On the Functional Calculus of Contractions
with Nonvanishing Unitary Asymptotes

L. KERCHY

1. Introduction

Let 7" be an absolutely continuous contraction on the (complex, separable)
Hilbert space JC. The Sz.-Nagy-Foias functional calculus for 7 is a con-
tractive, weak*-weak*-continuous algebra homomorphism from the Hardy
space H * into the set of all (bounded, linear) operators defined on JC:

or: H®—> &),  ér:h-n(T)

(see [21]). We recall that the spaces H™ and ®B(JC) can be identified as the
duals of the factor space L!/H{ and the von Neumann-Schatten ideal G, (3C)
of trace class operators, respectively (cf. [19]). (All function spaces are de-
fined with respect to the normalized Lebesgue measure /7 on the unit circle
dD, and H(} means the set of functions with vanishing Fourier coeflicients of
nonpositive index in L'.) The mapping ¢+ induces a contractive, sesquilinear
transformation pr: 3C X JC—»L‘/H(}, where pr(x,y) is the unique element
of L'/Hg possessing the property that (2(T)x, y) = {,,, hf dm holds for every
he H” and every integrable function f in the coset py(x,y). The value
pr(x,y) can be considered as the “local density function” of ¢ at x, y.

The powerful theorem asserting that p is surjective if ¢ is an isometry
was proved simultaneously and independently by Bercovici [2] and Chev-
reau [8]. This theorem has many consequences. For example, it follows that
any absolutely continuous contraction with an isometric functional calculus
has a nontrivial invariant subspace, a theorem first proved by Brown, Chev-
reau, and Pearcy [5]. In [6], Brown and Chevreau have shown that the con-
tractions with isometric functional calculus are even reflexive.

Let T@e ®(3¢“) denote the unitary asymptote of the contraction 7 (cf.
[17D). T is an absolutely continuous unitary operator, and JC® 3 {0} if
and only if lim,,_, | 7"x| # 0 for some nonzero vector x € 3C. Let I' =I'y be
a Borel set on the unit circle D such that xpdm is a scalar spectral measure
for 79, (xr stands for the characteristic function of I'.) It is not difficult
to show (see Lemma 3) that if m(I';) =1 then ¢+ is an isometry and so the
Bercovici-Chevreau theorem applies. Thus m(I'y) =1 implies that ran py =
LYH} =n(LY(T'y)). (Here w: L' - LY H}; 7: f~[f] denotes the factor map-
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ping.) In [7], Chevreau, Exner, and Pearcy have shown that the inclusion
ran prD w(L'(I'7)) is true in general; that is, for every function fe L")
there exist vectors x and y in JC such that p(x, ¥) =[f]. They gained the
solution vectors x, y by an iterative process, as the limit of approximate sclu-
tions X, ¥p: pr(Xn, Yu) = [f]. (See [7, Prop. 2.3, Cor. 2.4, and Thm. 2.5].)

In the present paper we shall give a new proof for this theorem. Our proof
is based on the functional representation of the canonical mapping X inter-
twining 7" and 7® and provides the exact solutions x, y immediately. Dis-
cussing the consequences of the aforementioned relation, we find that the
predual of the algebra generated by the unitary asymptote 7? can be natur-
ally embedded into the predual of the algebra generated by 7. Furthermore,
it turns out that the adjoint of this embedding coincides with the restriction
of a canonical mapping between the commutants of 7 and 7@,

2. Preliminaries and the Main Results

1. Inthe sequel let 7€ B(3C) be an absolutely continuous contraction; this
means that |7'| <1 and the unitary part of T is absolutely continuous (see
[21, §1.3]). Following [1] we introduce the functional calculus ¢4 via the uni-
tary dilation of 7. Therefore, let us consider the minimal unitary dilation
Ue B(X) of T. U is an absolutely continuous unitary operator on the space
X containing 3C, V{U"3C:ne Z}= X, and T" = P; U" | 3C holds for every
neN. (See [21, §1.4].) The mapping

ér: L* - ®(3C), br: [ f(T):=Py f(U)]3C
is clearly contractive, linear and weak*-weak*-continuous. For any two vec-
tors x, y € IC, let w, , € B(3IC)* denote the functional defined by wy, ,(A4) =
(Ax,y) (A € B(3C)). Since the composite mapping wy, ,°¢7 is a weak*-con-
tinuous linear functional on L™ there exists a unique function in L', denoted
by (x-y)r, such that
DX,y =0y N =|_ flx-y)rdm

aD
holds for every function fe L®. It is obvious that
XL, T (x,y)i=(xy)r
is a continuous, sesquilinear transformation; |77(x, )| <|x||»|. If Tis a
unitary operator with spectral measure E, then
(x-y)rdm=E, ,:=(E(-)x, ).

The dilation property of U and the weak*-weak*-continuity of ¢ imply

that the restriction
bri=dr|H®: H® > B(IC)

is a weak*-weak*-continuous algebra homomorphism, called the Sz.-Nagy-
Foias functional calculus for 7.
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DEFINITION 1. Let p be the composition of the mappings 7 and 77; that
is,

priXx3->LYHL,  pr(x,y)=[(xy)rl

It is clear that p is a continuous sesquilinear transformation, and pr(x, y)
is the unique vector in L!/H{] that represents the functional w, ,°¢7.

It was proved in [2] that if ¢4 is an isometry then pr is a surjective, open
mapping; more precisely: For every L € LY/H{ and > 0 there exist vectors
x,y € JC such that [(x-y)y] =L and |x||»|=< (1+9)|L]|. The class of all ab-
solutely continuous contractions having the latter property was denoted by
Ay(1).

2. A new semi-inner product can be introduced on JC by

= 1mL(T %, T")  (x,ye I0).
n—co
Factorization and completion yield a Hilbert space JC{*), where T acts as an
isometry 749, Let T e B(3'“ = 3¢i") be the minimal unitary extension
of T{9; T is called the unitary asymptote of T. (Using a generalized Ban-
ach limit, this operator can be introduced even in the case where T is a power
bounded operator; see [17].)

The canonical embedding X = X7 of 3Cinto JC'? intertwines the contrac-
tion 7 with its unitary asymptote 7@: XT=T@X, whence by continuity
Xh(T)=h(TP)X follows for every h e H®. This relation allows us to make
a first attempt to relate the mappings pr and prw.

LEMMA 2. For every vector x € 3C and v e 3¢9 we have:
[(x-X*v)r] =[(Xx-V)1@].

Proof. Indeed, let he H™ be arbitrary. Then

[[(x-X*v)7], h]=(h(T)x, X*v)
=(XR(T)x, vy = (W(T D) Xx, 0) = [[(Xx-V)r@],h]. T

Since V{T@™"X3C: ne N} = 3@, by Lemma 2 and [2, Lemma 4.1] we con-
clude that {pr(x, X*v):xe 3, ve I3} is a dense set in w(LY(I'7)). Our
aim is to show that this set actually coincides with 7 (L'(T'7)).

The intertwining transformation X induces a homomorphism between the
commutants of the operators 7"and 7® in the following way. Let A be an
arbitrary operator in the commutant {7} := {Ce B(3): CT=TC} of T.
Then by [17, Thm. 2] there exists a unique operator Be {T @} such that
XA =BX. It can be easily seen that the mapping

yr:(TY > {(TYY,  yr:A~B

is an algebra homomorphism, and that y(A(T)) = h(T ®) holds for every
heH®™,
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For any Borel set oo C dD and any function f e L* we shall use the nota-
tion | f |4, « for |xo f|w. The following lemma provides us a lower estimate
for the norm of the functions of 7.

LEMMA 3. Theinequality |h|r, . <|h(T)| is true for every function he H®.

Proof. Since yris a homomorphism, it follows that the spectrum of A(7"?)
is included in the spectrum of #(T). Taking into account that #(7"?) is nor-
mal and |A(T?)| =|A|r, », we obtain the desired inequality. O

Therefore, d)}‘" is an isometry if m(I';) =1, and by [2] we obtain the follow-
ing corollary, which was already proved in [7] (see Theorem 2.5 there).

COROLLARY 4. If m(I'y) =1 then Te Ay(1).
There is a natural way to enlarge the operator classes A4,(r) studied in [3].

DEFINITION 5. Let r=1 be a real number and let o be a Borel set on the
unit circle dD. The absolutely continuous contraction 7 is said to be of class
A,(r, @) if, given any function fe L'(«a):=x,L' and >0, there exist vec-
tors x, y € JC such that

[Ce-»)rl=[f] and |x||y|=(+m)|f).

It is obvious that A,(r) =A,(r,dD). (Related operator classes were investi-
gated in [7]; see Definition 3.2.)

The result of Chevreau, Exner, and Pearcy [7], cited in the Introduction,
can now be stated as follows.

THEOREM 6. Every absolutely continuous contraction T is of class
A1, T'7).

3. Proof in the Functional Model

The following lemma allows us to reduce the proof of Theorem 6 to the case
where 7 is completely non-unitary.

LEMMA 7.

(a) Given any e >0 there exists an affinity Q € ®(3C) such that QTQ ' is
a completely non-unitary contraction and |Q||Q | <1+e.

(b) Suppose S=QTQ =1 Then for all vectors x, y € 3C we have [(x-y) sl=
[(Q7'x-Q*»)7].

(c) The unitary asymptotes of the operators S=QTQ ! and T are uni
tarily equivalent; hence I's=T1'7.

Proof. (a) The contraction 7 splits into the orthogonal sum 7’=7T,®7T, of a
completely non-unitary contraction 77 and an absolutely continuous unitary
operator T,. Furthermore, 7, is unitarily equivalent to an orthogonal sum
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@i M,,,, where M, € B(L*(ar)) denotes the operator of multiplication by
the identical function x (x(z) =z). For every k, let us choose an outer func-
tion ©, e H™ such that |Q,|= [1+e/2]”1xak+x3p\ak holds a.e. (cf. [12]).
Then |O(z)~!|<1+4¢€ (z € D) is true for the diagonal matrix 6 = diag(6;).
Hence by [21, Thm. IX.1.2] there exists an affinity Q such that 070 ~!=
T,®S(0©) and |Q]]|Q ~!| <1+e¢. Here S(O) denotes the model-operator cor-
responding to O, and so it is completely non-unitary. Let us consider the
polar decomposition Q = V|Q]; it is immediate that the affinity Q =| 0| pos-
sesses the required properties.
(b) Since for every function h € H* we have

|, ilx-2)sdm= (h(S)x, ) = QHTIQx, ¥y = CH(T)Q'x, Q")
—_ ~1,.. N*
=|  mQ™x-gy)rdm,

it follows that [(x-y)s] =[(Q ~'x-O*y)7].
(c) Let S@e (B(SCfg")) be the unitary asymptote of the power bounded op-

erator S=QTQ ™!, and let X’e B(3C, 3" be the natural embedding of 3C
into JCE;’). By [17, Thm. 2] there exists an operator Q’e (B((}C(S"), (}C(Tf” ), inter-
twining S and T, such that Q’X’ = XQ. It is clear that

ran Q' Dran(XQ)=ran X.

On the other hand, by the intertwining relation 7@ Q’ = Q’S® we infer that
(T~ "Q'=Q"(S)™", and so

ran Q' Dran((T)~"Q’) Dran((T'?)™"X)
(a)

is true, for every positive integer n. Since V, o nran((7?)™"X) = JCr7, we
have that Q’ has dense range. Thus 7‘? is unitarily equivalent to the restric-
tion of S@ to a reducing subspace (see [11, Lemma 4.1]).

By symmetry we obtain also that S is unitarily equivalent to the restric-
tion of 7 to a reducing subspace. Hence 7(® and S® must be unitarily
equivalent (see [13]). O

Therefore, in proving Theorem 6 it can be supposed that 7 is a completely
non-unitary contraction, or (what is essentially the same) that 7= S(0) is a
model-operator (cf. [21, Chap. VI]). Hence let &§ and &, be separable Hilbert
spaces, and let us consider a contraction-valued analytic function ©: 4D —
® (&, &,). Assume that O is purely contractive; this means that the values of
the analytic extension of © to the unit disc are strict contractions. Let us
form the spaces X = L*(8,) @ (AL%(8))” and X, = H%(E,) ® (AL*(8))",
where A(z) = (I—0(z)*0(z))"? (z € D), and let U e ®(X) denote the op-
erator of multiplication by x. The compression 7= P; U|3C of U to the
subspace 3C= X . O {Ow®Aw: w € H?(8)} is a completely non-unitary con-
traction, called the model-operator associated with © and denoted by 7=
S(0©). The operator U is the minimal unitary dilation of 7.
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As can be expected in a function space, a short computation shows that

(x-»)r(z) =<x(2), (2N e, (2€dD)

for all vectors x, y € JC. Furthermore, there is a functional representation for
the pair (X, T‘9) also. Namely, let R, be the operator of multiplication by x
on the function space &, = (A, L2%(8.))~, where A,(z) = (I —O(z)O(z)*)'/?
(z € aD), and let X € ®(3C, R,) denote the restriction of the transformation
given by the matrix [—-A, ©], with respect to the decomposition H?(&,)®
(AL%*(8))~, to the subspace JC. Then X intertwines 7" with the unitary operator
R.: R, X =XT, and there exists a unitary transformation Z € B(®.,, 3¢9)
such that ZR, = T®Z and X = ZX. Thus the pairs (X, 7?) and (X, R,) are
equivalent (see [15] and [17]). As an immediate consequence we obtain

I'r={ze€dD: A.(z) #0}.

It will turn out that the cases |A,(z)|=1and |A.(z)] <1 can be handled dif-
ferently; hence we provide the following definition.

DEFINITION 8. For any model-operator 7= S(0) let [y=T, ; and I'|=
I'}, 7 denote the sets

I'y={z€dD:0<|A.(z)]<1} and T |={ze€dD:|A.(z)|=1].
It is evident that I'yUT, =T and I'hyNT; =#.

We shall need yet a simple fact about defect operators. Let A be a contrac-
tive transformation from a Hilbert space & into a Hilbert space G. Let us
consider the defect operator D= (I—A*A4)"/? and the defect space D =
FOker Dy, and let us introduce the space Dy 4= DyOker(Dy—1) and the
operator Dg 4:=Dy| Dy, 4€ B(Dy, 4). Taking the polar decomposition of
A, we have the following connection between the defect operators of A and
its adjoint A*.

LEMMA 9. For any contraction A€ ®&(F, G), the operators Dy 4and Dy 4
are unitarily equivalent: Dy 4= Dy 4.

The following lemma is a common generalization of the lemmas in [16] and
[22], and plays a key role in our proof of Theorem 6.

LEMMA 10. Given any 0< p <1, there exist functions ue H 2(&,) and
ve (AL*(8))™ such that:

) (u®v)(2)e,0e—xrR)|<p fora.e zedD;
V2

(2 —2~—p<l|(—A*u+ev)(z)

. <l+p fora.e. zely;

and
3) 1—p <|(—A.u+0Ov) ()|, <1+p forae zel\.
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Proof. Let us be given an arbitrary real number 0 <e <1 and a dense se-
quence {x;}xen in the unit sphere of the Hilbert space &.,.

Let us decompose the set I'y into the union of the measurable sets a =
{zeTp: |A«(z)]>V2/2} and B=T,\ . For any k € N, let a{") denote the set
{z€ a:|AL(z)x;] >V2/2}, and let us consider the sequence {ay o} e Of dis-
joint measurable sets defined by o, o= o{} and oy o= {Y\ [U4Z] a;, o] for
k=2. It is clear that Uy oy o=«

In the same way, let us define the sequence {ay,1}xen as o =% and
o1 = O 1’\[UJr 101, 1] for k = 2, where a‘o) = {zel}: ||A,,(z)xk||>1—e
This sequence gives a measurable partition of the set I.

Finally, let us be given a sequence {e; ]}y Of positive numbers such that
2 e <E.

For every ke N and / € {0, 1} there exists a function @ ;€ H* such that

Iuk [I Xak,+ekX8D\ocklae *?

let u; , denote the vector-valued function uk,,xkeH (E4). Since

o 1 o
> 2 lup(z)|=2 X ex<2e for a.e. zedD\(aUTY)
k=11=0 k=1

and
1
E > lug ()| =142 E ex—e;<1+2¢ fora.e. zeaq;,
k=11=0
(jeN,le(0,1}), we infer that the series 3 7_; 31 Uy, ; converges point-
wise and in L2-norm to a function u € H2(8,) such that

4) Il

For any ze€dD let us introduce the spaces 8¢(z):= Dy g(z), &+ 0(z):=
Dy, 6(z)*» and the operators Ay(z) =Dy g(z)€ B(E(2)), A« 0(2): =Dy, 0(z)*€
®(Ex«,0(z)). Eo(+), &« o(+) are measurable subspace functions and Aq(-),
A, o(+) are measurable operator functions (see [10]).

Let us suppose that ze 8. Then 0 <|A,(z)] <V2/2; thus by Lemma 9 it
follows that |Ag(z)| =|A« o(z)] =] A«(z)], whence we gain that 0 <|Aq(z)] <
v2/2. Therefore there exists a function v e L?(8) such that v(z) € §(z) for
a.e. zef and

5) lv(z)|e=xp(z) for a.e. z€dD.
We conclude that ve (AL%*(8))™ and

1/2
18(2)v(2) e, = (1—]Ap(2)v(2)|3) V2 = [1__%]

g.— Xaur,(2)|<2¢ for a.e. z€aD.

6)
= - for a.e. zep.

From (4) and (5) we infer that
™ I

for a.e. zeaD.
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On the other hand, for a.e. ze«; ¢ (j € N) we have
142e>u(z)|=|-A)u(z) + 0 ()v(2) | =|AL(2)u(2)]

(8) =Z|A(2)uj,0(2)|— X AUk, 0(2) | — 2| Ax(2)uy, 1 (2)]
‘/i k#]j k
> '—2—— —'26,

whereas for a.e. ze «;; (j€N) we have
142e>|—A(2)u(z) +O9(z)v(2)]
) Z"A*(Z)“j,1(4’5)"—]2 _"A*(Z)uk,l(Z)"_%IIA*(Z)UI(,O(Z)H
J

>1—e—2e=1-3e.
Finally, in view of (6), for a.e. z€f3:
14+2e > |u(z)|+|v(2)| = |—A«(z)u(2) + O (2)v(2)|

10)
20| -Ju(@)] > 2 ~2e.

Now choosing e = p/3, it follows by the inequalities (7)-(10) that the func-
tions u, v satisfy the conditions (1)-(3). L

We are ready to prove Theorem 6.

Proof of Theorem 6. As was pointed out at the beginning of this section
(see Lemma 7), we can assume that 7" is a model-operator: 7= S(9). Let
fe L") and 0 < 5 <1 be given. It can be supposed that f# 0.

We are looking for vectors x and y in JC such that

(an [(x-»)r]=1f]
and
(12) I xlyl= A+9)|fli-

(a) Vectors satisfying (11) and (12) can be especially easily found if O is
an inner function (see [21, §V.2]). Hence let us assume first that ©(z) is an
isometry for a.e. z € dD. Then A,(z) is an orthogonal projection for a.e. z €
oD, and so I"=T.

Let us consider a real number 0 < p <1. By Lemma 10 there exists a vector
Xo=u@®ve H*(&,)®(AL*(8))” such that

13) lx0(z)|—xr(z)|<p fora.e.zedD,
and for the vector h= —A,u+ Ov we also have:

(14) NA(z)|—xr(z)|<p fora.e. zedD.
Let us choose a function # € H* such that

(15 16(z)| = xr ()| Az)| "+ xop\r for a.e. z€dD.
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Let v denote the set {zeT':|f(z)|/?=p)} and let £ H? and ye LX(T") be
functions satisfying the conditions
(16) El=x, |/ ["*+pxap\, and EG=/.

Then the vector x is defined as the projection of &0xye X, onto the sub-
space JC:

a7) x 1= Pye(£0x,).

It can be easily verified that Xx = —A (£0u) + O (£0v) = £0h.
Introducing the vector yy = n6h e ®,, we have that

(Xx-¥0)z.(z) = (86h-n0h) 5, (z) = £(z)n(z) = f(z) for a.e. z€eT.
Therefore, defining y € 3C by
(18) y:=X*Yg=Pgp(—Ayo@O*y,),

on account of Lemma 2 we conclude that (11) is true.
On the other hand, by virtue of (13)-(18) it follows that

llxﬂzsusexouzs(1+p>2(1—p)—2§w|s(z>12 dm(z)

(19)
<(1+0)*(1=p)" (| f 1 +0?)

and

20) P =lyol={ In@)P dm(z) <)f1h.

But (19) and (20) immediately imply (12), provided that p is sufficiently small.
(b) Now, let T=S(©) be an arbitrary model-operator and let us consider

a real number 0 < p <V2/2. By Lemma 10 there exists a vector x,=u@ve

H?(8,)@®(AL%*(8))” satisfying condition (13) and such that

(14%) —?—p<llh(2)|l<l+p for a.e. zeT

is true for the vector A= —A ,u+ Ov. Defining 8, &, 4, x, y by formulas (15)-
(18), the relations (11) and (20) will hold; furthermore, we infer that

(19%) [XxP=1gohl < | @) dmiz) <|f]i+ 0%
Given a positive integer n, let us introduce the vectors

a7, x":=T"x

and

(18") y':=X*R!y,.

In view of Lemma 2 we obtain
[(x"y) 7l =[(T"x-X*R:yo)rl = [(XT"x-R?yo)z.]
11") = [(RY Xx-Riyo)z, 1 =[(Xx-yo)z.]
=[(x-rl=L1f].
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Taking into account that lim,,_, | 7"x| =] Xx| =] Xx]|, it follows from (19*)
that

(19" |x' P <|fhh+20°

if n is large enough. Since the relation

(20") Iy P <lyol? =l

is obviously true, we conclude that

(12" Ix Wy 1=+ fl

holds if p is sufficiently small. O

4. The Preduals of the Algebras
Generated by 7T and 7@

Let Te ®(3C) be again an arbitrary absolutely continuous contraction.

First of all, let us recall that for any vectors x, y € 3C the expression x&y.
denotes the operator of rank 1 defined by (x®@y)(h):={(h, y)x (he 3C). Itis
obvious that the sesquilinear transformation

w: I X IC - C(3C), w(Xx,y)=xRy

is continuous; indeed, |w] := sup{|w(x, V)| = [xl[¥|: x| = L |y =1} =L
This mapping is universal; in fact, the pair (w, C;(3C)) can be considered
as the projective tensor product of the Hilbert space JC by itself (see [18,

p. 93]).

LEMMA 11. Given any continuous, sesquilinear mapping p from the Car-
tesian product 3C x 3C into a Banach space G, there exists a unique transfor-
mation R € ®(C(3C), G) such that p = Rew. Furthermore, |R|<|p|.

Proof. For the sake of completeness we sketch the proof. Let us define
the linear transformation Ry on the set of finite rank operators F(JC) by
Ro[X?_ 1 xi®yil:=27=1 0(x;,¥;). To show that R, is well defined let us as-
sume that 2}7_; x;®y; =0, and let us consider an arbitrary linear functional
A € G*. The composition Aep is a continuous, sesquilinear form, so it can
be represented by an operator 4 € B(3C); that is, (Aep)(x,y)={(Ax,y) for
every x,y € JC. Then

[2 p(Xi, Vi ] 2 A(p(x;,y)) = 2<Ax,,y,>-—tr[A > x,®y,]

i=1 i=
and since A € G* was arbitrary, it follows that X7_; p(x;, ;) =0. Therefore,
R is well defined on F(3C).
Given any orthonormal sequences {e;}7-,, {f;}7=, of vectors and positive
numbers {s;}-, for the operator C=3Y/_,s;e;® f; we have that

IRo©)1=] £ sinter o] <101 £ si=lolict.
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Thus R, is bounded: |Ry| <] p|, and so its continuous extension R to C;(3C)
will have the required properties. ' O

On the basis of the previous lemma the homomorphism ¢+ can be recovered
from the sesquilinear mapping pr as follows.

PROPOSITION 12. There exists a unique transformation
Pre®(€,(3), L'/Hy)

such that Prew= py. Furthermore, |Pr|<|pr|=<1, and the adjoint of Pr
coincides with the functional calculus ¢r: P} = ¢r.

Proof. In view of Lemma 11 we have only to identify the adjoint of Pr. But
given any vectors x, y € JC and function #e H ™ we infer that

[Pr(x®y), hl1=[pr(x,»), h1=[1(x-Y)r], h]

=SaD h(x-y)rdm=<h(T)x, ).
At the same time,
[Pr(x®y), h]1=[x®y, PTh] =tr(PTh)(x®Y)) = {(P1h)x, ¥);
therefore ¢+h = h(T) = P%h, which was to be proved. O]

The linear span of ran pyis dense in L!/H} if and only if the linear transfor-
mation P has dense range, and by Proposition 12 this occurs precisely when
ker ¢7= {0}. The latter condition means that the contraction is not of class
Co (cf. [21, §III.4]).

Let us denote by @ the closure of ran ¢+ in the weak*-topology of & (3C).
Then the preannihilator

1@ r:={Ce C(3C): tr(CA) =0 for every A e Gy}

of @ coincides with the kernel of the transformation Pr: *Qr=ker Py. Let
us form the factor space Q= C;(3C)/*Qr, and let wr: C;(IC) —» O be the
factor mapping: 7;(C) =[C]:= C+ 1@ (C € C;(3C)). There exists a unique
transformation o€ B(Qr, L'/H}) such that grewy=Pr. It is clear that
lerl=<1 and ker ¢ ={0}. Taking into account that the dual space of Qr
can be identified with @ (see e.g. [9, §1I1.10]), we gain that the adjoint of

@r is ¢
21) ‘ 0T =7,

when ¢r is considered as a mapping into Q.
The following theorem illuminates the connection between the algebras
QGr and @7 and their preduals Q7 and Q.

THEOREM 13.

(a) There exists a unique transformation Fre &(Qrw, Qr) such that
oreFr=¢rw@, Fr is one-to-one, and
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(22) Fr[XxQv]=[x&®@X*v]

holds for every x € 3C and v e 3¢9,
(b) The adjoint of Fr coincides with the restriction of vyr, introduced in
Section 2, to the algebra Qy:

(23) Ft=vr|CGr.

Therefore Ff =~ |Qr: Qr— Qrw) is a norm- and weak *-weak *-con-
tinuous algebra homomorphism.

Proof. (a) By Lemma 11 there exists a uniquely determined transformation
Prae B(C(3C@), L' such that 77w = Pjw@ew,, where w,: 30@ x 30@ -
C,(3C®) is defined by w,(u, v) =u®v (u, ve J@). It is evident that

ran P = LY(I");
hence, taking into account that 7o P = Pr@ = ¢1@° 7@, we obtain
(24) _ ran ¢r@ = w(LYT")).

On the other hand, ran ¢y =ran PrDran p and by Theorem 6 the range of
pr contains 7(L!(I")). Thus

(25) ran oD w(LY(T)).

Since ¢ and ¢r@ are injective transformations, it follows from (24) and
(25) that there exists a unique one-to-one linear mapping Fr: Qrw — QOr
satisfying the condition ¢7°Fr=¢r@. It can be easily verified that F is a
closed transformation, hence F; must be continuous.

Equation (22) is an easy consequence of Lemma 2.

(b) Given any vectors x € 3¢, v e 3¢ and any function # e H®, by (22)
we have :

[FrlXx®uv], i(T)]=[[x®X*v], K(T)] =tr(h(T) (xR X*v))
= (h(T)x, X*v) =(Xh(T)x, vy = h(T D) Xx, v)
=tr(A(T)(Xx®)) = [[Xx®v], h(T)].

Since the vectors of type [Xx®uv] form a total set in Q7 (), it follows that
Frh(T)=h(T?D).

Let us now consider an arbitrary operator A in @. There exists a net {/,}
of H* functions such that 4,(7T) - A in the weak*-topology. Then the op-
erators h,(T?) = F#h,(T) converge to the operator F#(A) in the weak*-
topology also. We infer that the nets {Xh,(T)} and {4,(T?)X} of linear
transformations converge to the mappings X4 and F7(A)X, respectively, in
the weak operator topology. Since X4, (T)=h,(T'?)X holds for every »,
it follows that XA = F#(A)X. The operator F#(A) clearly commutes with
T(@; hence F}(A) =y (A). C

Since the mapping Fr is one-to-one, its adjoint has dense range: (ran F§)™ =
Grw@. On the other hand, by the previous theorem we obtain a sufficient
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condition for the case when Fr has dense range. Let us recall that the con-
traction T is said to be of class C;. if lim, _, |7 "x|# 0 for every nonzero
vector x € JC.

COROLLARY 14. If T is a C,.-contraction, then (ran Fr)~ = Q7.

Proof. 1If Te C,., then vy is obviously one-to-one. Hence, by (23) we obtain
that ker F# = {0}, which implies that (ran Fy)™ = Q7. O

Finally, we characterize the case when F is surjective.

PROPOSITION 15. The following three conditions are equivalent:

(a) ran Fr=0Qr;
(b) ran o7 =x(LY(T'7));
©) vr|@Qs: @y — Qrw@ is an isomorphism.
Moreover, if m(I'y) <1 then conditions (a)-(c) are all equivalent to:

(d) T is similar to T®.

Proof. Conditions (a) and (b) are equivalent because ker ¢ = ker o7 =
ker Fr-= {0} and ran o7 = n(L!(I")) Cran ¢7. The equivalence of (a) and
(c) follows from (23) using a theorem of Banach (see e.g. [9, Thm. VI1.1.10]).
Furthermore, it can be easily seen that (d) always implies (c).

Let us assume now that m(I'y) <1 and (c) is true. Since the Lebesgue mea-
sure m is not absolutely continuous with respect to the spectral measure of
the unitary asymptote 7@, it follows that 7(? is a reductive operator, and
so (TWye Grw. (See [23] and [9, §1X.9].) Exploiting the assumption that
the mapping yr|Q@7: @r - Qrw is an algebra isomorphism, we have that T
is invertible and that | 7" = |y7 /(T “)™")| < | F7 |(T@)*| = | F7!| for every
integer n. Therefore, both T and its inverse 7' ~! are power bounded opera-
tors, and hence a theorem of Sz.-Nagy implies that 7" is similar to a unitary
operator (cf. [20]). Then, by [17, Thm. 2], T must be similar to its unitary
asymptote T4, O

Let us consider now an operator Se ®@(JC) which is similar to the abso-
lutely continuous contraction T that is, S is of the form S = QTQ !, where
Q € ®(3C) is an affinity. The Sz.-Nagy-Foias functional calculus can be trivi-
ally extended for S by #(S):= Qhr(T)Q ! (he€ H®). The mapping ¢5: H® -
®(3C), ¢g: h— h(S) is evidently a bounded, weak*-weak*-continuous alge-
bra homomorphism. In view of Lemma 7(b) and (¢), it is easy to verify that
the results of this section are true also for the operator S.

5. Concluding Remarks

The technique used in our proof for Theorem 6 can be also applied to prove
the following slightly stronger version of Theorem 6. This corollary played
an important role and was proved by an iterative process in [7] (see Corol-
lary 2.4 and Theorem 2.5 there).
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COROLLARY 16. Given any positive number n, positive integer k, and
functions fi, ..., fr€ L'\(I'), there exist vectors x, 1, ..., ¥y € 3C such that

(26) [(x-y)rl=1f;] Jfor 1=j =<k,
@7) Wil=Ihl? for 1<j=<k,
and

k 1/2
28) Ix]= <1+n)[ _zluf,-u,]

J=

Proof. Let us introduce the function f =2f=1| fil e LI(I"). Let us define £ e
H?by (16) and, forany 1 < j <k, let 5 ;€ L2(I") denote a function such that
£n; = f;. Then, by the proof of Theorem 6, it can be seen that some vectors
X, Y1, +.-, Vi defined through the formulas (17), (17), (18), and (18’) will sat-
isfy conditions (26)-(28). O

The following proposition shows that the sesquilinear mapping p is not
necessarily surjective if m(I'r) < 1.

PROPOSITION 17. Suppose that vy is a Borel set on the unit circle dD,
m(y) >0, and v~ #0D. Then there exists an absolutely continuous con-
traction T € ®(3C) such that Te Ay(1,~) but [1] ¢ ran pr.

Proof. By [14] there exists a contraction 7e 8 (3C) of class Cyy (=C;.NC.g)
such that I'r =+ and o(7) Cy~. In view of Theorem 6 we have that Te
Al (1 > 7) .

On the other hand, since o(7T") C+y~ # 8D we infer that T is invertible and
that its inverse can be approximated by the polynomials of 7 in norm. This
means that the restriction of 7" to any invariant subspace is invertible, and
hence x € V,,»; T"x holds for every vector x € JC. But it is easy to verify that
the latter property is equivalent to the condition [1] ¢ ran py. L

In contrast to the previous operator, a non-invertible Cg-contraction 7"’'e
®B(3C’) can be found as well with I'y» =+. Let f € JC’ be a nonzero vector
such that
TS ,
T —[0 O]E(B(I}C@C)
is also a C y-contraction (cf. [4]). It is clear that I';» =T’z =+, but now [1] €
ran py.

Considering the unitary *-asymptote 7% := ((T*)?)*e ®(3{”) of the
contraction 7, we can obtain the duals of our previous results. Let Y =Yr:=
(X71+)*e B(3CH, 3C) be the canonical intertwining mapping 7Y =YT{9,
and let

'Y*,T:iT}I""{T*(a)}’: 'Y*,T:A""’C

be the algebra homomorphism, where C is the unique operator in {T{?}
satisfying the condition AY =YC. Let I', =T, 7 denote the Borel set on the
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unit circle aD such that x dm is a scalar spectral measure for 74, and let
A = Ay denote the set I' UT', 7. Using these objects in place of X, v, and
I'y, we have the following statements.

LEMMA 2*. For all vectors ue 3¢\9 and y € 3C, it is true that
[(Yu-py)r]=[(u-Y*y)r@m].

LEMMA 3'. For every function he H%, the inequality |h|, - <|h(T)| is
valid.

THEOREM 6*. Every absolutely continuous contraction T is of class
Al(la r *,T)'

These results raise the following question.

QUESTION 18. Isit true that Te A;(1, A7) for every absolutely continuous
contraction 7°?

Using the technique of [1], it can be proved that “near factorizations” exist
for the elements of L'(A7) as follows.

PROPOSITION 19. Given &, ...,£,€ 3C, € >0, and fe L'(Ay), there exist
vectors x,y € 3C such that {x,§;> =<y, £;) =0 for j=1, ..., p, | x||¥|=| /]
and | f—(x-y)rli<e.
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