Gelfond’s Theorem for Drinfeld Modules

PAUL-GEORG BECKER, W. DALE BROWNAWELL,
& ROBERT TUBBS

I. Introduction and Statement of Results

In 1949 Gelfond [Ge] proved that when « and 3 are algebraic numbers with
a#0, loga#0, and 3 cubic over @, the numbers of and of” are algebrai-
cally independent. Our goal is to establish an analogue of this result where
the ordinary exponential function is replaced by the exponential function
associated with a Drinfeld module with “algebraic” coeflicients. Before stat-
ing our result we begin with some background material.

CURVE NOTATION.

[, finite field of g = p* elements

C asmooth projective geometrically irreducible curve over [F,
o a fixed closed point of C of degree denoted by deg()

k the function field of C over [,

A the ring of functions in k regular on C\{co}
d, defined by d(a) = (order of pole of a at o) -deg()

k algebraic closure of k
k. completion of k with respect to the valuation —d,,

k., algebraic closure of ko,

d.:k,— @Q the extension of d,, to Kk,

A. Drinfeld Background

To describe a Drinfeld A-module, we may begin with a lattice A € &, that is,
an A-module which is discrete with respect to the additive valuation —d,,
and for which d:=dim;_k.,® A <. The corresponding exponential func-
tion is defined by e(z) =z II1(1 —2z/A), where the product runs over all non-
zero A in A.

Let k.. {F} denote the ring of “twisted polynomial” operators >7_, a;F",
where F is the gth power Frobenius mapping F: X~ X9. (Multiplication
in k,{F} is given on monomials by @;F(a;F’) = a;af F'*/ and extended
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linearly to all of k,{F}.) Then, for each a € A, one can show (see e.g. step 2
in Lemma 2.2) that there is a ¢(a) € k{F} such that ¢(a)e(z) =e(az). In
fact, ¢: a ~ ¢(a) gives a homomorphism A — k. {F} for which

pla)y=a+¢(a)F+ - +¢(a)F’ (1)

with ¢;(a) #0 for i =d-d.(a).

It is a fundamental theorem of Drinfeld [Dr] that any ¢ € Homlpq(A, ko)
having images of the form (1) with some ¢;(a) + 0 (i > 0) arises, as above,
from a uniquely determined lattice A in k.. We say that ¢ is defined over a
field I C k. if ¢(a) € [{F} for all a € A. The field of definition of ¢ is the least
such /. Let us now summarize the Drinfeld module notation used to state
our results.

DRINFELD MODULE NOTATION.

¢ a Drinfeld module defined over a finite extension / of %, i.e.,
¢ A—I(F}Ck,{F)
e(z) the exponential function corresponding to ¢
A the A-lattice of periods of e(z)
d the A-rank of A
R, the multiplication ring of ¢ (or A) = {c€ k,,: cAC A}
r the A-rank of R,

K, the field of quotients of R,
B. Statement of Results
THEOREM. Suppose that By, ..., Bp, Uy, ..., U, are elements of k., such that

(1) each (3; is algebraic over k,

(2) {By,...,Bp) and {u,, ..., u,} are K ,-linearly independent sets, and

(3) no product of two nontrivial R ,-linear forms, one in 8, ..., B8y, and
one in uy, ..., U,, respectively, lies in A.

If k=(d/r)(b/(b—-2)), then
trdegy k(e(Byu1), ..., e(Bpu)) = 2.

When 8 is algebraic over K, of degree b and u € k,, is nonzero, we can take
b=k, B;=B"1, and u;=B~u (i=1,..., b) to obtain the following result.

CoROLLARY 1. IfBekisof degree b=d/r+2 over K,andue k. \{0} with
K, (BYN(1/u)A = {0}, then
trdegy k(e(u), e(up), ..., e(uB?~1)) =2.

It is known that r <d (see [Y2, Thm. 3.1}). When b =3 and r = d, we obtain
the analogue of Gelfond’s theorem.

COROLLARY 2. Assume that b=3 and r=d. If uek,, with e(u) ek, but
ue¢ K, A and B is cubic over K, then e(uf3) and e(uf3 2y are algebraically in-
dependent over k.
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Proof. Since u¢ K,A, we know that, for any nonzero A€ A, u and A are
K, -linearly independent. Yet e(u) € k implies that both u and A are “loga-
rithms” of numbers in k. J. Yu’s version of the Gelfond-Schneider theorem
([Y1, Thm. 5.1] or [Y3, Thm. 5.5]) then implies that » and A are k-linearly
independent. Hence u satisfies the hypotheses of Corollary 1, and Corollary
2 follows. U

We thank J. Yu for sharing his work [ Y5] before publication and W. C. Wa-

terhouse and the referee for helpful comments.

II. Preliminaries

A. Reduction to Case A=TF,[1]

Equation (1) tells us how the F-degree of ¢(a) grows with respect to d,.(a).
We also need to know about d, of the coefficients of ¢(a).

LeEMMA 2.1. ForaelF,[t]1CAofdegreedint,
5

-1
max d(coefficients of ¢(a)) < max d(coefficients of ¢(t)) i T
where g = g%,
Proof. Prove by induction on & for @ =¢° and then use linearity. O

For technical reasons, in Sections III and IV it will be convenient to reduce
to the case A=T,[¢]. It is standard (see e.g. [Si, Prop. 1.4, p. 22]) that, for
any uniformizer ¢ € A at oo, k is a finite separable extension of [,(¢) and Aa
subring of the integral closure of F,[¢] in k. However, more generally, the
proof remains valid for any t € A with d,(¢) not divisible by p. By the Rie-
mann part of the Riemann-Roch theorem [Si, p. 39], there exist #,7, in 4
with d.(¢;) =2g and d(¢;) =2g +1, where g is now the genus of C. At least
one of these values d(f;) is not divisible by p, and we choose ¢ to be the
corresponding ¢;.

Thus in particular, rank[pq[,] A=a<o, Ais alF,[t]-module of F,[#]-rank
da, and R, is a [F,[#]-module of [,[¢]-rank equal to ra. Moreover, ¢ | ATE
[F,[¢]1—I{F} and [ is a finite extension of [F,(#).

Since e(az) = ¢(a)e(z) for any a € [F,[¢], we see by the Drinfeld correspon-
dence relating [F,[¢]-lattices and [F,[#]-Drinfeld modules that <p|“:q[,] is the
[F,[2]-Drinfeld module corresponding to the [F,[#]-lattice A.

Finally, we remark that X, k., R, K, remain the same for ¢ | Fit]> while
d, is scaled by the reciprocal of the nonzero constant d(¢). Therefore we
have established the following reduction principle.

I}EDUCTION PRINCIPLE. We may assume that A=[,[t] without affecting
K, ke, A, R,, K, or e(z) (thus a fortiori the values e(B;u,)), and without
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extending the field of definition of ¢; however, d, | 0 is changed by a non-
zero constant factor (namely d(t)™}).

B. Extension of ¢

Although ¢ is given as defined on A, we show that it extends uniquely to R,
(cf. [Y4, p. 565]).

LEMMA 2.2. There is a finite separable extension L, of IK, such that the
map ¢ extends uniquely to a homomorphism ¢: R,— L ,{F}, satisfying

p(p)e(z)=e(pz) (2)
JorallpeR,.

Proof. We carry out the proof in several steps.

Step 1: R, is contained in the integral closure of A in K,. Multiplication
by any element p € R, carries the finitely generated A-module A into itself.
Thus p is integral over A of degree at most d.

Step 2: For any nonzero pe R, let Ay, ...,A;, where \;=0 and I=I(p),
be a complete set of coset representatives for A in (1/p)A. Then e(pz) =
¢(p)(e(z)), for a unique twisted polynomial ¢(p) € K (e(A3), ..., e(A)F}.
By comparing zeros and coeflicients of z, we see that

I
e(pz)=pe(Ar)™ -+ e(A) T T e(z—Ay).
i=1
Since the values e(A;) form a finite [ -vector space, the polynomial

I
Py(X)=pe(r)" -+ e(A))”! _1:[1(X—€(/\i))

has the form

J .
P(X)= .20 ¢ X7
J=

with ¢;e K ,(e(A3), ..., e(Ar)). Thus we have the existence of

J .
o(R)= 3 FI €K (0, - €M),
J:

satisfying (2). Since the A; are uniquely determined modulo A and e(A; +A) =
e(A;) for all Ae A, the polynomial P,(X) and thus ¢(p) are uniquely deter
mined.

Step 3: If p € R\[0} and A€ (1/p)A, then e(}) is separable algebraic over .
As (1/p)A /A is a finite A-module, there is a nonzero @ € A such that a-(1/p)AC
A. Thus for Ae (1/p)A, 0=e(al) = ¢(a)e(A). Therefore e(A) is a root of the
polynomial
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P (X)= (@)X =aX+ o (@) X9+ +pi(a) X7

Since P,(X)=a+ 0, P,(X) has no repeated roots and e(A) is separable alge-
braic over /.

Step 4: There is a finite separable extension L, of IK, such that ¢(R,)C
L,{F}. Let py, ..., p, be a maximal A-linearly independent subset of R,,. Let
L;, denote the field extension of /K, generated by the finitely many values
occurring in the sets e((1/p1)A), ..., e((1/p,) A). Since the preceding step shows
that each value is separable over /, L, is a finite separable extension of /K,,.

For each nonzero p € R, there are ay, ay, ..., a, € A such that

agp=ap1+ - +a,p,, a*0.

Since ¢ is a ring homomorphism,

e(ag) p(p) = e(a)e(p1) + -+ +e(a) ¢(p,),
with each ¢(a;) € [{F}. It is not hard to check by solving recursively for coef-
ficients that the ring /{{F}} of twisted power series contains ¢(a,)~". Thus
o(p) = o(ao) e(ar) e(p)) + - +o(ao) " o(a,) o(p,)

lies in IEOO[F]OL;[{F}} =L, [F}.
Now let L, = L,, where the intersection runs over all choices of py, ...,
Pr- .

C. A Further Reduction

ReEMARK 2.3. We may assume without loss of generality that
@(Apl +-- +Apr) CAga{F}’

where A, denotes the integral closure of Ain L.

Proof. Recall that A=TF,[¢]. Let a,€ A be a common denominator for the
coeflicients of ¢(?), ©(p1), --., ¢(p,). Then if we replace A by the lattice A*=
a;'A, the associated Drinfeld module ¢* = ¢,-1, satisfies

e(z) = e,(2) = a.e,+(as '2),
and if ¢(p) = p+¢1(p)F + -+ +¢;(p) F' then
o (p)=p +a3_1¢1(p)F+ ot af "o (p)Fle A, LF).

Since this holds for p =7, we see also that ¢*(¢/) = p*(t)/ € A, {F} for all
J €N, and by linearity ¢*(F,[2]) = A,{F}. Moreover, d*=rank 4A*=d and
R,~=R,, so that r*=r and ¢* is defined over /.

Now if the hypotheses of the theorem are fulfilled, they are also fulfilled
for the sets {8;} and {u}}, where u*=a;'u, (v =1, ..., ). If we can establish
the Theorem for e,+(z) then, since each e(B;u,) = a.e,+(8;u,) and a, € A, we
will have the conclusion of the theorem for e(z). O
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I1I. Proof of Theorem

A. Notation and Preliminary Estimates

In the course of our proof, we will use ¢y, c,, ... to designate sufficiently large
positive constants depending on ¢, 8, ..., By, U1, ..., U,, and any ¢; with lower
index i, but not upon the parameters L, R, S, T, which are specified below.
To establish our theorem we will consider the functions e(3,z), ..., e(8; z) at
points giving values in a finitely generated extension of k. To describe those
points we recall our maximal A-linearly independent subset py, ..., p, of R,,.
For §>0, let M, ,(S) be the set of all r X x matrices (a,,) with entries in A
having d(a,,) <S.
We then consider the set

WU(S) = (U= (P15 ..o5 pr) AU, .., 1) T2 €M, (S)],

where “tr” denotes the transpose of the vector.
We recall that

e(z)=Y byz?
h=0

is a so-called E -function with respect to /, the field of definition of ¢. This
means that we have control of the arithmetic growth of the coefficients b, in
the following sense: To begin with, each b, €/; if we let || b, || = max{d(b}): by,
is a conjugate of by, over k} then there exists a constant C, such that || b,|| <
C, for all 7 e N. Moreover, according to Lemma 3.1 of [Y3], there is a non-
zero sequence {a;} € A and a positive constant ¢ with:
(i) dw(ay) =<chq";

(ii) for all j<h, a,b;el is integral over A;

(iii) if g"1+---+gM<g", thena, --- a; |ay.
This information will help us to understand the arithmetic of the values
e(B;u,) with u, € U(S). We first note that for u, fixed we can write

e(Biz) = e(Biua) + X by(Biz—Bitea)?. (3)
h=0
Our first aim is to express each e(3;u,) in terms of e(B;u,), ..., e(B;u,). From
the definition of u, we have that

e(Biuy) = e(B;-(p1s+-vs pr)altty, ..., u,)")
r K
=e( E E ppap.vﬁiul)‘
p=1r=1
We recall that the Drinfeld action ¢ has been extended to R,,; hence
r K
e(Biua) = E 2 @(ppa;w)e(ﬁiuv)'
p=1r=1
Thus we express e(3;u,) as
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elBii) = 3 Py alelBin),

with [ -linear polynomials P; , ,€ L,[X] satisfying

degX Pi s qc|+dmax dw(a,,)
and, by Lemma 2.1,

d(coefficients of P; , ,) < g2t dmaxda(a,),

In order to specify our function depending on the parameter 7, we now
adopt the working hypothesis that the claim of the theorem is false. This
allows us to utilize the notation of the appendix, where we take L=
Lrp(.Bl’ R R) Bd)’ K=L(e(6iuv))15isb, lsp<ks $— 1’ 01 =0 to be a fixed tran-
scendental value e(B3;-u,/), and n=[K: L(#)]. (By Yu’s Drinfeld version of
the Gelfond-Schneider theorem, we know that not both e(3; ;) and e(85,)
can be algebraic over L.)

We can now rather explicitly describe the auxiliary function we need. Let
T be a positive real number and let L and S be integers chosen to be maximal
satisfying the inequalities

qL < anTrK/(rK+bd)qT(nc+d)/(rx+bd) and qS< Tb/(rx+bd)qT(b—l)/(nc+bd).

Let L={/=(ly,...,15):0=<l;<q%,1<i<b}. Forle L, let @
e(2) =e(B12)"e(B2)" -+ e(Bp2)".
We consider a function of the form
Fr(z)= X (), (5)

le L

where the coordinates v, are treated as unknowns.

Our goal is to find ;€ A4,[0] (not all zero) so that Fr(z) has a zero of
order at least g7 at each point u, € U(S). This means that when Fy(z) is ex-
panded as a Taylor series about a fixed u,,

Fr(z)= _glof,-(a)(z—ua)j
we have =
j}(a)':O’ j=03"'qu—1-

To obtain this Taylor series at #, we take the representation (5) of Fr(z) and
replace each function e(;z) by its Taylor expansion (3).
Thus at u, we can write

I;
FT(Z)— 2 'YIH{E Pl v, a(e(ﬁzu ))+ E thz (Z ua)q}

le £ i=1

For j =0, let A = h(j) = max{0,1 + [log, j1}. Then, by Lemma 4.1 of
the Appendix, we see that, for each fixed u, € U(S), there are polynomials
P{*(0), P“‘(G) eA [0] P“‘(G) # 0, such that
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P({a(e)ah.ﬁ-<a)=lz£ " EIP“(a)na, (6)

and
D(Pola(e)),D(PJa(e)) < bq qc3+dmax dm(am,)< c qL+dS

h(P§*(0)), h(PI(0)) < bg" - g™ d=la) 4 cc jlog j 0
< c7(qL+dS+ TqT)

REMARK 3.1. We note for later use that the representation (6) with the
bounds (7) holds for arbitrary L,S,T =1, not only for S=S(7) and L=
L(T).

B. Choice of Auxiliary Function

We force our auxiliary function Fr(z) to vanish at the points of U(S) to
order g7 by setting equal to zero the coefficients of each 7, appearing in (6).
Thus we obtain M = ng” "5 equations in N= ¢g® unknowns. Since

bL=1+log,4n+T+rksS,
we can apply the Thue-Siegel lemma of the Appendix to choose nontrivial

v1€ A,[0] so that

(i) Fr(z) has zeros of order at least g7 at the points u, € U(S), and more-
over
(i) D(v;)=<co(g“* %) and h(y)) < cio(g"**+Tq").

REMARK 3.2. We note for later use that, according to Lemma 4.1 of the
Appendix, for this choicq of Fr(z), when j < g7 and u, € U(S’) with S'= S,
there are polynomials QJ*(6), Q/}'(6) e A »[0]1 with

max{D(Q({a(f))),D(Ql{f(g))] <cy(ghtas)

and
max{h(Q§*(6), h(Q2(0)} < cip(g™* ™'+ Tg")
such that
3 (0)710
Ji(a) _.E Q§*(0)
That is,
D(fi(a)) <cp3ghtes;

h(fi(a)) < cl(q** %'+ Tq").

C. Zero Estimates

Cramv 3.3.  There is a constant cs such that, for some 0= j < qT and a’e
M, (c15+S),

fi(a’) %0,
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Proof. Let G=(G,(k,), ¢) be the “Drinfeld module” with associated ex-
ponential function e(z), and consider the £-module G?=G X :-- X G and the
analytic homomorphism &: &k, —» G%(k.,) defined by

P(2) =(e(B12),...,e(Bp2)).

For every positive real number §’, let
I(S") = {P(uy): € W(S').

We have constructed a polynomial P(Xj, ..., X;) with degy P < g’ and such
that P(X, ..., X},) vanishes along ® to order at least g7 at all points v, € I'(S).

If our constructed polynomial P(Xj, ..., X}) vanishes along ® to order at
least g7 at all points va € I'(S’), then Theorem 2.1 of [Y5] tells us that there
exists a proper algebraic [F,[#]-submodule H C G? such that

(S —b+1)+H
H

Our immediate goal is to show that for some constant ¢, inequality (8)
cannot hold for any proper algebraic [,[#]-submodule H C G? with §'=
ci¢+S. By our choice of parameters (4), it is easy to see that there exists
a constant cy; such that, when S’=c;;+ S, inequality (8) cannot hold for
H=0.

Hence, by our choice of parameters (4), for H # {0} we obtain from (8)
that

(gT-1) card( >s c(G)(g*)®de ¥, )

H

and consequently there exists v, € U(S’—b+1) with ®(u,) € H.

Now let 7;: G? - G denote projection onto the ith factor of G?. By Theo-
rem 1.3 of [Y5], there then exist endomorphisms fi,..., f, of G (not all
trivial) such that for every he H,

Jrem(h)+ -+ fpemyp(h) =0.
In particular, for 2= ®(u,) we obtain
Jree(Biua) + -+ + free(Bpuy) =0.
As we have identified the endomorphism ring of G with R, we have
b
e( .21 j}Biua> =0.
I=

Since u, # 0 and the 8; are K, -linearly independent with some f; € R, non-
Zero,

card(F(S _b+1)+H) < card(T'(S'— b+1)),

(iﬁﬁi)uaﬂez\

i=1

with A # 0. This is contradicted by hypothesis (3) of our theorem. Hence our
claim is established. O
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D. Smaliness of Nonzero Hyperderivative

Select a pair (a’, j) satisfying Claim 3.2 in which, first of all, max d.(a,,) is
minimal and then j is minimal. Then a’e M, (S'N\M,, . (S). So, since the
order of zero of Fr(z) at uy & W(S) is j, the entire function

Fr(z)
(z— ) TI(z—ua)e"’

where the product here (and in the next displayed line) runs over all elements
of M, (S), satisfies

Gr(z):=

Jfi(a’)
H(ua' - ua)qT .

GT(ua’) =
Recall that for an entire function
F(z)= 3 fnz"
h=0

on k.., the maximum modulus principle states that the maximum modulus is
given in any one of several equivalent ways:

M (F)=max{d.(fs) +rh}= sup dw(F(z))
h

d.(z)sr

= sup dn(F(z)).
do(Z)=r

To apply this result to our function, we need the following lemma.

LEMMA 3.4. There is a constant c, such that for all R>0, Mgp(e(z)) <
dR
Coq".

Proof. We proceed along the lines of the proof of Lemma 2.4 of [Y1]. We
remove an e¢ which appears in that result by appealing to Lemma 5.8 of
[Ha], which gives that

do(by) = (cZ—h/d)q",
for some c¢/. The maximum over all of the right-hand terms in the inequality
do(bp)+q"R < —(h/d)g" + q"(R+c!
occurs when 4 is within distance 1 of

——-1—+d(R+c;’ .
logq

Hence

q 1 d(R+c?) dR
M <=—(14+— e) < ) O
r(e(z)) ; ( logq)q Ceq

Applying this bound and the maximum modulus principle to Gr(z) in the
usual way shows that for all R>c;g+ S,
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deo(fi(a')) < =T S(R—S—cig) +io(q "t P+ Tg"+ g+ %),

Keeping in mind that b =2, we can apply this inequality with

re+d
R=
( d )S

to obtain the following.
LeMMA 3.5. For S> ¢y,

’ 1 T, d
doo(_f_}'(a )) < ___T((b+1)rx+bd)/(nc+bd)qb(rx+d) /(re+b ).
21

E. Application of Gelfond’s Criterion
Now if

., 1

dm(Qéa(o)) < _____T((b+1)rx+bd)/(nc+bd)qb(rK+d)T/(rx+bd)’ (9)
. (65%)

we set

Pr(X)=0Q§"(X).
Otherwise, by Remark 3.2, we see that when we take the “norm” (i.e., the

product over all conjugate expressions raised to the degree of inseparability)
of f;(a) from K to Ky, we obtain a nonzero rational function

Pr(0)

Rr0)=5.0)

with
(1) Pr(8), Qr(8) (= QF* ()X %]y e Ky;
(2) max{D(Pr(0)), D(Q7(8))} <cy3q-7* <¢,4TqT; and
(3) max{h(Pr(8)), /(Qr(0))} = c5sTq".

By our lower bound on do,,(Q({a'(())), we see that d,, of the “conjugates” of
fi(a) are at most < c,6Tg”. Thus

1
dm(RT(e)) < _C_T((b+l)rx+bd)/(rx+bd)qb(rx+d)T/(rx+bd).
27

Finally, by our negation of (9), we see that

1
doo(PT(B)) < __C_T((b+1)rx+bd)/(ric+bd)qb(rK+d)T/(rK+bd).
28

Now we apply Gelfond’s criterion (see Appendix) to the sequence {Pr(X)}
to conclude that

K< i_b__..,

rb-2

contrary to our hypothesis. This establishes the theorem. O
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IV. Appendix

In this section we collect a few of the results needed in our proof of the main
theorem above. We retain the previous Drinfeld module notation.

To begin we let K be a finitely generated extension of a finite extension
L of k. Our goal is to define a degree and a height for nonzero elements of
K. To this end, fix a transcendence basis 0,,...,0; for K over L; set
Ky=L(0,,...,0,); and fix a vector space basis 7y, ..., 5, for K over K, (with
n1=1). Additionally, let ey, ..., oy denote a k-basis of L with each «; integral
(and a; =1). Let A, denote the A-span of {oy, ..., af}.

An arbitrary nonzero element x € K can be written uniquely as

x=( S P.(0,, ...,0S)na> /PO(BI, o0 6)), (10)
o=1

where Py, Py, ..., P, are elements of 4,[ X, ..., X;] which are coprime in the
sense that, when each P; is written as

f
Pi(Xy,....Xg)= ( > ai,d,jaj)de‘ e X5,
d=(dp,...,d)\j=1

the collection of coeflicients a; 4, ; does not have any common factors from
ANF,. Let deg x P denote the total degree of P as a polynomial in X3, ..., X;.

Given the representation of x as in (10) we define the degree of x, D(x),
and the height of x, A(x), by

D(x)=max{degy Py, ...,degx P,};
h(x) =max{d.(a; g, ;)}-

When x =0, put D(x) = —oco.
We call any nonzero multiple of Py(8y, ..., 6;) which lies in A,[6,, ..., 0] a
denominator for x.

LEmMA 4.1. Let R,=A,[0,...,0,]n +---+ A0y, ..., O]n,.
(1) Forx,yeR,,
D(x+y)<max{D(x), D(y)} and h(x+y)<max{h(x), h(y)}.

(2) There are positive real constants Cp and C, such that for any ele-
ments X, ..., x;in K,

D(xy---x))=D(x))+ - +D(x)+Cp(l-1);
h(xy - x))sh(x)+---+h(x)+Cy(I-1).
(3) ForxeKyandyeR,, D(xy)=D(x)+D(y) and h(xy) = h(x)+ h(y).

Proof. Standard. (Compare, for example, [Th, §IV] or, for great general-
ity, a forthcoming paper of P. Philippon.) O
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Thiery [Th] has proved a version of Gelfond’s criterion in this setting for an
element 7 € k., to be algebraic over k.

LEMMA 4.2 (Gelfond’s criterion). Suppose that © € k., and that (P,), is an
infinite sequence of polynomials in A[X]. Let

0,=D(P,), h,=h(P,), and s,=—d.(P,(7)).
If for all n= Ny one has

Sp > max{hn5n+hn6n+l +hn+16m hn5n+hn6n—1+hn—16n}
and

lim (5— —hn) = +oo,

n—oo 6"

then P,(t)=0 for all n= N,.
Proof. See [Th, Prop. 3]. O

This version of Gelfond’s criterion applies in the analogue of Gelfond’s set-
ting [Ge], namely when the values under consideration are assumed to gen-
erate a field of transcendence degree 1 over K,. The usual transcendence
techniques providing a sequence of polynomials satisfying this criterion rest,
as in the classical case, on a construction of auxiliary functions. This con-
struction ultimately is based upon Dirichlet’s box principle, codified in the
following lemma.

LEMMA 4.3 (Thue-Siegel lemma). Let K and L be fields as above. When
N=2°*M and a;€ A l0y,...,0,] 1=i=N, 1< j=M), the system of M
equations

N
Ea,-jx,-=0, I=j=<M,
i=1

has a nontrivial solution x,, ..., xy in A,[0y, ..., 0,] with

max D(x;) < max D(a;;)
and
max 2(x;) =max h(a;;) + Cy+2d(2),

where C,, is the constant from Lemma 4.1.
Proof. For positive integers D and H, let
Qy p={(W)1<i<NE A0, ..., 0,]": max D(w;) < D, max h(w;) < H}.

Then
qUHHE=OINCEY < card(Qy p) < g HA=OINEEN,
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For w=(w1,...,wN)EQH,D,
N
D( 2 a,-jw,-)sD+maxD(a,-j)
i=1
and
N
h( E a,-jw,-) < H+max h(a,-j)+Ch
i=1

for j=1,..., M. But the number of distinct M-tuples from A4,[0,, ..., 0;] sat-
isfying these bounds is at most

H h(a,)+C,
q[f'M'( +ma;m((:;,,)+ h)(D+max:)(au)+S)].

Then we have a nontrivial solution of our system of equations as soon as
(H+max h(a;;)+Cy) (D+max D(a;j) +s) < N(D+S>[ H ]

do(1) s S do(1)
or
£> H+max h(a;;)+Cy, ((D+maxD(a,-j)+s>/(D+s>)
M H—d,(t) S s )
Since

D+maxD(a,-j)+s) D+s )( D+maxD(a,-,-)>S
(O )= (),

it is sufficient to choose D and H so large that
N - H+max h(a;;)+Cy, <D+maxD(a,-j) )‘

M H—d,(t) D

Now choose H =2d.,(t)+max h(a;;) + C, and D = max D(a;;). Ol

HyYPERDERIVATIVES. Our nonzero auxiliary functions will be constructed
with a certain vanishing of the initial coefficients in their Taylor series (at
various prescribed points). It is convenient to be able to describe these coeffi-
cients via a notion of derivation in positive characteristic.

For a fixed analytic homomorphism &: k2 —» G™(k,) and a given poly-
nomial Q(X) = (X;, ..., X,,) over k., Yu [YS5] defines the hyperderivatives
of O with respect to ® as the coefficients in the Taylor series

QX +®(2) = Z{ATO(X)}2),
J

where j = (ji, ..., jn,) and 23 = z{" -+ zJm.
In particular,

QX+ 2(z—w)) = AT Q(X)}(z — w)!

J
and

O(2(w) + B(z—w)) = T(ATQ( (W)} (z—w).

i



Gelfond’s Theorem for Drinfeld Modules 233

Since @ is additive, we see that

Q(2(2)) = AT O(2 ()} (z—w)'.
J

In other words, the hyperderivatives A‘}’Q((I)(w)) are the coefficients of the
power series expansions of the composite Q-® at points w.

If, for some we k2, the hyperderivatives vanish for all j with 0< j; <7,
we say that Q(X) vanishes to order T at ®(w) along .
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