Space-Preserving Composition Operators
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1. Introduction

If ¢ is an analytic function mapping the unit disk A into itself, and if f
belongs to the Hardy class H?, then the composition (f-¢) belongs to H?
also. This was first pointed out by Littlewood [7]. Our object here is to con-
sider when a reverse implication may hold. That is, let H(A) = H be the
topological vector space of functions holomorphic on A and let V be a sub-
space of H. We ask the following question: What are the holomorphic func-
tions ¢ mapping A into A, such that whenever fe H and (f-¢) €V it fol-
lows that f e V? A function ¢ satisfying this condition will be said to possess
property () relative to the subspace V.

It is immediately clear that if ¢; and ¢, possess property (*) then so does
(¢1°¢5). We will show in Example 5 of the next section that ¢; and (¢1°¢,)
may possess property (*) even if ¢, does not. As a first example, a linear
fractional transformation mapping A onto A clearly possesses property (*)
relative to the H? spaces, BMOA, and the disk algebra. Further, if ¢, is a
linear fractional transformation mapping A onto A, then (¢;°¢;) possesses
property (*) relative to the H? spaces, BMOA, or the disk algebra if and
only if ¢, does.

Ryff [9] proved the following theorem related to our question: Let f be
nonconstant and analytic on A. Let ¢ be analytic on A with ¢(0)=0 and
le| <1. Then | f|,=|fe|, if and only if ¢ is inner. Later, Nordgren [8]
showed that if ¢ is an inner function, then ¢ possesses property (x) relative
to HP. And, the composition operator C,, is norm-preserving on H? (| f|, =
|.fol,) if and only if ¢(0)=0.

In this paper we introduce a family of functions ¢ mapping A into A for
which (%) holds for the H?” spaces, BMOA, and the disk algebra. Our maps
can be factored as a finite Blaschke product times a nonconstant outer func-
tion, and hence have modulus strictly less than 1 on arcs of dA =T of positive
measure. In addition to satisfying (*), the composition .operators associated
with these maps provide examples illustrating results of spectral properties
of C, as studied by Cowen [2; 3].
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2. Some Examples

We begin with some examples that illustrate how the geometry of the image
of a function ¢ in the unit ball of H* is related to the question of whether it
possesses property (%) relative to the H? spaces. In fact, in order for a func-
tion to possess property (*) relative to the H? spaces, its image will have
to contain most points near the unit circumference. Yet, a function may
map onto the entire disk and not possess property (*). A further purpose for
including these examples is the motivation they provide for our later con-
struction.

EXAMPLE 1. Let ¢(z)=2z/2. Then ¢ does not possess property (*) since
for any fe H, (fop) is continuous on the closed unit disk whereas f may
belong to no H” space. More generally, suppose that ¢ maps A into A but
omits an entire neighborhood of some boundary point { of A. If f(z)=
1/(z—¢), then (fe¢) is bounded whereas f does not belong to H .

EXAMPLE 2. Letr (0<r<1) be fixed and let ¢ denote a universal cover-
ing map of A onto the annulus 4 = {r <|z|<1}. Let f be analytic on A and
suppose that (fo¢) is in H? for some p > 0. There exists a harmonic func-
tion v(z) on A such that | fee(z)|”<v(z) for all z in A. By the theory of
covering maps there exists a function V, harmonic on A4, such that V() =v.
Thus | f(w)|? < V(w) and hence f belongs in H”(A). Gauthier and Hengart-
ner [6] have shown that if a function is locally in /? at each boundary point
of the unit circle, then it belongs to H” of the entire disk A. Hence, any uni-
versal covering map of A onto the annulus A = {r <|z| <1} possesses prop-
erty () relative to H”, even though its image omits the entire disk {|z|=<r}.

EXAMPLE 3. As mentioned earlier, the work of Nordgren [8] shows that
all inner functions possess property (%) relative to the H” spaces. It is also
the case that inner functions possess property (*) relative to BMOA. This
may be shown using the equivalence of BMO to (H!)*. Suppose that g € H?,
feH! ¢ isinner, and ¢(0)=0. We further assume that (fo¢)e BMOA.
Then

S fgdm’= “ fgdmso“"=
¢]=1 J¢]=1

J s o) o) dm

< C(fop)|geeli=C(fo0)|glis

where C(f-¢) is a constant depending only on (f°¢). Since this inequality
holds for all g € H?, we conclude that f € BMOA. Now if ¢(0) # 0 then the
above argument, with ¢ replaced by ¥ = Se¢ (where S is a linear fractional
transformation taking A onto A and satisfying S(¢(0)) =0), shows that ¢
possesses property (*) relative to BMOA. Since S is invertible, we conclude
that ¢ also possesses property (*) relative to BMOA.
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EXAMPLE 4. Let a be fixed, 0<a <w. For z in A, define

_ K((1+2)/(1-2))""—1

K(1+z)/(1=2)¥/"+1’
Now, ¢, maps A in a one-to-one manner onto a lens domain in the disk
bounded by the upper half of the unit circle and a circular arc in the disk
making an angle ¢ with the unit circle at +1. Let f(w)=1/(w—1). The func-
tion f is in H” for all p <1, but f is not in H'. The function

1 K((1+2)/(1—2)"+1

?q(z)—1 —2
belongs to H” for 0 < p <w/a, and so each of these functions (f-¢,) be-

longs to H!even though f does not. Hence, ¢, does not possess property (*)
relative to the H” spaces.

where K =e/(m=a/2,

?q(2)

f°§0a(z) =

EXAMPLE 5. Next, let y,=(¢,)% where ¢, is defined as in Example 4.
The function y, maps the disk into the disk and for various choices of @ has
the following mapping behavior.

(i) If 0<a< /2 then Y, maps A onto a crescent with multiple point at
z=1. The valence is 1 for points in the crescent and 0 for points in
the disk but not in the crescent. The angle formed by the unit circle
and the internal boundary curve of the crescent is a.

(ii)) If a==/2 then ¥, maps A onto the disk with the segment [0, 1) re-
moved, and each point in the range is covered once.

(iii) If /2 < a <« then the mapping ¥, maps the disk onto the disk. There
is a crescent in the disk with {|z| =1} in the boundary of the crescent
and in this crescent the valence of y, is 1. The interior of this crescent
is covered twice and the angle formed by the lower boundary curve
of this crescent with the upper unit semi-circle is a.

Again, with f(w)=1/(w—1) we see that

1 K/1+4z\Y™ 1 1 /14z\¥/7
JW) @)= T F “"4"(1_—2) _TTI?(T—"E) ’

Hence, f(¥,) isin H? for 0 < p<=/a but fisin H” only for 0 < p <1. Thus
¥, does not possess property () relative to the H” spaces.

Notice, however, that if #>2 then (¢,)” does possess property (*) rela-
tive to the H? spaces, even though ¢, and (¢,)? do not. This may be seen
as follows. We observe that for n>2, each ¢ (|f|=1) has at least one pre-
image point s with the property that (¢)” takes a neighborhood of s to a
neighborhood of ¢ in a one-to-one manner. Thus, if (fo¢) belongs to H?”
then f belongs to H” in some neighborhood of each boundary point, and
the work of Gauthier and Hengartner [6] again shows that f belongs to H?”
of the entire disk A. This implies that (¢,)"” possesses property (*) if n > 2 rel-
ative to the spaces H”. For example, if n =3, (¢,)> is the composition of the
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inner function z> with ¢,. This composition possesses property (*) relative
to the H” spaces even though ¢, does not.

3. Our Construction

3.1. A 2-valent example. For w in the upper half-plane, define

Y(w) = k( - -&)—) +Log(w).
Then a simple calculation shows that Im(y¥(w)) >0, so ¢ maps the upper
half-plane into the upper half-plane. For w on the positive real axis, y(w)is
real while Im(y(w)) = 7 on the negative real axis. In order that the image of
Y contain the entire upper half-plane, we fix k > % Then the real part of ¢
increases from —co to 400 as w increases from —oo to 0. As w increases from
0 to 4o, the real part of y again increases from —oo to +o0. Thus, for w in
the upper half-plane, y(w) covers the strip {0 <Im({) < w} exactly once and
the half-plane above the line {Im(¢) = w} exactly twice. To get a function
from A to A, put ¢ = U-y/oS, where
[ 1+z SN A |
S(z)—z(l_z) and U($)=S (i)—(g__H.).

Then ¢ takes the lower semi-circle in a one-to-one manner onto the entire
boundary of A, whereas the upper semi-circle is taken by ¢ to a circle ly-
ing inside A which is tangent to the boundary at the point z =1 (the image
under U of the line {Im({) = =}). Points inside this internally tangent circle
are taken on twice, while points inside the unit disk but outside this inter-
nally tangent circle are covered exactly once. A straightforward computa-
tion shows that

A(iz*+4kz—1i)
[(=2k—1)+(=2k+1)z24i(1—z2) Log(i[(1+2)/(1—2)])1*"

The denominator is both bounded and bounded away from zero, and thus
¢’ is bounded. In order for ¢’ to equal zero, z must equal (2k + /4k%—1)i.
Therefore, if k is real and k > 1, then ¢’ is never zero on |z|= 1. Conse-
quently, on the boundary of the unit disk, the derivative of ¢ is both bounded
and bounded away from zero.

We now show that the function ¢ just constructed possesses property (*)
relative to the H” spaces. So, suppose that f is analytic on A and that (fo¢)
belongs to H” for some p > 0. We wish to prove that f belongs to H”. Define

N(|f|P,e"y=sup{|f(z)|P:z€ S,(e", v)},

¢'(z)=

where
Sp(em, v)={z:(1—|z])<p and |Arg(l -—e“”’z)| <7].

Then, for fixed p and v, f € H?if and only if N(| f]?, -) € L'. So we will com-
pare { N(|f|?, -) with [ N(|foe|?, -).
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Since p({e*: —r<a=<0})={e’: 0<0<2x}, we have

50 N(|feoel? ei“)dO‘:SZWN(lwa” o le'?) L.
— ’ 0 ’ |’ (¢~ (e')]

Now |¢’| is bounded. To complete the argument, we compare
N(|fop|?, 07 'e") with N(|f]?,e™).
To do this, we will show that

0718, (", I C S, (07!, )

for appropriate choices of r, 8, p, and v. This is routine when e’ is bounded
away f;om 1 since ¢ is analytic and one-to-one in a full neighborhood of
o 1(e").

Let 91 be a small neighborhood of 1 intersected with {|w|<1}. Let ®* and
®* be the two components of ¢ ~}(91) (near —1 and +1, respectively), and
put ® = p(®R*) and B = p(B*). Then IR N {|w|=1} is the arc from 1 to e
(ax >0) and dI® N {|w| =1} is the arc from 1 to e ik,

Let g=(¢ I(R*)_‘, the inverse of the restriction of ¢ to ®*. Then Theo-
rem IX.6 of Tsuji [12, p. 358] implies that arg(¢’) is continuous on ®* away
from the “corners” of d®*. Tsuji uses this theorem to prove Lemma 1 [12,
p. 359] which, in our situation, implies that g(S,(e", v)) D Ss(g(e’®), y—e),
where 6 and e can be chosen independently of 6, 0 <60 < ax/2. A small mod-
ification of his proof also shows that g(S,(e’, 8)) C S,(g(e’’), B+¢), where
p and e can be chosen independently of 6, 0 <0 <ax/2.

To estimate N(| f|?, e”®) for —a%/2=<6<0, use ® and ®B* in place of &
and ®R*

The obvious estimate now shows that { N(| f]?, e%) d6 <+, and fe H”
as we wanted.

3.2. Examples with higher valence. To produce examples like ¢ which have
property (*) but have higher valence, replace (w) in the above construction

Va(w) = ﬁ {Ck< WA _ w—ak+1>+ak LOg(—w:ﬂ—)},

W—0ag 4 W—dag W=l 41

where a,,<a,<---<a,<ajarereal and 2¢; > o, >0for k=1,2,...,n
Observe that each term of this sum is a positive constant that is multiplied
by y((w—ay)/(w—ay.,)). Thus, each term has the same mapping behavior
as Y except that, in its domain, the negative and positive real axes are re-
placed by the interval [a, ;, a;] and its complement, respectively. The imag-
inary part of the kth term equals w«y on (a4, @;) and 0 on the complement
of [ay1,ax]. Thus, if we require that 0 < «a, < a,_;<--- < oy, then the va-
lence of F, is 1 on the strip {0 <Im(¢{) < 7a,}, 2 on the strip {wo,, <Im({) <
w,_1},-.., and zn on the half-plane above the line {Im({) =w«;}. Now put
¢, =U-F, oS, where S and U are as before. There are now n nested circles,
internally tangent to A at the point z =1, such that the valence of ¢, goes
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from 1 to n as one goes step by step from the boundary of the unit circle into
each successive circle. The derivative of ¢, is still bounded and bounded
away from zero on the boundary of the unit disk, and ¢, again possesses
property (%) relative to the H” spaces.

3.3. Spectral properties of C,. We shall now point out some spectral and
smoothness properties of the composition operators C,, (defined by C,(f) =
See) for the functions ¢ = ¢, just constructed. The operator C,, is one-to-
one and bounded below on H”. The functions ¢ all have radial derivatives
on some arcs of the unit circle and so, by Shapiro and Taylor [11}, the com-
position operators C,, are not compact. We have the following information
relating to the work of Cowen [2; 3]. If we choose ¢ so that ¢ has no fixed
point in the unit disk and say ¢(1) =1, then we know [2, p. 89] that C,(f) =
M\ has an infinite number of eigenvectors for each complex A. So, for exam-
ple, if S(z)=i((1+2)/(1+2)), U=S"1, and F(w) =w—1/w+Log(w), then
¢(z) =U(F(S(z))) maps the disk into the disk, with ¢(1)=1. We claim ¢
has no fixed point in the disk. To see this, observe that it is sufficient to prove
that F has no fixed point in the upper half-plane. This is readily checked.
We define T; inductively as follows: Ty = {¢: |t|=1,0<arg(s) <} and, for
J>0,T;=¢ _I(Tj_ 1). We see that any eigenvectors for this problem are ana-
lytic on Ug T;.

If, however, we define G(w)=1/(2+x/2)F(w) (where F is as in the pre-
ceding paragraph) and then set y(z) = U(G(S))(z), then ¢/(0) = 0. Further,
¥’ (0)=—(i/(2+w/2)) and so 0 < |y’ (0)| < 1. Thus zero is an attractive fixed
point. Again by a result in Cowen [2, p. 89], the eigenvalues are.given by
A= (¥’(0))". Once more, the eigenvectors in this case are analytic over Ug T;.

3.4. Property (x¥) for BMOA and the disk algebra. We show in this sec-
tion that the functions we have constructed possess property (*) relative to
both the disk algebra and the class BMOA (the linear BMO space of analytic
functions on A, which is the dual of H'). Let ¢ be a mapping as constructed
above.

PROPOSITION. If (fee) isin the disk algebra, then f is in the disk algebra.

Proof. The proof is the observation that f is clearly continuous at any point
t #1 since ¢ has a unique inverse near such a point. If =1, we check that
the cluster set of f at 1 has at most » points. Since the cluster set must bte
connected, it is a singleton and hence f is continuous at 1. O

To show that a similar result holds for BMOA, we recall a criterion that im-
plies that a holomorphic function on the disk belongs to BMOA. Let Q(A, i)
be a Carleson set of length # and with center point ¢ on the unit circle. A
function Fis in BMOA if

“ (1—|z»)|F'(z2)|*> dx dy
Qh, t)
is uniformly bounded for all #>0 and all |¢|=1[S, p. 240].
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THEOREM. . The function fep(z2)=F(2) is in BMOA if and only if f is in
BMOA.

Proof. To show that if a function f belongs to BMOA then so does (f~¢),
use the fact that an analytic function belongs to BMOA if and only if it
may be expressed as the sum g,+ig,, where g, and g, are analytic and both
Re(g;) and Re(g,) are bounded. Upon taking the composition, one con-
cludes that (f-¢) belongs to BMOA also.

To prove the converse, suppose that (f~¢) belongs to BMOA. It suffices
to check the integral condition for f over Carleson sets Q(#4, 1). Divide the
Carleson set into two pieces, say 21 and Q~, where

Qt={zeQ(h,1): Im(z) >0}

and Q7 is defined analogously. Consider the integral

Hgﬁu(l—h”lz)lf’(W)l2 du dv.

We choose a single-valued inverse of ¢ on this set and let A* be the preimage
of Q% under this inverse. The set A* is contained in a Carleson rectangle, say
Q(h’,s), and we may choose 4’ (by the distortion bounds on ¢) so that 0 <
a <|(h'/h)|<(1/a), where a depends on ¢. Now

S Sm(l_ w|*)|f"(w)|* dx dy

1— 2
- S S <'—|§’L(%>(l—|Z|2)|f’(90(2))|2|(,9’(z)|2 du dv
e\ TRl

sConst.H (1—|z|»)|F"(z)|? du dv.
QU s)

By our assumption, F'= (fe¢) is in BMOA and so this quantity is bounded.
A similar estimate holds on €7, and we conclude that f belongs to BMOA,
as was to be proved. O
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