show that the conjecture is true for A,: H}(M) - L*(M, d Ve) we need
only show that a positive multiple of 7,(p) is a lower bound for the infimum
of the essential spectrum of A,, since it was already shown to be an upper
bound in [6]. It follows from the result of Donnelly and Li [3] that we can
do this by showing that a positive multiple of 7,(p) is a lower bound for the
infimum of the spectrum of the Dirichlet Laplacian on [a, «) XT', for each
component I' of dM, and each @ > 0. Furthermore, it is a consequence of
the Rayleigh-Ritz theorem that this is true for g if it is true for some metric
£ that is quasi-isometric to g.

It is at this stage that we require £ to be a warped product on each end,
since it is for such metrics that we can explicitly construct the minimal posi-
tive Green function for the Dirichlet Laplacian by separation of variables
and estimate the norm of the associated Green operator in terms of 7;(p).
Since this Green operator is self-adjoint, the reciprocal of this estimate will
provide a lower bound for the infimum of the spectrum of the Dirichlet La-
placian. One can prove the conjecture in general if a similar estimate could
be established for the Green operator associated with the general metric g.

As might be guessed, much of the analysis deals with the ordinary differ-
ential operators that arise from separation of variables in the Dirichlet prob-
lem on [a, o) XI'. We need to estimate the norm of the associated Green
operators on L?([a, ), hf~'(r)dr). It is worth noting that this estimate,
which is made in the third section, is obtained with the aid of the Marcinkie-
wicz interpolation theorem and that it can be used because of the isoperimet-
ric inequalities.

It seems to me that it is worth exploring what other connections there may
be between isoperimetric inequalities and weak type estimates.

1. Reduction to the L? Case

As mentioned in the introduction, a definition of H?(M) that is equivalent
to the one given there can be made in terms of Bessel potentials. Namely,

H(M) ={uel’(M,dV,):u= (1+Ag)‘3/2v for some v e LP(M, dV,)}.

The corresponding norm is ||u||,, s =||v|,. It is equivalent to the one given in
the introduction (see {9, §41]).

It clearly follows from this that if o and 8 are nonnegative, then the ver-
tical maps in the commutative diagram

A
p
HY, (M) — HZ(M)
(144,67 T l(l‘*'Ag)(“_m/Z

Ag
Hi g(M) —> HE(M)
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are isomorphisms. Hence, either both horizontal maps are Fredholm or both
are not Fredholm. Similarly, if they are Fredholm, either they both have a
compact Fredholm inverse or they both do not. In other words, we have
proved the following lemma.

LEMMA 1.1, A, H? (M) — HP(M) is Fredholm for all s =0 if and only
if it is for some s = 0. If it is Fredholm and G is its Fredholm inverse, then
G: HY (M) - HP(M) is a compact operator for all s =0 if and only if it is
compact for some s = 0.

LEMMA 1.2. A,: HY(M)— LP(M, dVy) is an isomorphism for all 1 < p <
if and only if it is for some p, 1 < p < .

Proof. An equivalent statement is that Afgl exists and is a bounded operator
on L?(M, dV,) for all 1 < p <« if and only if it exists and is bounded for at
least one such p. The proof of this is essentially the same as the proof of
Theorem 5.5 in [9]. Namely, one considers the analytic family of operators
(wl+ Ag)_1 and uses the analytic families interpolation theorem of Stein [7].

U
With the exception of the compactness results, these two lemmas provide
the sought reduction to the L? case for manifolds with infinite volume. In
order to deal with manifolds with finite volume, we shall use the following
simple modification of a result of Donnelly and Li [3]. In its statement we
let K C M be a precompact open subset with smooth boundary. We take
Q;,Q,, ..., Qy to be the components of M\ K, and set

BP(Q) = {ue LP(Y,dVy): Ayue LP(,dV) and u |59, =0}.  (1.3)

(Note that the 2, need not be ends, since in general they are not diffeo-
morphic to R* x T, with I' a component of dK.)

LEMMA 1.4. A, HY(M)— LP(M, dV,) is Fredholm if and only if
Ag: BP(Ry) — LRy, V)
is Fredholm for each Q.
Proof. A simple modification of the proof of Proposition 2.1 in [3] suffices
for a proof here. 0

THEOREM 1.5. Let (M, g) be a complete Riemannian manifold.

(1) Ag: HE (M) — HP(M) is Fredholm for all 1< p <o and all s=0
if and only if it is Fredholm for p =2 and s = 0.

(2) If Ag is Fredholm and G is its Fredholm inverse, then G is a compact
operator on HP(M) for all 1 < p < oo and all s =0 if and only if it is
compact for p =2 and s = 0.
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Proof. We know that the first statement is a consequence of Lemmas 1.1
and 1.2 when M has infinite volume. Suppose therefore that Vol(M) < .
The problem in this case, of course, is that A,: H?, ,(M)— HP(M) has a
nontrivial kernel consisting of the constants, and so we cannot use Lemma
1.2. What we shall do is construct a new manifold M that has infinite vol-
ume and coincides with M outside a compact subset of M.

As before, let K be an open, precompact subset of M with a smooth bound-
ary, and take Q,, ..., Qx to be the components of M\ K. Pick xe Kand » >0
so that the ball B,,(x) is contained in a coordinate neighborhood of x in X.
Remove B,(x) and smoothly patch in R* x S”~!(x) = Q,. Now extend the
metric on M\ B;,(x) in a way so that on [1, o) X S”~!(x) it is the warped
product dr?+ e df?, with d9? a metric on S”~!(x). Call the resulting mani-
fold M and the resulting metric g.

Since R x S”~! equipped with the metric dr?+e” d6? has infinite volume,
M has infinite volume. Hence, we know that the first statement of the theo-
rem is valid for M. It therefore follows from Lemma 1.4 that Ag: BP(Qy) —
LP(Qy, dV,) is Fredholm for all1< p<o, alls=0and all k =0, 1, ..., Nif
and only if it is Fredholm for p=2, s=0,and all k =0,1, ..., V.

In fact, more can be said. Namely, we shall see in the next section that
A,: B2(Qp) —»LZ(QO, dVj,) is Fredholm. Hence we actually can say that Ayt
BP () - LP(Q dVy) is Fredholm forall 1< p<oo, alls=0and k=1, ...,N
if and only if it is Fredholm for p =2, s=0,and all k =1, ..., N. By Lemma
1.4 this is all we need to show that the first statement of the theorem is true
for M.

The second statement follows directly from Krasnosel’skii’s extension of
the Riesz-Thorin theorem [5].

2. The L? Case

Each end E of M is diffeomorphic to R* x " for some component I" of dM.
Henceforth we shall assume that a diffeomorphism has been chosen and
identify E with R* xI". Furthermore, it follows from the already established
necessity of the conditions in Conjecture 0.4 that we need only show their
sufficiency for a specific compact exhaustion in order to prove the theorem.
We shall take p: R* xI' > R to be p(r, 8) = r. We also take the warped prod-
uct metric on E to be g = dr?+ h#(r) do#, with df# a fixed metric on I'. With
these choices and with Vi = Vol(I'), the quantities b..(E, g, p) and b, (E, g, o)
become
r =]
bey(E, g, p) = lim sup Vp f hE\(¢) dt f Lt dt
a r

a—-o r

and
beo(E, g, p) = lim sup Vp f RE=1(1) dt f R (1) dt.
a-eo r r a

Notice that in this case it is impossible for an end to be both expanding and
contracting. Whether this is true in general is an interesting question.
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The Laplacian associated with g is A, = hy~"(—9,hf ™', + hE~?Ar), with
Ar the Laplacian on I' coming from d8%. When Y,(0) is an eigenfunction of
Ar and f(r, 8) = u(r)Y,(0), we have A, f(r, 0) = Y3(0)2} u(r) with

£Au(r) = hE () (= (hE~ N () u'(r)) + ARET3(r)yu(r)).

Our first task is to show that £ is an isomorphism for the Dirichlet prob-
lem on [a, ). More precisely, let I, = [a, «) and take B{(/,) to be the space

B{(I,) = (¢ € LP(I,, hE~ () dt): $(a) = 0and L3¢ € LP(1,,, hE~ (1) d1)),

with norm ||¢| g» = ||® ||, + |24 & ||,- Clearly £3: Bf(1,) —» LP(I,, hE~1(t) dt) is
bounded. We shall demonstrate that if either b (E, g, p) or b..(E, g, p) is fi-
nite, then it has a bounded inverse 7;} and that the norm of 7, can be esti-
mated in terms of quantities related to b.,(E, g, p) and b.,(E, g, p).

First, a basis for ker(2}) that has particularly nice properties will be
constructed. For A = 0 this is easy. Take uoo(r) = [~ h~"(t) dt and uyo(r) =
1—ugo(r)/uge(a), if [°hE~"(t) dt < . Otherwise pick upg(r) =1 and uy(r) =
J7hE"(¢)dt. For A > 0 we shall use the following theorem.

THEOREM 2.1. For each A > 0 there is a ugye ker()) that is strictly posi-
tive, has an everywhere negative derivative, and goes to 0 at infinity. Fur-
thermore, ug) is unique up to constant multiple.

Proof. Let w) be the solution to the initial value problem £3w, =0 with
wi(a) =1 and wy(a) = 0. Then

Wi(r)wa(r) = hy"(r) f RE= (WO ARE () (wa (1)) dit,

and so w,(r) > 0 for r > a. However, according to [4, Chap. XI, Cor. 6.1],
the existence of a strictly positive solution to £}w = 0 implies that 22w =0
is disconjugate on I,. This in turn, by Theorem 6.4 and Corollary 6.4 of [4,
Chap. XI], assures the existence of solutions i, all of which are multiples of
one another, are strictly positive, and have everywhere negative derivatives.

Obviously, w, is linearly independent of any such i, and so by Corol-
lary 6.3 of [4, Chap. XI] one such i, is

Uox(r) = wy(r) f Wi k(O RSty dt.

Since w, is increasing for r > a, it is clear that lim, _, », ug,(r) = 0 if either
w), is bounded or [;°hE"(¢) dt is finite. Therefore, suppose neither of these
is true. By L’Hépital’s rule, lim, _, , #g)(r) = lim,_, o, AL="(r)/w;(r)—which
in turn is ([°ARE T3 (£)wa(f) dt)~!, because £Aw, =0, wy(a) =1, and wj(a) =
0. If this last quantity is O we are done. If it is v > 0, then again by L’Hopi-
tal’s rule we have

. wi(7) : _ 1
1 — n—1 ’ -
T T O =
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Hence there is a number ¢ > 0 such that wy(r) = c[] h~"(¢) dt. Thus

o -1 o r -1
(f Ahg”3(t)w,\(z‘)dt> s(cf ,\hg~3(r)f h};‘”(t)dtdr) . 2.1.1)

Let f(r) =f;h}g‘”(t)dt and 8 =(n—3)/(1—n). Then the integral on the
right-hand side of (2.1.1) is [ °A(f"(#))?f(¢) dt. By assumption, lim,_, ., f(¢) =
oo; hence this integral is infinite if 3 = 0 or 1. Therefore, suppose —1 < 8 < 0.
Set j(£) = (S(1))P£(1). Then f'(£)(f()"? = (j(#))""?. Integrating both sides
of this, we obtain

[f(O)I' P =1+1/B) '(j(s))“"ds+(f<a+1))‘“"’. (2.1.2)

a+l

Since —1< <0 and lim,_,,, f(#) =, we know that the integral in (2.1.2)
is bounded as r —oo. Hence j!/# < 1 on a set of infinite measure, which means
(f)%f = j>1on a set of infinite measure. In other words, the quantity on
the right side of (2.1.1) is O. g

Obviously the uy, of the theorem will form half of the basis of ker(£2}) that
we are seeking. For the other half, choose

tiA(r) = toa(r) f (Uor(1)2hE"(1) dt. 2.2)

Clearly u;)(a) = 0. Another property of u;,(a) that we shall utilize is that
it is increasing (see [4, Chap. XI]). Finally, we shall also use the next prop-
osition.

PROPOSITION 2.3.  If r> a, then ug\(r) = upy(r) [ (uin(£))">hE"(¢) dt.

Proof. 1t follows from (2.2) that
u ’ hl—-n(s)
(___%.) (S) = — E2 .
Ui uih(s)

Upon integration of both sides from r to b, this becomes

Ug) fb 2pl—n uox(b)
—=r) = u () “h t)dt+ . 2.3.1)
(Uu\)( ) . (uiA(0)) “hg "(2) (D) (
Since lim, _, ,, # (b)) = 0 and u,, is increasing, we obtain the result by letting
b— o in (2.3.1). O

We can now define 7}, the inverse of 2. Setting (r, 1), = max(r, t) and
(r, £)_ = min(r, 1), we take K} (r, t) = ug,((r, 1) up((r, £)_) and define Ta" to
be the operator

T u(r) = foon‘(r, Hu()hE (1) dt.
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THEOREM 2.4. Let
bes(E,) = sup f hi= () dt f hE"(t) dt, (2.4.1)
r a r

beo(E,) = sup f Y1) d f RLn(1) dt. (2.4.2)
r r a

If either bey(E,) or beo(E,) is finite then T)}: LP(I,, h~'(t)dt) - BY(I,) isa
bounded operator for 1< p<o. Moreover, | T}||< cp Min(bey (E,), beo(Ep)),
with ¢, a constant that depends solely upon p and n.

Proof. When b.,(E,) < o, we can use Proposition 2.3 and the fact that u,
is decreasing to derive the estimate

0

KN < f hE="(s) ds = ee((r, 1),).

(r,0)

In this case we define a new operator 7, by

Tout(r) = f 0(1)bex(r, )R (1) dt.

a

Alternatively, when b.,(E,) < oo, we can use (2.2) and the fact that u, is
decreasing to get

A (n0- 1—
KN 1) = f hy"(s) ds = beo((r, 1)_)-

In this case we define T, to be the operator

Toov(r) = f 0(1)beo((r, ) )RR~ (1) dt.

a

Evidently, |T'v(r)| is bounded above by T |v(r)| if bey(E,) <o and by
Toolv(n)|if beo(E,) < oo. Thus it suffices to show that T, and T, are bounded
operators on L?(I,, h2~!(¢)dt) in the appropriate cases. First suppose that
bey(E,) < oo,

In this case we decompose T, into T, = S+ S.,, with

sdwn) = [ "R (8 dE ey(r),

a

sk = " (O e(HRE (1) dt.

r

For ve L'(1,, hit~'(2) dt), we have |S{v(r)| < ||v||idex(r). If v # O this im-
plies that

m{r:|S{o(r)| = o} = mir: ||v|ide(r) = &)
=mi{r: ¢e(r) = 0‘/“0”1} = p,(a),

where m(A) = [, hft~'(¢) dt for AC I,.
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Since ¢, decreases to 0, either u,(«) = 0 or there is exactly one ry = a for
which ¢ (r) = a/||v]);. In the latter case we have p,(a) =[] hE~!(£) dt, the
measure of the interval on which ¢.,(r) = a/||v|);. Using the definition (2.4.1)
of b (E,), we can conclude from this that

x( a) "vlll

v - ex E
K (a) ¢ex( 0) ( )

In other words, for all @ we have m{r: |ngv(r)| = o} < by (Ep) 0|1/ .
Hence both S2, and S!, are weak type (1, 1), which implies that 7, is weak
type (1, 1) also.

It is easy to see from the definition of S, that b.(E,) < o implies that
1580l < Bex (E)||V]l for v e L¥(1,). Thus S x 18 both type (oo, o) and weak
type (1, 1). The Marcinkiewicz interpolation theorem (see [8]) can therefore
be used to show that S2, is a bounded operator on LP(I,, h2~ Y (t)dr) for 1 <
p <o and that ||S%] = ¢ »bex(E,) With ¢, depending only upon p and n.

As for S.,, suppose that ve LY, h}’; l(t)dt) for some 1 < g < . From
Holder’s inequality we obtain

o 1/q’
|Sexv(r)| < IIvIIq( f (Dex () RE(2) dt) :

with 1/g’+1/q = 1. Since b (E,) < o,

o/ pt -q’ l/q’
|Selxv(r)|sbex(Ea)||v||q<f <f h”"(x)a'x) hg-l(t)dr>

bl E, v
= D )|| ||q(f hp- '(t)dt) .

q’'—
Because of this, we can say

mir:|SLo(r)|= o} =< m[r: frh}}‘l(t)dts (b;’i(fa) "U"q)q}.

1 o

The set {reIa:f(:hg"(t)dt < B} is an interval [a, rg], since the integral
is an increasing function of r. Furthermore, by definition, m([a, rz]) =
I hg~1(#) dt = B. Thus

. | < bCX(Ea) "UHQ)q
m{r.|Sexu(r)|2a]_( -1 )

Hence S/, is weak type (g, q¢). Coupling this with the fact that it is also weak
type (1, 1), we can again use the Marcinkiewicz interpolation theorem to see
that S, is a bounded operator on L?(1,, hE~(¢)dt) for all 1 < p < g, which
means for all 1< p <o since g was arbitrary. Furthermore, || S| =< Cpbex(Ey,),
with ¢, depending only upon p and n. This completes the proof for the case
bex(Ea) < oo,

Now assume that b ,(E,) < « and decompose T, into Tp, = S + S.,, with

s&u(r) = | "W eo(RE (1),
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Sv(r) = [ o(OhE (0 dt deo(r).
r

For-ve L, we have || S¢o0lw =< beo(Ey)||v]lw and so S, is type (eo, ). For

ve L' (I, h2~'(1) dt), we have |SLv(r)| < ||v]lideo(r). Thus

mir: |Sgov(r)| = o) < mir: ¢eo(r) = o/||v||}} = py(a).

Since in this case ¢.,(r) increases to infinity as r — oo and ¢.,(a) = 0, there
is an rg = a such that ¢.,(ry) = a/||v||; and ¢ (r) > o/||v|; for r > ry. Thus
py(e) = [~ hg~'(¢) dt. From this and the finiteness of b.,(E,), we can assert
that p, () < beo(E)/ deo(ro) = beo(ER)||v|i/a. In other words, S, is weak
type (1, 1). As in the previous case, we arrive at the conclusion that S/, is type
(p, p) for 1< p <o and that ||Sg,|| < ¢, bc0(E,) With ¢, depending only upon
p and n.

Finally, suppose that 1 < g < o. Then

r l/q’
|Seov(r)| < IIvIIq( f (beoNTRE'(2) dt> :

The finiteness of b ,(E,) then implies

beo(Ey) © e ~Va
stoen] = 22 oy ([“ngnar)

We may now proceed as before to conclude that S& is weak type (g, q)
for all 1< g <o and so is type (p, p) for 1 < p <. Moreover, ||S| =<
¢pbeo(E,), with the constant depending only on p and n. O

We are now in the position to construct the Green operator for the Dirichlet
Laplacian on E, = I, XT. This is the Laplace operator A, with the domain
B2(E,) defined in (1.3).

Since g = dr?+ h}(r) do# is a warped product on E, this space decomposes
into an orthogonal direct sum. Let 0 = A3 < A; < A, < --- be the eigenvalues
of Ar, and let {Y,} be a corresponding complete orthonormal set of eigen-
functions satisfying ArY; = A,Y,. For each k define &, to be the projection
& BAE,) > B(E,) given by &, w(r) = [ w(r,0)Y,(0)d6. Then BXE,) =
@ cI)k %2(Ea)-

Our desired Green operator is

G,u(r,0) = S TM®, v(r)- Y, (9).
k=0

THEOREM 2.5. Suppose that M is a manifold with finitely many ends, that
g is a complete metric on M that is a warped product on the ends, and that
the compact exhaustion on each end is as stipulated above. Then there is
a constant c, which depends only on the dimension of M, that satisfies the
inequality

c7g(p) < infoee(A,).
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Proof. Given Theorem 2.4, an easy calculation shows that the norm of G,
on LX(E,, d V,) is bounded above by & min(be,(E,), b.,(E,)), with & depend-
ing only upon dim(M). From this and the self-adjointness of the Dirichlet
Laplacian AD g on E,, we get inf 6(AD £ ) = c max(1/beg(E,), 1/beo(E,))-

Since the ends are disjoint, this inequality can be extended to the Dirichlet
Laplacian AL , on [a, ) XT as

inf g(A2 ) = ¢ ming max(1/be(E,), 1/beo(Ey)).

The theorem then follows from the result of Donnelly and Li mentioned
above. O

References

[1] T. Aubin, Espaces de Sobolev sur les variétés riemanniennes, Bull. Sci. Math. (2)
100 (1976), 149-173.

(2] J. Dodziuk, Sobolev spaces of differential forms and de Rham-Hodge isomorph-
ism, J. Differential Geom. 16 (1981), 63-73.

(3] H. Donnelly and P. Li, Pure point spectrum and negative curvature for non-
compact manifolds, Duke Math. J. 46 (1979), 497-503.

[4] P. Hartman, Ordinary differential equations, Wiley, New York, 1964.

[5] M. A. Krasnosel'skii, On a theorem of M. Riesz, Dokl. Akad. Nauk SSSR 131
(1960), 246-248 (Russian); translation in Soviet Math. Dokl. 1 (1960), 229-231.

[6] R. Lockhart, Conformal, parabolic, and spectral properties of complete Rie-
mannian metrics on non-compact manifolds, Global analysis in modern mathe-
matics (K. Uhlenbeck, ed.), pp. 15-31, Publish or Perish, Houston, TX, 1993.

(71 E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83
(1956), 482-492.

, Singular integrals and differentiability properties of functions, Prince-
ton Univ. Press, Princeton, NJ, 1970.

[9] R. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold,
J. Funct. Anal. 52 (1983), 48-79.

(8]

Department of Mathematics
U.S. Naval Academy
Annapolis, MD 21402-5002



