Discrete Quasiconformal Groups
with Small Dilatation

M. JEAN MCKEMIE

1. Introduction

In this paper we consider discrete uniformly quasiconformal groups which
act on R”, n = 3. We provide examples of such groups which have small dila-
tation, yet are not quasiconformally conjugate to conformal (i.e., M3bius
groups) on R”. Examples of both elementary discrete groups (limit set of at
most two points) and non-elementary (an uncountable, perfect limit set) dis-
crete groups are furnished.

A natural way to construct a quasiconformal group acting on R” is to con-
jugate a conformal group by a quasiconformal mapping. Indeed, Gehring
and Palka [5] first raised the question whether every uniformly quasicon-
formal group might not be of this form. This question was answered in the
affirmative by Sullivan [10] and Tukia [11] for groups acting on subsets of
R2. Hinkkanen [6; 7] has shown that if G is a quasisymmetric (i.e., a 1-
dimensional quasiconformal) group G acting on R, then there is a quasi-
symmetric function f such that f ~'eGof is a group of linear functions.
Later, Tukia [12] constructed for each n = 3 a quasiconformal group which is
not isomorphic to, and hence not quasiconformally conjugate to, a Mobius
group. Methods used by Tukia were later modified by Martin [8] to yield
discrete quasiconformal groups which are not quasiconformally conjugate
to a Mobius group. Further examples were provided by Gehring and Martin
[3] as well as by Freedman and Skora [2]. As each of these groups possesses
a large dilatation, we asked whether a uniformly quasiconformal group with
sufficiently small dilatation must be quasiconformally conjugate to a con-
formal group. The answer is no; by a modification of Tukia’s methods we
showed in [9] that for each » = 3 and K > 1 there is a K-quasiconformal
group acting on R” which is not the quasiconformal conjugate of a Mobius
group. Our examples, like Tukia’s, were not discrete, so the question re-
mained whether such examples existed in the category of discrete quasicon-
formal groups. While the methods used by Martin to extract elementary dis-
crete subgroups from Tukia’s group are entirely applicable to our groups of
small dilatation, the modifications he used to obtain non-elementary discrete
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groups result in a growth of dilatation. Our main result here settles the ques-
tion: We demonstrate that it is possible to construct, foreachn=3 and K > 1,
a non-elementary discrete K-quasiconformal group which is not quasicon-
formally conjugate to a Mobius group. Thus we establish, in the case of uni-
formly quasiconformal groups, that the size of the dilatation alone fails to
determine whether the group is quasiconformally conjugate to a Mobius
group.

2. Notation and Definitions

For n =3 we let R" denote Euclidean n-space; R" is its one-point compactifi-
cation, R"=R"U{x}. We let (e, e,, ..., €,) denote the standard basis of R”".
We write R? and C interchangeably, depending on whether complex nota-
tion is more convenient. We let Q, denote the upper half-plane, Qy={z €C:
Im z > 0}; the lower half-plane is Q;. The notation B"(x,r) indicates the
open ball {y eR":|x—y|<r}, and we abbreviate B"(r) =B"(0, r). Similar-
ly, " Yx,r) =y eR":|x—y|=r}, while $"~!(r) = §"70, r). By A(a,b)
we mean the closed annulus {y e R":a <|y|=< b}, where 0 <a < b <. For
a set ACR", 34 denotes the boundary of A and A denotes the closure of
A, both taken in R”. We use dist(A4, B) to denote the Euclidean distance be-
tween 4 and B in R”, and write dia(A) to indicate the diameter of A CR".

Let X and Y be metric spaces. An embedding f: X —» Y is called L-bilip-
schitz if there is an L =1 such that

|x—y|
L

where we use |x —y| to denote the distance from x to y in an arbitrary metric
space. Let n: [0, c0) — [0, c0) be a homeomorphism. An embedding f: X —Y
is n-quasisymmetric (n-QS) if

|f(@)—S()|=n®)|f(B)—S(c)

whenever a, b, c e X satisfy |a—c|=<t¢|b—c|. An embedding is weakly H-
quasisymmetric (weakly H-QS), where H = 1is a constant, if it is merely true
that we have | f(a) —f(c)|<H|f(b)—f(c)| whenever |a—c|<|b—c|. If we
wish to be less specific, we say that f is quasisymmetric, or weakly quasi-
symmetric, respectively. As in [15], if s > 0 we say that f is s-quasisymmet-
ric if f is quasisymmetric and enjoys the following property: if # <1/s and
a,b,ce Xwith |a—c|<t|b—c|, then | f(a)—f(c)|<(t+5)|f(b)—f(c)|. This
implies that f is -QS for some 75 in a neighborhood of the identity in the
space of homeomorphisms 75: [0, ) — [0, ©); namely,

<|f(x)—f(y)|<=L|x—y| forall x,yeX,

N(@d,s)={n:|n(t)—t|=sfor 0=t =<1/s}.

In fact, this was an earlier definition given in [14] for s-QS mappings. We
denote both the identity mapping of a space to itself and the inclusion map-
ping of X into Y by id. We say f is a similarity if f is 0-QS, that is, if fis
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7-QS wit/h n=id. Every L-bilipschitz embedding is s-QS with s given by s =
(L2—-1)12,

If UCR"is open and G is a group of self-homeomorphisms of U with the
feature that each ge G is K-QC, for some fixed K, we say that G is a K-
quasiconformal (K-QC) group. A uniformly quasiconformal group is one
which is K-QC for some K. If each g € G is the restriction of a MObius trans-
formation to U, we call G a Mébius group. If each g € G is L-bilipschitz, we
call G an L-Lipschitz group.

Let G be a group of self-homeomorphisms of U. We call G a discrete
group on U if G contains no infinite sequence of distinct elements which
converges uniformly on compact subsets of U to an element of G. We say
the group G is discontinuous at a point x € U if there is a neighborhood V
of x in U so that g(V)NV =@ for all but finitely many g € G. We denote by
O(G) the set of all points x in U at which G is discontinuous and call L(G) =
U\ O(G) the limit set of G. We say G is a discontinuous group if O(G) is
non-empty. If G is a discontinuous group, then G is discrete [1].

Suppose that U is a simply connected region in C which is not the whole
plane. The hyperbolic metric hy in U is defined by

hy (a1, z) =inf | hy(2)|dz],
v v
where Ay is the Poincaré density in U, and the infimum extends over all rec-
tifiable paths v joining z; and z, in U. The density Ay is given by
1
A "(2)|= —
v @)=,

where f is any conformal mapping of @, onto U.

If U is a proper subdomain of R” then the quasihyperbolic metric ky; of
U is defined using the density py, where py(x)=1/dist(x, dU). Forx,ye U
we let

ku(x,»)=inf | py(§) |dg]
¥y Y7

with the infimum being extended over all rectifiable paths y joining x and y
in U. In case U=Q, or Q;, we have ky = hy.

Let D be a proper subdomain of R”. An embedding f: D —» R" is called
L-quasihyperbolic (L-QH) if f(D) = R” and if f is L-bilipschitz with respect
to the quasihyperbolic metrics of D and f(D).

3. Preliminary Results

In order to produce the uniformly quasiconformal discrete groups we de-
sire, we combine the methods of construction of Martin [8], which yield dis-
crete groups, and of ourselves [9], which allow control of the dilatation of
the groups. This is a straightforward procedure for the construction of the
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elementary groups, but some different results are needed to produce the non-
elementary groups. We establish the needed results, similar to [8, Thms.
2.6-2.7], in this section.

In what follows, 0<a<b<c<d<oo.

LEMMA 1. Let f: A(a,b)UA(c,d) — C be 1-bilipschitz with f | 44 py=id.
Then f=id.

Proof. Given any z € A(c,d), choose ¢ € (0, 1) so that w =tz € S'(b). Since
|w|+ |w — z| = |z|, we see that |w|+ | f(w) — f(z)| = |z|. Then |w — f(z)|=
|z|—|w/|, which implies that f(z)eS'(w, |z|—|w|). Since | f(z)|=|z|, f(z) e
S'(|z|) as well. Therefore, f(z) € S'(w, |z|—|w|[)NS!(|z]) = {z}. We see that
f=id. U

Now we give a slightly modified version of the so-called annulus theorem of
(14]. In the following, “near A” means “in a neighborhood of A4”.

THEOREM 2. Let f: A(a,b)UA(c,d)— C be L-bilipschitz with

dia(fS(d)) s
dia(/S'(a) =M

and suppose that f | 44, ») is the restriction of an isometry of C. Then there
is an L*-bilipschitz embedding g: A(a,d) — C such that g = f near 0A(a, d).
In addition, L* may be selected to satisfy L*—1 as L — 1.

Proof. By composition with an isometry of C we may assume that f | 4, )=
id. By [14, §5.9] there is an L,-bilipschitz embedding ¢ (f): A(a, d) — C that
agrees with f near dA(a,d). Let ¢(f)=¢(f)ep(id)~). Then ¢(f) is L*=
L3-bilipschitz, ¢(f) = ¢(f) near dA(a, d), and ¢(id) =id. Since ¢ is contin-
uous in the compact-open topology, so is ¢. We need only show that L*— 1
as L — 1. Suppose that L* /A 1as L — 1. Then there is 6 > 0, points z,,, w,, and
maps f,, which are L, -bilipschitz embeddings with L, —1 as n — oo, so that
either

lgn(zn) —gn(wn)l

(%) >1+6 for all n,
|2 — W]

or

(**) 18n(2n) =8 ()] <1-6 for all n,

|20 — Wl

where g, =¢(f,). Suppose first that (*) holds. Then, by passing to subse-
quences, z, =z, W, - W, f, - f, and g, — g = ¢(f), with the mappings con-
verging uniformly on compact subsets of A(a, b)UA(c,d) and A(a,d), re-
spectively [13, Thms. 3.4-3.7]. Then f is 1-bilipschitz on A(a, b)UA(c,d)
with f| 4, »)=1d. By Lemma 1, f=id, whence g =id. Taking limits we see
that (x) implies that |g(z)—g(w)|/|z—w|>1+6. This clearly contradicts
g =1id. A similar argument gives a contradiction if (**) is assumed to hold.
Thus it follows that L*—1as L — 1. O
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We shall show that an L-bilipschitz embedding with small L may be replaced
by an isometry in a certain small region without altering L very much.

THEOREM 3. Let L, >1 and let B= B?(d), where d > 0. There exist con-
stants L,=1 and 6 >0 so that, for each Li-bilipschitz embedding f: B—C
with f(0) =0, there is an L,-bilipschitz embedding g: B — C such that

(i) g=f near S\(d), and
(ii) g|p2s,) is the restriction of an isometry of C.
Furthermore, we may choose L, so that L,—1 as L;— 1.

Proof. Let a=d/10L,, b=d/8L,, and c=8d/10. Now f is s-QS, where
s =(Li—1)"/2. From [16, Thm. 3.1], there is an isometry h: C - C so that
|h—flg < 3C(s) dia(B), where JC(s) is increasing in s and JC(s) »0ass—0
or as L — 1. (By |h— f|p we mean supf|h(x)—f(x)|: x € B}.)
Define f; on A(a,b)YUA(c,d) by

h(z), zeA(a,b),

f(z), zeA(c,d).

We claim that f; is Lj-bilipschitz, where L}—1 as L; — 1. To see this, we

must check | f1(z)—fi(w)| for ze A(a, b) and w € A(c, d); otherwise, there
is nothing to prove. Thus

| f1(z) = fiw)|=|h(z) = f(w)]
<|h(z)—hW)|+|h(w)—f(w)|
<|z—w|+2d3IC(s).

S1(z)=

In consequence,

|f1(z) = fi(w)| <l+2d5C(S)
G.1) |z —w| - lz—w|

Since d/2 <|c—b|=<|z—w|<d+b=<2d, we have
1 1 2

< ==.
2d " |z—w| d

(3.2)

Using this in (3.1) gives us

| f1(z) = f1(w)]
|z—w]|

By the triangle inequality, |A(z)—f(W)|+|f(W)—h(w)|=|h(z)—h(w)]|; o1,

since 4 is an isometry, |h(z) —f(W)| = |z—w|—|f(Ww)—h(w)|. Write

@) Al S0 —hw)|

|z —w| - |z —w|

(3.3) <1+4+43C(s).

Now, from the above and (3.2) we obtain

lfl(Z)—fl(W)l

(3.4)
|z—w]|

=1-43C(s).
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Choose L*=max{1+43C(s), {1—43C(s)}~'}. Note that L} —» 1 as s — 0, that
is, as L;— 1. From (3.3) and (3.4) the claim follows. We now appeal to The-
orem 2 to obtain g: B%(d) - C, so that g is L,-bilipschitz and

(i) g=f,=fnear S!(d), and
(i) gls1a)=/1ls1() is the restriction of an isometry of C.

Since L, —1as L{— 1, we note that Ly—lasL;—1. Set 6=a and extend g
to B2(8) by using the isometry, and we are done. O

4. Construction of the Groups

We give a brief outline of the constructions in [9, §§4, 5] and [8, §3], and
then observe that together they allow construction of elementary discrete
quasiconformal groups with small dilatation which are not quasiconformally
conjugate to Mobius groups. The results from Section 3 are then incorpo-
rated to construct the non-elementary groups.

0 1 0 Sn 1-s, 1 0 Sp 1-sp 1

Figure 1

Fix n=1. Define s, = %(1 +37"). We construct arcs Jy, Jq, J5, ... as shown
in Figure 1 and take J* as the limit of these arcs. Note that each arc, and
hence the limit arc J*, depends on the parameter #. (See [9] for details.) Also,
s,J* is a subarc of J* while J* is a subarc of (1/s,)J* There is a natural
map f:[0,1] - J%, where f depends on n and satisfies f(4/x) = (1/5,) f(x)
for j =0 and 0 <x <47/, Now we define

1 J
J=U (—) U=,

j=z0

and extend f to R as follows:
. J
f(i4’x)=i<si> f(x) for xe[0,1].
n

We retain the name f for the extended map. Note that f(R) =J and that f is
normalized; that is, f(0) =0 and f(1) =1. We remark that the choice n=1
yields Tukia’s original construction of [11]. Set «,, =log(s,)/log( %). Then
for e in (0, 1) there is an N =1 such that for all » > N the map f: R — C asso-
ciated with » satisfies
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e IO

l—e=< <
|x—y|*n 1—e

Consequently, f is weakly (1/(1—¢)?)-QS.

Changing the parameter from » to H as in [9, Lemma 6] we observe that,
given H > 1, there exists a normalized weakly H-QS embedding f: R—C
satisfying

for all x,yeR.

1 _f&x-fo)l

HS x—y <H forall x,yeR,

4.1)

where o =a(H) €(0,1) can be chosen to satisfy o« —»1 as H—1. By [9, §4]
we see that f can be extended to a K-quasiconformal homeomorphism F:
C - C with the properties:

(i) there is an exponent « € (0, 1) and a constant M =1 such that

4.2) I;ll <dist(F(u+iv),J)<M|v|* forall u,veR;

(ii) there is a constant L; =1 such that, for z, w e Q; with C; = Fy({;),

1

4.3) < kcj(Ff(Z),Ff(W)) =L, ij(Z, w) for j=0orl.
Further, each of K, M, L, and « depend on H and may be chosen so that
K, M, L;, a—>1as H—1. If we extend F; to C by setting Fy(e) = oo then
the results which follow hold on R”. For convenience, however, we usually
state them on R”. For n=3 and x e R” write x = (z, y) € RZx R" ™2, Define
F(x)=(F;(z),7). Let G={x~x+ala=(a,0,a,...,a,), a;€R}. Set G=
FoGoF 1, Notice that G varies with H. We note that Tukia’s group G, of
[11] is a G(H) for some large H.

We next present the desired examples of elementary discrete quasiconfor-
mal groups mentioned in the introduction.

THEOREM 4. For each n=3 and K > 1, there is an elementary K-quasi-
conformal discrete group G'= G’(H) acting on R" such that for no quasi-
conformal h:R" - R" is heG’eh~! a Mobius group.

Proof. Let Le; be the mapping of R” given by #(x) =x+e;. Let T’ be the
group generated by {te;:7=1,3,4,...,n}. Let G'(H) be the group G’ =
FoT’F~1. Then G’ is a discrete subgroup of rank n—1 in G. By [9, Thm.
13], G and hence G’ are K-quasiconformal, where K -1 as H — 1. By [8,
Thm. 3.8], G’ is not quasiconformally conjugate to a Mobius group. All the
mappings in G'\ {id} fix only «, and the order of each g e G’\{id} is infi-
nite. Therefore, [3, Thm. 5.10] tells us that the limit set L(G’) = {o}, and
consequently G’ is elementary. We remark that any discrete subgroup of
rank n—1 of G could be used instead of G'. [l
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As in [8], we now wish to alter F; so that it is conformal in a neighborhood
(whose size depends only on H) of each point of {m+i: m e Z}, yet remains
unchanged outside a slightly larger neighborhood. Moreover, we require that
the dilatation of the resulting mapping remain controlled.

THEOREM 5. For 1<H<5/4 thae are constants 6 =6(H)>0 and L'=
L'(H) =1 and a mapping F*: C - C with the following properties:
(i) F*is LQH in Q;, j=0 or 1;
(i) F*|Qo\U,yez B2m+i, H—=1) = Ff|Q\U,pcz B2(m+i, H-1); and
(iii) for every meZ, F*|p2(n+i,5) is the restriction of an isometry of C.
Moreover, we may select L' so that L' -1 as H— 1.

Proof. For any meZ, let z,,=m+i and let B, =Bz(zm, H —1). It suffices
to find 6 >0 and F,,: ¢, — C such that:
(i) F,, is L"-quasihyperbolic in §, for some L’ depending on H,

(1) Fnlog\s,,=Frloy\s,> and

(iii) Fpu|p2(,,s) is the restriction of an isometry of C,
where L’=L’(H) may be chosen to satisfy L’—1 and H — 1.

We may then find F), for each m € Z and replace F; with F,, in each B,, to
obtain F*. Then

F*(Q;)=F;(;)=C;,

F*=F; outside the set U,,cz B*(m+i,H—1), and F* is locally L-QH in
Q (and in @, since F*=Fyin {;) with L’> 1 and H — 1. Then, by (14, Lem-
ma 6.21], F*:C—-Cis L-QH in Q;, j=0or 1.

We now consider Fy|gq . By (4.3), Fyis L;-QH inQywithL,»>1las H-1.
Let Q= {z—i:z2€Qy} and define G,,: Q§— C by

G (2) =P}(Z+zm) —Ff(zm)°
Then G,,(0)=0 and G,, is L,-QH in Q. It suffices to find G,,: Q§— C with
the properties
(i) G,, is L;-QH in QF,

(i) G lag\B2(t1-1) = Gm |9§,\32(H—1), and
(iii") G,,|p2(s) is the restriction of an isometry of C,

for then we may set F,,(z) = G, (2 —Zim) + Gim(z,). Given a set D CQ§, let
dia(D)
dist(D, 0Q3)

roy(D) =
Let A=B?(H—1). Then

_2(H-1)
rﬂa(A) - y—H = U,
where p=pu(H) — 0 as H — 1. By [14, Thm. 6.5] there is ¢;(u) such that
la—b| la—b
4.4) m Skga(a,b)SCl 5 H
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for all a, b e A with a#b. Also, ¢;—1 as p — 0. We observe next that
dist(0, 0G,,,(Q2§)) =dist(z,,,, J);
then an application of (4.2) yields M ~! < dist(z,,, J) <M. Let
H-1
t=HM L —11,
oftep)

and let B = B?(t). We claim that G,,(4) C B. Suppose z € S}(H —1). By (4.4)
we get koy(0,2) < c;[(H-1)/(2—-H)]. Since G, is L;-QH, the above gives

1
H’

H—
kG Q} )(0 Gm(z))<L kﬂ*(o Z)._CILIZ
From [4, Thm. 1.2] we know that

Gy,
kg, (0, Gm(Z))ZIOg(H | A/;Z)I)-

Thus |G, (z)|=MTlexp(L,c;{H—1}/(2— H))—1]=t/H<t, and we conclude
that G,,,(A) C B. Observe that

t

re, @y (B) =< Y, =p",
and that p*= pu*(H) satisfies u*— 0 as H — 1. Thus we find c,(u*) such that
|a—b| la—b|
4.5) m Ska(Qa)(a, b) SCZM—I__

for all a # b € B. Consider G,,| 4. For a, b € A we have G,,(a) and G,,(b) in
B. If we combine (4.5) with the fact that G,, is L;-QH, we discover

M~ -1_
—CZ——kQ*(CI ,0) =[G (@) = Gp(b)| = c, Li(M —t)kgy(a, b).

We may use (4.4) in the above to see that G,,| 4 is L,-bilipschitz, where

M~—t 2—-H
Lz—max{clchlz T c1C2L1M—1 }

Note that A and B depend on the constant H but not on z,,. Now apply The-
orem 3 with d = H—1to find L3, 6 >0, and G,,: A — C so that G,, = G,, near
S!(H—1) and so that G,, | B2(s) is an isometry. Recall that L3 —las L,—1,
that is, as H — 1. It remains only to show that G,, is L-QH in Q. Because
G =G,, in Q§\B*(H —1), we may take L’'= L, there. In B%(H —1), use
(4.4) and (4.5) together with the fact that G,, is L,-bilipschitz to write

2—H
c16, L3(M—1t)

knb(a,b)Ska(n*)(ém(a) Gu(b))

2—
<C1C2L3M 1 kgo(a b)

So select
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) 2—H -1 2—H
L —ma’{l‘h (CIC2L3(M‘_0) ’CIC%LW——I—_?}

to see that G,, is locally L-QH with L'—1 as H — 1. Finally, [14, Lemma
6.21] gives that G,, is L"-QH as desired. U

REMARK. Since F*is L-QH for z € C\R the dilatation of F* is bounded
by (L’)?, hence F* is K(H)-QC where K — 1 as H — 1. Following the proof
of [9, Lemma 7], we see that F* also satisfies (4.2) and (4.3).

Now we have the necessary tools to construct the non-elementary discrete
groups we desire. We follow [8, §4]. For x =(z, y) e RZXR" 2 we set F,(x) =
(F*(z),y). With G and T’ deﬁned as earlier, let G*= G*(H) = F,0GoF;!
and write G,(H) = F,T’-F; !. With & from Theorem 5, let

B=F2(Bn((09 Is O: seey O)aa))-

Let Q be a Schottky group generated by reflections in spheres contained in
B. Finally, let G,(H) = (G,, Q), the free group generated by G, and Q. Our
main result is next.

THEOREM 6. For each n=3 and K > 1, there is a K-QC non-elementary
discrete group G, acting on R" which is not the quasiconformal conjugate
of any Mdbius group.

Proof. By the same proof as in [9, Thm. 13], G* is K = K(H )-quasiconfor-
mal, and for no quasiconformal /#:R”"—R” is heG*oh~! a Mobius group.
Further, we may select K so that K —1 as H — 1. Hence both G, and Q are
K-quasiconformal. By [8, Thm. 4.3 and remarks}], G,(H) is a K-QC group
which is discrete and non-elementary. Finally, if #-G,h~! were a Mobius
group for some quasiconformal A, then #°G,oh~! would be a Mdbius group
as well, because G;C G,. However, by the same proof as in [8, Thm. 3.8],
this is impossible. O
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