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1. Introduction

Let G be a domain in R”. A continuous mapping f: G — R" is said to satisfy
Lusin’s condition (N) if | f(A)|=0 whenever A C G and |A]|=0. Here, |4,
denotes the Lebesgue measure of A. Smooth mappings, say C!, locally Lip-
schitzian or even continuous mappings in the Sobolev space Wh?(G, R"),
p > n, satisfy condition (N). However, it is well known that for p < n, such
mappings fail to satisfy condition (N) (cf. [Po]). For #» =1 the condition (N)
is well understood (see [Sa]), but for n = 2 necessary and sufficient analytic
conditions for (N) are not so clear. The most important recent studies in this
area have been made by Reshetnyak [R3] who proved that a quasiregular
mapping f: G — R" satisfies the condition (N). For continuous mappings in
wln(G, R") he also gave, in [R2], a topological condition that implies con-
dition (N).

Because of the importance of condition (N) in applications, in this paper
we investigate how this property is related to mappings in the Sobolev space
whn(G, R"). We focus our attention on this class of mappings because of its
application to quasiregular mappings and nonlinear elasticity (cf. [Ba] and
[Mu]). We use multiplicity functions, defined in terms of topological degree
and related to the topological condition given by Reshetnyak; to characterize
those mappings that satisfy condition (N) (see Theorem 3.10). We also intro-
duce Sard’s condition (SA): A continuous mapping f: G —» R” with partial
derivatives a.e. satisfies the condition (SA) if Jf(x) =0 a.e. in an open set
A C G yields | f(A)| = 0. This condition can be regarded as a weak counter-
part of the Sard-type result for mappings f with rank f/(x) <n:If f: G- R"
is C'then | f(A)| =0 for A= {x € G: Jf(x) = 0}. In general, continuous map-
pings in W*(G, R") that satisfy condition (SA) do not satisfy (N); how-
ever, if a continuous map fe€ W (G, R") has the property that Jf is of one
sign almost everywhere, then we show that conditions (N) and (SA) are
equivalent (Theorem 3.12). It is easy to see that a quasiregular mapping
satisfies (SA), and hence the condition (N) for quasiregular mappings fol
lows from the above result.
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It follows from our results that continuous mappings f € WG, R")
that satisfy condition (N) are, in some sense, nearly open. It is not known
whether continuous, open mappings f € Wh*(G, R") satisfy condition (N),
but we show in Section 4 that this is true if n=2. In fact, we show that a
mapping f satisfies condition (N) if and only if f is almost open (Theorem
4.4).

Our methods exploit the interaction between certain multiplicity func-
tions that are determined by the topological character of the mapping f and
its Jacobian Jf, which is analytic in character. Much of this interaction has
been developed in the theory of Lebesgue area of surfaces (cf. [F3; F4]).
The multiplicity functions are intimately related to the notion of topological
degree which is carefully discussed in the classical reference [RR] by Rado
and Reichelderfer. '

2. Notation and Preliminaries

The open ball in R” centered at x with radius r is denoted by B(x, r). The
following notion will be central to our development.

2.1. DEFINITION. Suppose X is a metric space and f: X — R” is a con-
tinuous mapping. If C C X then y is an unstable value of f|C if, for every
6 > 0, there is a continuous mapping g: C — R" satisfying | f(x)—g(x)|<é
for each xe C and g(C) CR"—y. A point y is called stable if it is not un-
stable. We denote by

2.1 S(f, X, »)

the supremum of the set of all nonnegative integers m with the property that
X contains m disjoint compact sets C such that y is a stable value of f|C.

2.2. REMARK. One can easily verify that in case n=1 and C is a con-
nected subset of X, y is then a stable value of f|C if and only if y is an
interior point of the interval f(C). Moreover, in this case, S(f, X, y) is the
supremum of the set of all nonnegative integers m with the property that X
contains m disjoint continua C such that y is an interior point of the in-
terval f(C).

We also introduce two more multiplicity functions. The first is

(2.2) N(f, X, y)

which is the number (possibly infinite) of points of £ ~!(»)N X. In the next
definition, we assume that X is an open, connected subset G of R”. As-
suming that f: G — R” is continuous, the components V of f~1[B(y, r)] are
open, connected subsets of R”. If ¥ is compact in G, then we consider the
induced homomorphism

f*:H"(R",R"=B(y,r))—> H"(V,V)
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of the n-dimensional Cech cohomology groups with integer coefficients. The
groups are infinite cyclic [ES, p. 312 and Thm. 6.8(iv), p. 315]. Thus, f* maps
a generator of the first group onto the integral multiple, call it d(f,r, V),
of the second group; in the terminology of Radé and Reichelderfer [RR,
p. 1231, d(f,r,V)=u(y, f, V). Let F(r) be the family of all components
VCCG of f~YB(y,r)]. As in [F3, p. 327], we define
M(f,G,y)=lim Y, |d(f,r,V)|.
r—-0Ve%(r)

Recall from properties of topological degree that the sum of the right of
the above expression is a nonincreasing function of r. Also recall that if for
some r > 0 there are k distinct components of f~!(B(y, r)), say V, Vs, ..., Vi
with the property that d(f,r,V;)#0, i=1,2,..., k, then

(2.3) S(f,G,y)=k.
Another important fact concerning these multiplicity functions is
(2.4) S(f, G, y)=M(f,G,y)

for all y e R” [DF, Thm. 3.11]. We recall a fact that follows from the prop-
erties of topological degree:

(2.5) if M(f, G, y) # 0then y einterior f(G).

The importance of the multiplicity function M (f, G, y) is the role it plays
in Lebesgue area. If X C R” is a finitely triangulable set (such as the closure
of a smoothly bounded domain), the Lebesgue area of a continuous map-
ping f: X — R" is defined by

£(f, X) = inf{lim inf SXIJf,-(x)I dx},

where the infimum is taken over all Lipschitz maps f;: X — R” that converge
uniformly to f on X. A fundamental result due to Federer (see [F1, §4] or
[F4, Cor. 7.9]) states that

(2.6) e X)=| MU, X, ) dy.

The assumption that X is finitely triangulable can be removed by defining
the Lebesgue area of f: G —» R”, where G C R” is an open set, by
L£(f, G)=sup £L(f, X)

where the supremum is taken over all finitely triangulable subsets X of G.
The extension of (2.6) still remains valid in this context [F3, Lemma 6.4]:

@.7) £, 6)=| MG,y dy

Another formula we will need concerns Lipschitz mappings (cf. [F5, Thm.
3.2.3]). If f: G- R"is a Lipschitz mapping then
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2.8) | Jrlax={  N(f.4,»)dy

whenever A C G is a measurable set.

We now consider Sobolev mappings fe€ W!”(G, R") whose coordinate
functions belong to W *(G). Note that Jf exists almost everywhere and is
integrable on G. In case such a mapping is also continuous, it was proved
in [GZ, Thm. 4.1] that

2.9) £(f,G)= SGlJf(x)l dx.
Therefore, in view of (2.7), we have
(2.10) | Jrlde={ MG,y dy

whenever fe WL*(G, R") is continuous.

3. Mappings on R” and Condition (N)

3.1. THEOREM. Suppose fe WH*(G,R"). Then
J < .
| reolax={ NG, p)dy
Moreover, equality holds if and only if f satisfies condition (N) on G.

Proof. We appeal to the result of [F2] which states that any real-valued
function g defined on G that has partial derivatives almost everywhere on
G possesses a surprising amount of regularity. That is, G has a partition

G= UE,',
i=0

where each E; is measurable, i =0, 1, ..., where |Ey| =0, and where g| E, is
Lipschitz, i =1, 2,.... Applying this result to each of the coordinate func-
tions of f, we obtain a similar conclusion. Thus, we may use the same nota-
tion with g replaced by f. Since f|E; is Lipschitz, i >0, we apply Kirz-
braun’s theorem to obtain a Lipschitz extension of f | E; which is defined on
R". Denote this extension by f;. By (2.8) we have that

| [ hcoldx= | N, B, v) dy

for i > 0. By basic methods, it can be shown that Jf; = Jf almost everywhere
on E;. Since f;| E; = f| E; and the E; are disjoint, it follows that

Gy | wmldc=| lifxlax=| NsAanars| NGy,

where A =U{L, E;. If f is assumed to satisfy condition (N), then clearly
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(3.2) [ Jreoldx={ NG,y dy.

On the other hand, if we assume (3.2) then (3.1) implies that f satisfies con-
dition (N). ]

3.2. THEOREM. Let fe Wh"(G,R") be a continuous mapping. Then
f~ W) is totally disconnected for almost all y e R"; that is, each compo-
nent of f~y) is a point.

Proof. We use here the fact that, on almost all hyperplanes A orthogonal
to the coordinate axes, |f(H)|=0 (cf. [BI] or [R], Lemma 6.3, p. 177]).
Fori=1,2,...,n, let P, be a countable, dense set of hyperplanes orthogonal
to the ith coordinate direction on which f has the stated property. Then
| f(P)|=0 where P=U!_, P,. Now, for each ye R"— f(P) we have that
f~Y(») is totally disconnected. Indeed, if C C f~!(y) were a nondegenerate
continuum for some y € R” — f(P), then its orthogonal projection onto some
coordinate hyperplane would also be a nondegenerate continuum. This im-
plies that CN P # @, a contradiction. ]

3.3. DEFINITION. Suppose that fe WH"(G,R") is continuous. We let
® C R" be the set of those points y for which £~!(») is not totally discon-
nected. Also, the branch set By of f consists of all points x € G such that f
is not a local homeomorphism at x. Clearly, By is a relatively closed set in G.

For the next lemma, observe that if y ¢ ® and if x € £ ~!(»), then there exists
ro > 0 such that for all 0 <r <r,, the x-component V of f~}(B(y, r)) satis-
fies VCC G. Thus, d(f,r,V) is defined for all 0 < r <r,.

3.4. LEMMA. Suppose, for almost all y & ® and each xe f~Y(y), that
d(f,r,V)#0 for all sufficiently small r >0. Then f satisfies condition (N)
on G.

Proof. Theorem 3.2 states that B has measure zero. Let {x;, x5,..., X} €
f~Y(») be distinct point-components of y, where y is chosen as in the state-
ment of the lemma. Choose >0 so small that there exist disjoint com-
ponents ¥V, V,,..., V; of f~Y(B(y,r)) and d(f,r,V;)#0 for i=1,2,..., k.
Therefore, M(f, G, y) = N(f, G, y) for almost all y € R”, and (2.10) implies
that

[ rolax=| M6 dy={ NGy dy
G R R
Reference to Theorem 3.1 yields the desired conclusion. ]

3.5. THEOREM. If fe Wb"(G,R") is a local homeomorphism, then f
satisfies condition (N) on G and | f(A)|=0, where A=GN{x: Jf(x)=0].
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Proof. Since f is a local homeomorphism, the local topological degree is
+1 and thus f satisfies condition (N) on G by the previous resuit. Now let
U D A be an open set with the property that

SUIJf(x)I dx<e
for some arbitrarily chosen € > 0. Then, by Theorem 3.1, it follows that
e>| rldx=| NUAU» dy=|AU).
U R
Thus, | f(A4)|=0 as required. O

3.6. THEOREM. Letfe WL"(G,R") be a continuous mapping with Jf =0
almost everywhere on G. Then B;=G.

Proof. 1If G— B, were not empty, there would exist a nonempty open set
UC G— By on which f would be a homeomorphism. Use (2.10) to conclude
that

0=| lreodxl={ MU,y dy.

But M(f,U, y)=1 for all ye f(U) since f is a homeomorphism on U. This
would imply that | f(U)| =0, a contradiction since f(U) is a nonempty open
set. O

3.7. REMARKS. (a) The first part of Theorem 3.5 was proved by Reshet-
nyak [R3, Cor. 1, p. 182] using a different method.

(b) Note that a homeomorphism fe Wb*(G, R") need not satisfy Jf#0
a.e. in G. A simple example can be constructed as follows: Let £ be a Cantor
set of positive 1-dimensional measure in the unit interval, and write

g0 = xz(t)dt

where x z is the characteristic function of the component of E. Then f(x)=
(8(X), X3y ees Xp), X=(X{, X2, ..., X,), has Jf(x)=0a.e. in ExXR""! and f
is even an 1-Lipschitz homeomorphism of R” onto R”.

3.8. DEFINITION. Consider a mapping f: G — R”, fix a point x, € G, and
let L: R” —» R” denote a linear mapping. Let Q denote the n-cube centered at
the origin with side length 2. For small # > 0 and z € Q, define

J(xo+t2) — f(x0)
t
Yxo{t) = sup{| £ (¢, 2)|: z€ Q).

The mapping f is said to have a regular approximate differential at x, if
there is a linear map L and a set A C R such that 0 is a point of metric den-
sity of A and that v, (1) >0as -0, reA. If

.f;co(t’z)= "'L(Z)
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liminfy, (£)—0
t—0

then L is called the weak differential of f at xy. The set A is said to have
metric density at 0 provided '

. l4ango, |
lim =" =

r—0 r

L.

We will let Df(x,) denote the linear mapping L.

While it is true that a function fe W' *(G) has partial derivatives almost
everywhere, it is not true in general that it possesses a total differential al-
most everywhere. However, the following result, proved in [GZ], states that
it does have a regular approximate differential almost everywhere.

3.9. THEOREM. Iffe WLP(G,R"), p>n—1, thenf has a regular approx-
imate differential almost everywhere in G.

This result was essential in proving (2.9). However, it was Reshetnyak [R4]
who first proved that functions in W%”(G) have a weak differential almost
everywhere. Part of the significance of this result resides in the relationship
between the approximate differential and the local topological degree. In-
deed, we recall the following fundamental fact concerning mappings with
weak differentials [RR, p. 329]: If fe W1 "(G, R”) has a weak differential at
a point xy € G, then

(3.3) p(y, [, B(xg, 1)) =sgnJf(xy) = =1

for all » > 0 sufficiently small and all y close to f(x,). Here, u(y, f, B(xy, 7))
denotes the topological degree of f relative to the ball B(xg, r).

This information is used to establish the following result, which is a slight
improvement of the result by Reshetnyak [R2] concerning a sufficient con-
dition for a mapping to satisfy condition (N).

3.10. THEOREM. Suppose feWb"(G,R") is continuous. Then f satisfies
condition (N) if and only if

(3.4 S(,G,y)=M(f,G,y)=N(/f, G,y) almost everywhere in R".

Proof. If f satisfies condition (IN) then—since f possesses a regular approx-
imate differential almost everywhere in G—we may appeal to [RR, Thm.
2, p. 359], which uses (3.3), to conclude M(f, G, y) = N(f, G, y) almost
everywhere in R”. In order to show S(f, G, y) = N(f, G, y) almost every-
where, let A=GN{x:Jf(x)=0}N{x: Df(x) exists} and note that since f
satisfies condition (N), we have | f(A4)|=0 from the proof of Theorem 3.1
and (2.8). Appealing also to Theorem 3.2, it therefore follows that almost
all points y € R” satisfy the following: N(f, G, y) <, f~Y(y) is totally dis-
connected, Df(x) exists, and Jf(x) %0 for each x € f~!(y). Note also that
if B=GN{x:Df(x) does not exist}, then | f(B)|=0 by Theorem 3.9 and



502 O. MARTIO & WILLIAM P. ZIEMER

the fact that f satisfies condition (N). Now use (3.3) and (2.3) to conclude
that S(f, G, y)=N(/, G, »).

On the other hand, if (3.4) is satisfied, we use (2.10) and Theorem 3.1 to
find that f satisfies condition (N) on G. O

3.11. THEOREM. Suppose fe Wb-*(G,R") is continuous with Jf =0 al-
most everywhere on G. For each y € R" and each B(y,r), consider a com-
ponent VCCG of f~YB(y,r)). Then either Jf =0 almost everywhere on
Vord(f,r,V)>0.

Proof. Using the sets E; that appear in the proof of Theorem 3.1, let
D =GN{x:Df(x) exists} N ( ) E)
i=1

Also, let P=VNDN{x:Jf(x)>0} and assume that |P|>0. We will show
that d(f,r,V)>0. If A is any measurable subset of P, it follows from (2.8)
that

| wrode={ N4, dy.

Now, if we take B= f(P)N{y: N(f, P, y) =}, then it follows that |B|=0.
Therefore, taking 4= PN f~1(B), we have that | 4| =0 since Jf >0 on A.
Consequently, after subtracting a set of measure zero from P if necessary, we
may assume that N(f, P, y) < oo for all y € R". Now select y’e f(P)NB(y,r)
and note that £ ~}(»" )N P ={x;, x,, ..., x;} for some positive integer k. More-
over, from (3.3) we see that the local topological degree of f at each x; is
positive. Hence, from properties of the topological degree, it follows that
d(f,r,V)>0. ]

3.12. THEOREM. Suppose feWbHnG,R") is continuous with Jf =0 al-
most everywhere on G. Then the conditions (SA) and (N) are equivalent.

Proof. Assume first that f satisfies the condition (SA) on G. Define TC
Sf(G) to be the set of points y with the property that Jf =0 almost every-
where on some component ¥CC G of f~(B(y,r)) for some r>0. Let &F
denote the family of all such components V and define
D=V
Ved

We will show that |7'|=0. In fact, we will show that | f(D)|=0. For this
purpose consider the family of all closed balls B with the property that B
is centered at some point of D and that B is contained in some Ve J. The
family of all such balls B produces a Vitali covering of D, and therefore
there exists a countable, disjoint subfamily {B;, B,, ...,} such that

D— GBII:-O.
=1

I=
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Since each B; is a subset of some Ve, it follows that Jf =0 almost every-
where on B;. Therefore Jf =0 almost everywhere on D, and consequently
| f(D)| =0 since f satisfies condition (SA).

With ® as in Definition 3.3, choose y¢ ®UT so that f~!(y) is totally
disconnected. Let X, X,,..., X; be a set of point-components of f ().
Choose r > 0 so small that there exist disjoint components V},V,, ..., V; of
S~ Y By, r)) such that x;e V;CCG, i=1,2,..., k. Then Jf cannot be zerc
almost everywhere in ¥; and thus, by Theorem 3.11, we have d(f,r,V;) >0.
Now refer to Lemma 3.4 to conclude that f satisfies condition (N) on G.

Now assume that f satisfies condition (N) on G. Let BC G be a set on
which Jf = 0. Then, with the notation as in the proof of Theorem 3.1, it fol-
lows from (2.8) that

o={ |usmldx={ NUBNA, ) dy,
BNA R

which implies that | f(BN A)|=0. But B=(BNEy)U (BN A) where |Ey| =0,
and therefore | f(B)|=0. O

Note that if we assume Jf > 0 almost everywhere on G, then by Theorem
3.11 d(f,r,V) >0 whenever V is a component of f~!(B(y,r)). Referring
again to Lemma 3.4, we have that f satisfies condition (N) on G. We state
this as the next corollary.

3.13. COROLLARY. If fe WL*(G,R") is continuous and has the prop-
erty that Jf > 0 almost everywhere on G, then f satisfies condition (N) on G.

3.14. REMARK. The result above remains true even if f is not assumed to
be continuous. See [GV] or [Sv].

3.15. REMARK. Theorem 3.12 is not true without the assumption Jf =0
almost everywhere. In [R2] Reshetnyak provides quite an elementary exam-
ple of a continuous mapping f € W2(R?, R?) with the following properties:

(i) f has a total differential almost everywhere;
(ii) Jf # 0 almost everywhere; and
(iii) f does not satisfy condition (N).

For a similar example in R”, n= 3, see [V4]. The authors do not know of
any example of a continuous mapping fe Wh*(R", R") with Jf =0 almost
everywhere that does not satisfy condition (N). Recently, Maly [Ma] has
constructed a continuous mapping fe€ Wb"(R”, R*) such that Jf = 0 almost
everywhere and f does not satisfy condition (N); the mapping f is produced
by a Peano-type construction. Hence, there exist mappings f € wLn(R" R")
that do not satisfy (SA).

3.16. THEOREM. Suppose that fe WH"(G,R") is a continuous mapping
with Jf =0 almost everywhere. If int By =1, then f satisfies condition (N)
on G.
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Proof. By Theorem 3.12, we need only show that f satisfies condition (SA).
Let A be an open, nonempty set with Jf =0 almost everywhere on A. Since
int By =0, the set A— B, is nonempty. But this is impossible by Theorem 3.6
with G replaced by A. ]

3.17. REMARK. The previous result is not true without the assumption that
Jf =0 almost everywhere. The example in Example 3.15 has the additional
property int By = 0.

A mapping f: G — R" is called discrete if f~!(y) consists of isolated points
in G for each ye R".

3.18. THEOREM. Suppose that fe WH*(G,R") is continuous, discrete,
and open. Then f satisfies condition (N) on G.

Proof. By a result of Chernavskii ([C1; C2], see also [V2]), the topological
dimension of By is no more than n—2. Hence, int By =@ and G— By is a do-
main. This result also establishes that f is either sense-preserving or sense-
reversing which, because of Theorem 3.9 and (3.3), implies that Jf is either
nonnegative or nonpositive almost everywhere in G— B;. But now our result
follows from Theorem 3.16. O

4. Mappings on R?

It is not known whether a continuous, open mapping f e Wh"(G, R") satis-
fies condition (N). Note that Jf may change sign for these mappings. How-
ever, in case n =2, we are able to supply an affirmative answer by appealing
to a result of Demers and Federer [DF] that is useful in determining when
the stable multiplicity function is nonzero.

4.1. THEOREM. Let GCR” be an open set with smooth boundary, and
suppose

u:G-R, v:G-R"! f:G-RxR"!

are continuous maps such that f(x)=(u(x),v(x)) for xe G. Then there is
a countable set D C R such that

4.1) SIS, G, (s, 1)1 = S[v, u~!(s),¢]
for (s,t)e (R=D)xR" 1,

The following definition is somewhat artificial, but is introduced in order to
characterize certain mappings that appear in Theorem 4.4.

4.2. DEFINITION. A mapping f: G — R" is called almost open if, for al-
most each y € R”, there exists r > 0 such that each component W of f~1(U)
that contains a point-component of f~(y) is mapped onto U whenever
UC B(y,r) is an open, connected set containing y.
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4.3. THEOREM. Suppose G C R? isa smoothly bounded open set and that
feWL2(G, R?) is a continuous, almost open mapping. Then

S(f, G, »)=N(/, G, )
for almost all y e R2.

Proof. By Theorems 3.2 and 4.1, we need to consider only those y = (s, ¢) €
R? for which f~!(y) is totally disconnected and (4.1) holds. Thus, for all
such y, it will be sufficient to show

4.2) Slv,u=(s),t1=NI[f, G, yl.

Now select y = (s, t) satisfying the conditions stated above, and let x;, x», ...,
X, denote k distinct point-components of f~!(»). Since f~!(») is totally
disconnected, the x;-components V; of f ~1(B(y, r)) for small r >0 are sepa-
rate and V; CC G. Choosing r smaller if necessary, we conclude that since
f is almost open, each component W; of £ ~}(U) that contains x; is mapped
onto U whenever U C B(y, r) is an open, connected set containing y. Hence,
it follows that if 7, is a closed nondegenerate vertical interval centered at
y, then the x;-components C; of f ‘I(Iy) are disjoint and f(C;) =1, for i =
1,2,..., k. Thus, by Remark 2.2, it follows that

S(v,u~(s),t) = k.
This establishes (4.2) since & is arbitrary. O

4.4. THEOREM. Let GCR? be an open set and suppose fe W-2(G, R?)
is continuous. Then f satisfies condition (N) on G if and only if f is almost
open on G.

Proof. We may assume that G is a smoothly bounded open set. If f is al-
most open on G, then from (2.10),-(2.4), and the previous result we obtain

[ rwlax={ MG nay=| s,Grnay={ NGy ay.
G R R R

Now refer to Theorem 3.1 to conclude that f satisfies condition (N) on G.

Now assume that f satisfies condition (N) on G. Then, by Theorem 3.1,
we have that N(f, G, y) < for almost all y e R". Hence, by (3.4), it fol-
lows that

(4.3) S, G, y)=M(f,8y)=N(/,G,y)<

for almost all y. Select such a y and let {x;, x5, ..., X} = f~}(»). In view of
(4.3), there exists >0 such that the components V; of f~!(B(y,r)) that
contain x; have the property that

(4.4) [dfirV)|=1, i=1,2,...,k.

Now let UC B(y, r) be an open, connected set and let W; denote that com-
ponent of f~!(U) containing x;, i=1, 2, ..., k. Then, in view of (4.4),
w(y, f, W;) #0(cf. [RR, Thm. 3, p. 126]) and therefore f(W;) = U. O
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We mentioned earlier that it is not known whether a mapping in W"(G, R*)
with Jf = 0 almost everywhere satisfies condition (N). In case n=2 and fis
a light mapping, we will show that f does satisfy condition (N). A mapping
f: G— R"is said to be light if £ ~!(y) is totally disconnected for each y € R".

4.5. THEOREM. If fe Wb2(G, R?) is continuous, light, and satisfies Jf =
0 almost everywhere in G, then f satisfies condition (N).

Proof. We may as well assume that | f(G)| > 0. For each y, € f(G), let VCC
G be a component (which is open) of f~}(B(yy, r)). In this connection, see
the remark preceding Lemma 3.4. By Lemma 3.4, it suffices to show that
d(f,r,V)>0. This will be established by appealing to Theorem 3.11, which
states that it is sufficient to show Jf > 0 on some set of positive measure on
V. This, in turn, will be established with the help of (2.10) by showing that

(4.5) | MV, 3y dy>o0.

In order to prove (4.5), consider the connected set f(V') C B(y,, r). Note
that (V') is not a point since f is assumed to be light. We may assume that
the projection of f(V') onto the x-axis is an interval, call it J, for if not then
this could be arranged by employing a suitable rotation R of R? about the
point y,. This would have the effect of replacing f with Rof in (4.5), which
is immaterial. Let 7 denote an open (vertical) interval whose endpoints lieon
dB(y,, r) and whose projection onto the x-axis is a point in J— D, where D
is the countable set that appears in Theorem 4.1. Let K = f~1(Z) NV and ob-
serve that K cannot be totally disconnected, for otherwise ¥V'— K and there-
fore f(V—K) would be connected (cf. [HW, §114, Thm. IV 4]). But, on
the other hand, f(V—K)= f(V)—1 is not connected. Thus, since K is not
totally disconnected, X must contain a continuum C and consequently its
image under f is a nondegenerate interval, since f is light. Now refer to
Theorem 4.1 to conclude that S(f, ¥, ¥’) > 0 for some y’e IN B(yy, r). Tech-
nically, to apply Theorem 4.1 we need to know that V is smoothly bounded.
This can be avoided by approximating V from within by smoothly bounded
open sets. Thus, this establishes (4.5) since 0 < S(f, V, ") < M(f,V, y’) and
M(f,V, y) is lower semicontinuous in y. O
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