A STABLE SPLITTING
FOR THE MAPPING CLASS GROUP

R. M. Charney and F. R. Cohen

Introduction. Let I'§ , denote the mapping class group of a surface of genus g
with » boundary components and s punctures. Because of their close connection
with moduli spaces of algebraic curves, the homological and homotopy-theoretic
properties of these groups are particularly interesting. Many of these properties
are independent of the genus g, providing g is sufficiently large. It is therefore
convenient to define a limit group I' =lim I'2 | (see §1 for details). By a theorem
of Harer [7], the homology of I' is the same as that of I'? , for any r, in degrees
i << g. Moreover, T is a perfect group; hence we can form a simply connected
space BI'+ with the same homology as I'. The space BI' * has a natural H-space
structure and there is a natural A-map BI't - BGL(Z)*. Using this map, one
can derive homotopy properties of BI'* from those of BGL(Z)*.

In particular, Quillen ([12], [13]) showed that the maps BGL(Z)* — BGL(F,)*
induced by reduction mod ¢ split when localized at appropriate primes p; or, in
other words, that BGL(Z)* splits as a product of spaces

BGL(Z)+ =Im J(I/Z) X ?,
where

Im J(I/Z) = ]_—I BGL(Fq)?-p)
p odd

(cf. §2). In [3], Charney and Lee prove that the composite map
B7:BI't —)BGL(Z)+ —Im J(l/2)

induces a split surjection on homology. It is natural to ask, therefore, whether
this composite also splits on the space level. This question remains unanswered,
but in this paper we prove that there is a stable splitting of B (Theorem 3.1) and
hence a splitting of spaces (Corollary 3.2),

szwBI‘ =Q*°X® Im J(l/Z) x 7.

Analogous splitting theorems for BI'§ , have been proved by the second author
in [4] in some special cases. For example, a stable splitting of BI‘(‘,‘, o 1s given in
terms of the symmetric group on four letters and the Steinberg idempotent for
GL,(F,). In another example, it is shown that there exists a homomorphism 6:
Z/5— I‘g, o Which induces an isomorphism on the 5-primary component of homol-
ogy, and in [1] Benson uses these results to give a complete calculation of H,,(I‘g, 0)-

The first two sections of this paper contain definitions and some well-known
facts about mapping class groups and general linear groups. Section 3 contains
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the statement and proof of the main theorem, and Sections 4 and 5 contain some
observations on H,(BT'*;Z/2) and =n,.(BT'*;Z/p).

We would like to thank Ib Madsen and Mike Hopkins for their valuable sug-
gestions. The first author would also like to thank the Institute for Advanced
Study for its hospitality during the writing of this paper.

1. Mapping class groups. In this section we establish some notation and review
some known facts about mapping class groups. Let S, , denote an oriented topo-
logical surface of genus g with r boundary components. (Sg, r is obtained from a
g-holed torus by removing r open disks.) Let I', , denote the mapping class group
of S, ,. That is, I', , is the group of isotopy classes of orientation-preserving ho-
meomorphisms of S, , which pointwise fix 85, ,. (As punctures will play no role
in what follows, we write I', , instead of I'? ,..)

For r =1, we can identify S, ; with a subspace of S, ; as shown below.

QD

Ne—
S

¥ g,l\/\“—_——/

Sg+l,1

Extending a homeomorphism of S, ; via the identity to a homeomorphism of
Sg+1,1 gives rise to an inclusion I'y =T, ;. Using these inclusions we define the
stable mapping class group:
F - @ I‘g’ 1
g

Similarly, identifying S, , with (S, ¢—1I, D2) C S, , gives rise to a natural map
Pg, r— Fg, 0-

The following facts about mapping class groups will be used repeatedly in later
sections.

1.1 For g=3, H\(I'g,)=0 ([6], [11]) and so the groups I', , and I" are per-
fect. We can therefore apply Quillen’s plus-construction to the classifying spaces
BT, , and BT to get simply connected spaces BT}, and BT'+ whose homology is
that of I', , and T, respectively.

1.2 By a theorem of Harer [7], the natural maps I', o < I'y ; = I" induce iso-
morphisms on H; for g = 3/ +1. It follows that the induced maps BT';rq < BI';f| >
BI'* are i-connected for g = 3/ + 2. Moreover, Harer [8] shows that BT, ; has the
homotopy type of a finite complex. It follows that BI't+ is of finite type.
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1.3 Let A be a commutative ring with unit. Then for e=0,1, H,(S, ;A)
is a free A-module of rank 2g equipped with a natural symplectic pairing (the
intersection pairing). An element v €I’y . induces a well-defined isomorphism
s of H{(S,, .; A) which preserves this pairing. Choosing a symplectic basis for
H,(S,,; A) over A, we thus obtain a homomorphism

I-‘g,e - Sng(A) - GLZg(A)-

For e =1, the bases can clearly be chosen so that these maps commute with the
natural inclusions I'y 1= 'y 41,1 and Spyg(A) = Spy,+1)(A4). Hence they give rise
to a homomorphism 73P: I" - Sp(A), or forgetting the symplectic pairing,

74: ' > GL(A).
1.4 As observed by Miller [10], one can define a sum operation
Lo 1 XTg 1= Teggrs

by viewing S, as the union S, 4, 1=S5, ;UPUS, |, where P is a sphere with
three disks removed (a “pair of pants”):

QLD

A pair of homeomorphisms 4, 4’ representing (respectively) elements of I', ; and
I',. ; extends via the identity on P to a homeomorphism of S, .- ;. This defines
the sum operation and induces a monoid structure on I1,. o BI'; ;. The space
BI't may be identified with Q¢B(II BT, ), the zero component of the group
completion of this monoid. In particular, BI' * is a loop space. (Miller [10] has in
fact shown that BI'+ is a double loop space.) The sum operation defined above is
clearly compatible with the block matrix sum operations

Sp2g(A) XSpyg(A) = Spae+y(A4),
GL;,(A) X GL,,(A) = GL (4 421 (A).
Identifying BSp(A4)* and BGL(A)* with the group completions
QoB(LI BSpy,(A4)) and QoB(LI BGL;y(A)),

it follows that the maps BI'* — BSp(A4)* and BI'* - BGL(A4)* induced by 75P
and 74 are loop maps.
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2. The space Im J(;/,). From now on we make the following assumption on p
and q.

ASSUMPTION 2.1. p is an odd prime and ¢ is a prime such that ¢ mod p2 gen-
erates the multiplicative group of units in Z/p2.

It follows from this assumption that g'—1#0mod p for 0<i< p—1, and
that p divides g#—1—1 exactly once. We remark also that, for any p, there exist
infinitely many g satisfying the required properties.

Let F, denote the field with g elements. Then for fixed p, the homotopy type
of the space BGL(Fq)fp) (where X,y denotes the p-localization of the space X)
is independent of the choice of g [12]. We may therefore define (up to homotopy)

spaces
Im Jp = BGL(E,) ),

Im Jgyo) = II ImJgp).
p odd

Here, 11 denotes the weak infinite product. In §1.3 we defined homomorphisms
Tg=TF, I' » GL(F,). These induce maps

B ¢

BT * % BGL(F,)* 2> Im J,,
where ((,) is the localization map. Together these define a map
Br: BI't > Im J(1/2) .

The proof of our main theorem will involve the p-Sylow subgroups of the finite
groups GL, (F,). These are well known. A lucid reference is Chapter VIII of Fie-
dorowicz-Priddy [5].

For any group G, the wreath product Z/p | G is defined by

Z/pfG=(Gx---xG)XZ/p,

P copies
with Z/p acting on G X --- X G by permuting the factors. We write
Z/p§*G=2Z/p{(Z/p§(--(Z/p|G))--")

k times

and define groups
o= Z/p’

me=2Z/p§m_1=2Z/p{*Z/p.
We also define inclusions
(T WkQGka(p—l)(Fq)!

(0 —1)
1 0
ag:mg—> GL(,_1)(Fy), 1~ 1 s
0 -1
1 -1
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Z/p§oy_,
—_

op: g =2Z/pf gy Z/p§GLpk-1(p-1) CGLyk(p-1)s

where Z/p § GL,(F,) is viewed as the subgroup of GL,,(F,) generated by the
block matrices

[GL, 0
GL,

0 GL,,
and the order-p permutation matrix

I, 0 1,
I, -
0
I, O
Using the fact that

n
|GL,(Fp)|= Hl (¢'—Dg'",
=

one can calculate the p-adic valuation of |GL,(F,)|. From this one easily verifies
that o, maps 7, isomorphically onto a p-Sylow subgroup of GL,x(,_1)(F,).

3. The main theorem. We adopt the following standard notation and termi-
nology. Let X and Y be based CW-complexes and assume that all maps are base-
point preserving. The group of homotopy classes of stable maps X°X - XY is
denoted by {X, Y}. The localization of X at p is denoted X ,,.

An element fe{X, Y} is an equivalence if the following equivalent conditions
hold:

(i) 3ge{Y, X} such that feg =identity in {Y, Y} and gof=identity
in {X, X};

(i1) f induces isomorphisms 7§(X)— 7w{(Y) (where w$(:) ={S", -} denotes

stable homotopy);

(iii) f induces isomorphisms H,(X)— H,(Y).

An element fe[X,Y]} is m-connected if the following equivalent conditions
hold:

(i) the maps #(X) — «$(Y) induced by f are isomorphisms (resp. surjective)
for i <m (resp. i < m);
(ii) the maps H;(X) — H;(Y) induced by f are isomorphisms (resp. surjective)
for i <m (resp. i <= m).
We say that fe {X, Y} is a p-local equivalence if the induced map

S €X s Yim}

is an equivalence, and that f is p-locally m-connected if f,, is m-connected.
We now state and prove our main theorem. The conditions of §2.1 on p and ¢
are assumed throughout.
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THEOREM 3.1. The map Br: B't — Im J( ;) has a stable section. That is,
there is a stable map 6 € {Im J|y 5y, BI' *} such that L *Br-0 is an equivalence.

REMARK. The use of the plus-construction is actually superfluous here since,
for any connected space X which has a plus-construction, the map X —» X * be-
comes a homotopy equivalence as soon as it is suspended once. However, it will
be more convenient to work with X+ since, for example, BI'+ and BGL(F,)* are
H-spaces and BI'g"; (g = 3) is simply connected.

The following corollaries are immediate consequences of Theorem 3.1. Let QX
denote lim; Q*ZkX.

COROLLARY 3.2. There exist spaces Y and Z such that
QBP = Q Im J(I/Z) XY=Im J(;/z) X Z.

COROLLARY 3.3. The map B7: BI'* —» Im J induces split surjections on any
homology theory.

Proof of Theorem 3.1. For any finite groups H C G, there exists a stable trans-
fer map tr € { BG, BH} such that the induced map on homology is the ordinary
transfer (see [9]). In particular, let 7, =Z/p{¥Z/p and oy: 7 —GL,(F,;), n=
pk(p—1), be as in §2, so oy is an isomorphism of 7, onto a p-Sylow subgroup
of GL, (F,). Then the composite

E°BGL,(F,) — E°Bm ——%, *BGL(F,)
induces multiplication by r =|GL,(F,)|/| 7| on homology. Since r is prime to p,
this composite is a p-local equivalence.

We would like to show that the above composite, followed by the natural map
L*BGL,(F;) -» X°BGL(F,)* factors through X*BI' *. To do this, we must re-
strict to finite skeleta. For a CW-complex X, let X ") denote the m-skeleton of X.

LEMMA 3.4. For any m and any s >>m, there exist maps (B1rk)(’")£’§+BI”r
such that the composite
(Br)m % pr+ B, pGL(F, )+
is homotopic to the composite
(Br)™ C Bry 2% BGL,(F,) 2 BGL(F,)* =2 BGL(F,)*,
where the last map, Xs, is multiplication by s in the H-space structure induced
by @.

Let us assume the lemma for the moment and complete the proof of the theo-
rem. By the lemma, for any m and any s >> m, we have a commutative diagram
of stable maps

z
~*BGL,(F,) — S*B, S*BGL,(F,) —2» S°BGL(F,)*
U U lz“’(xs)

88 LB
E©BGL,,(F,)™ > £<B (" ZPk, yopp+ X787, Z*BGL(F,)*.

E”Bak
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If we assume, in addition to s >> m, that s is prime to p and n >> m, then
Y°(xs) is a p-local equivalence and X*i, is m-connected. It follows that the
bottom horizontal composite, X®B7, 0¥ * B tr, is p-locally m-connected.

Now the homotopy groups of BGL(F,)* are finite, and hence BGL (F,)* can
be obtained as a homotopy limit of a directed system (X, #,),cn Of finite com-
plexes X, with finite homotopy groups:

BGL(F,)* = holim X,.

We may choose these such that the maps /,: X, — X, are f-connected.

Consider the groups G, = {X,, BI' t}. We claim that G, is finite for every 7. To
see this, note that X, can be constructed from Moore spaces, M{'=S""'U, e”",
via a finite sequence of cofibrations. That is, there exists a sequence of spaces
Yy, Yy, ..., Y, =X, such that Y, is a Moore space and Y;; is the cofiber of some
map M}’ — Y;. This gives exact sequences of groups

coi — (M, BT +} < [Y;, BT "} {Y; 1, BT} — (M BT +} ...,
Now BT+ is of finite type, hence likewise QBI'+ (=Q®X*BI'*). Thus
(M, BT} =m,(QBI"*; Z/k)

is finite for all » and k. By induction on i, it follows that {Y;, BI' *} is finite for
each i. In particular, G,={Y,, BI' *} is finite.
Next define subsets S, C G, such that
S;={ye G,| (E°B7)ev is p-locally #-connected}.

The maps i,: X, - X, induce homomorphisms 7,: G, ., — G, which clearly take
S, 41 into S,. We claim that S, is nonempty for every ¢. To see this, note that since
X, is a finite complex, the natural map

XI g hOIim Xl = BGL(Fq)+

factors through BGL,(F,)*( for any sufficiently large m and n. Since X, —
BGL(F,)* is t-connected, so is the factorization X, — BGL, (F,)*(. Letting
Bi be the map guaranteed by Lemma 3.4, it follows that the composite

Ew S
Z®X,— Z®BGL,(F,)*t™ LN Z®Br ™ E7Bk, popr+

lies in S,. Thus (S,, f;) is an inverse system of nonempty, finite sets. Any such sys-
tem has a nonempty inverse limit, so ljm S, # . Now the natural map

(BGL(F,)*, BT'*} > lim G,

is surjective, so in particular there exists 7€ { BGL (F,)*, BI" t] whose image lies
in l(lz_n S;. In other words, the composites

99 Z*B
I®X,— E°BGL(F,)* — L*BI'+=——% £°BGL(F,)*

are p-locally #-connected for every . We conclude that X*B7,609 is a p-local
equivalence.

Finally, we observe that since BGL(F,)* and Im J;/,y are H-spaces with finite
homotopy groups, they decompose into the wedge of their primary parts,
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BGL(F,)*= \/ BGL(F){,),

r prime

Im J(I/Z) = V Im J(p).
p odd prime
Thus {Im J(; 5y, X} =11, {Im J,;,, X} for any X, and similarly for BGL(F,)*. In
particular, letting 76 € {Im J( ), Bt} = {BGL(Fq)a,) , BI' *} be the restriction of
049 (for some appropriate choice of g), we obtain a stable map

0= HPBE{Im J(l/z),BF+}.
p

By construction, the p-localization of 8 satisfies 6,y = 70, = 63)), and hence
L *B7e0 is a p-local equivalence as required by the theorem. It remains only to
prove Lemma 3.4.

Proof of Lemma 3.4. Let S, o be a surface obtained as a p-fold branched cover
of a 2-sphere with s+ 2 branch points, s = 1. By the Riemann-Hurwicz formula,
the genus of S, o is g= %s( p—1). The group of covering transformations on S, ¢
gives a map Z/pﬂ» Iy, 0- The composite map

(3.4.1) Z/p 5> Ty o— GLg(p_1)(F,)

is determined up to conjugacy by the Z/p-module structure on H(S,, o; F,), or
equivalently by the class of H;(S, ¢;F,) in the representation ring RFq(Z/p) of
Z/p over F,.

Choose a Z/p-equivariant triangulation of S, o and let C; be the free F,-module
on the i-simplices of S, o. Let H; = H;(S, o; F;). Then as elements in qu(Z/p),
we have

HO—H1+H2= CO—C1+C2.

Now H, and H, are trivial Z/p-modules while C; and C, are the free F,[Z/p]-
modules on the 1-simplices and 2-simplices (respectively) of S, o/Z/p =382 As
for Cy, it contains a trivial Z/p-module for each branch point and a copy of
F,[Z/p] for each of the remaining 0-simplices of S2. It follows that

Co—C1+ Cr=x(S>)F,[Z/pl1+ (s +2)(F,—F,[Z/p])
=—sF,[Z/p]+(s+2)F,,
where x(S2) =2 is the Euler characteristic of S2. Hence
H =Hy+H,—Cy+C—C,
=s(F,[Z/p]1-Fp),
under our assumption on p and g, F,[Z/p] splits as a direct sum of Z/p-modules
F,[Z/p1=F,®F,[Z/p],

where Fq[Z/p] =F,[Z/p]/{d+t+---+¢P~1) and where ¢ is a generator of Z/p
(viewed multiplicatively). We conclude that in the representation ring Ry (Z /),
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H, =s¥,[Z/p]. Choosing {1, ¢, ..., tP~!} as a basis for F,[Z/p] over F,,
F,(Z/p] may be identified with F 651’“1), with Z/p acting via the representation

(0 ~1)

aO:Z/pﬁGL(p_l)(Fq), 1~ 1
0 -1
L 1~

Note that this o agrees with the homomorphism «( defined in §2. It follows that,
up to conjugacy, the composite (3.4.1) above is given by

ap(l) 0
IH( ., )EGLs(p—l)(Fq)-
0 ap(1)

Now consider the diagram

Bro = BZ/p———2 BT}« BT — BT'+
Boy l Bo l lBTq
BGL(,_1y(F,) —» BGL,(,_,(F,)* BGL*(F,)
ip-1nd I
BGL(F,)* a > BGL*(F,).

This diagram is homotopy commutative since conjugation induces the identity on
BGLg(,_1)(Fg)*. The map BI';t; —» BT’ is m-connected providing s >>m (and
hence g >> m), and hence it splits on the m-skeleton. That is, there exists a map
(BT';)"™ — BT}, such that the composite

(BT o)™ — BTGty - BT}

is homotopic to the natural inclusion. Thus, restricting to m-skeleta, the top ver-
tical arrows in the diagram give rise to a map

Bo: (Bmo)"™ — BT'*,

which satisfies the conditions of the lemma.
To define Bj for k£ =1 we observe that, for any g, there exists a homomorphism

Z/pjrg,li’rpg,o

defined as follows. Let X =S2—]I, D? be a 2-sphere minus p open disks ar-
ranged symmetrically about the equator. View S, o as the surface obtained by
gluing a copy of S, ; to the boundary of each disk. Then

I X XTIy

~

p
acts on S,, o leaving X fixed, and Z/p acts by rotation.



278 R. M. CHARNEY AND F. R. COHEN

AD action of T
g,1

It is easy to see that the diagram

Z/pspg,li’rpg,o
! i)
Z/p j GLZg(Fq) C GL2pg(Fq)
commutes.

Let g= %s( p—1) and consider the diagram on the opposite page.

Taking classifying spaces and applying the plus-construction (with respect to
I17'T,, .<Z/p§'T, ), the vertical maps Z/p {*~'Ti, 1 > Z/p ¥ 'T,i, o become
m-connected providing g >> m. Thus, restricting to m-skeleta, these maps split
and we obtain a map Bj: (Bw )™ — BI'*+. That this map satisfies the require-
ments of the lemma follows from the commutativity (up to conjugacy) of the
diagram (opposite page). ]

4. Some observations on p =2. The techniques of the previous sections can
be used to obtain partial results at the prime 2. Recall that H,(S, {,F,) comes
equipped with a symplectic pairing, the intersection pairing, which is preserved
by the action of I'y ; on S, 1, so the image of I'y | — GL,,(F,) lies in Sp,,(F,) and
the image of 7,: I' > GL(F,) lies in Sp(F,).

Consider, in particular, Sp, (F3). The 2-Sylow subgroup of Sp, (F;) is the quar-
ternion group Qg generated by

() ) o1 ) ()
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*1)71O D 1D D% 1D, _,fd/Z

|

o.m«&rﬁ

I '

|

0%, 1d/Z

)

Mo, ,id/z D

o ,(d/z
i ' __
0 MEM d/g ga\ﬁ_ d/z
0%y, _ ST ——=1"1,§d/Z

3_|&Q\N

1

—_— ~.MQ,H~IL Q\N

3N|«_.Q\N
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The center of this group is Z/2, generated by
o -1 0
- ( 0 —-1)°
It is well known that the inclusion of this center Z/2 - Qg induces an isomorphism
Hyi(Z/2; F,) = H,;(Qs; F»)
and hence a surjection
Hy;(Z/2; Fy) —> Hy;(Spa(F3); Fy).

Next consider H,(Sp(F;); F,). As a Hopf algebra over the Steenrod algebra,
it is a symmetric algebra on H,(Sp,(F3); F,). Namely,

H,(Sp(F3); F3) =F5[x4;1® A [x4;41, j=1,
where x,; is the image of a generator of Hy;(Z/2; F;) (see [5]).

THEOREM 4.1. The homomorphism 73: " - Sp(F3) induces an epimorphism

of algebras
H, (I'; F3) = Fy[x4;],

where F,[x4;] is the polynomial algebra with a generator in dimension 4j for
every j=1.

Proof. Let reTy o be the element of order 2 which rotates S, ¢ 180° about a
central axis as shown below:

r
— — (K e — e — e — —

Choosing as basis for H,(S; ¢; F3) the oriented curves «y, 8y, ..., a4, B¢,

we see that the induced map r,. on H,(S; o; F3) takes [«;] to —[«;] and [3;] to
—[B;]1. In other words, the composite

Z/2—Tg o— Spyg(F3)

1>rer,
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takes 1 to
—1 0

@gcz

This gives a commutative diagram

BZ/2 ———— BI'jly«——BI'jt/y —— BT+

3 3 3
B®E
BSp;(F3) —— BSpy,(F3)* ‘ » BSp(F3)*
! 5 |
BSp(F;)* » BSp(F3)™.

For g odd, X g induces an isomorphism on H,(Sp(F3); F,). For g>i, BIjt «
BT}, induces isomorphisms on H;( ; F,). We conclude that x,; € Hy;(Sp(F3); F3)
is in the image of H,;(I'; F,). Since BI'* — BSp(F;)* is a map of H-spaces, this
completes the proof of the theorem. l

5. Mod p homotopy. We conclude with some general remarks about the mod p
homotopy of BI'*. In particular, we prove the following.

PROPOSITION 5.1. The map B7: BT't — Im J 5y induces epimorphisms on
m( ; F,) for any odd prime p.

The proof of the proposition is based on some techniques of Browder in [2] (cf.
[3]). We remark that these techniques cannot be extended, in general, to yield in-
tegral results, as can be seen from the following example. Let 27S” denote the
component of degree-one maps in 27S”. Define p: Q3 S> — Im J as the composite
of the stabilization map ©{5? - QPS> with the standard map 2°S* — Im Jy )
(see [14]). Using the techniques of this section, one can show that p induces epi-
morphisms on 7, ( ;F,) for every odd prime p, but a comparison of the groups
7 (21S?) and =, (Im Jj/2)) shows that p cannot induce surjections integrally.

Before proving the proposition we give a brief sketch of Browder’s arguments.
Given an H-space X and a map

m:Y;X---XY,—»X
of based CW-complexes, Browder defines an induced map
pe(m): YiN---ANY; > X
using a difference construction, which gives rise to a product
i (Y15 Fp) X oo X T (Yo ¥p) = w14, (XG5 Fp).
In particular, applying this construction to the tensor product map

BGL; (A) X --- X BGL, (4) 2> BGL,,...; (4) — BGL(A)*
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and then stabilizing, one obtains maps
BGL(A)*A---ABGL(A)* £5% BGL(A)*

and thus a product structure on 7, (BGL(A)*; F,). (By definition, we take it that
w1 (BGL(A)*;F,) =7 (BGL(A)")®F,.) In the case where A is a finite field with
t elements, one obtains the following.

THEOREM 5.2 ([2, p. 52]). Suppose p | (t9—1) but p ¥ (t9—1—1). Then
7 (BGL(F)*;F,) = A [X]IQF,[»],

where N\ [x] is an exterior algebra on a generator x of degree 2d —1 and F,[y] is
a polynomial algebra on a generator y of degree 2d.

Now suppose p and q satisfy Assumption 2.1 and let z=¢g”~!1. Then p | (1),
so in this case the generators x, y of w,(BGL(F,)*;F,) are in degrees 1 and 2,
respectively. Also in this case, F, contains a pth root of unity, so we have an
inclusion

&:Z/p CF;=GL,(F,) C GL(F,).

Browder considers the induced map Ba&: BZ/p —» BGL(F,)* and observes that
Ba gives rise to isomorphisms on 7;( ; F,) for i=1, 2. Applying the difference
construction to

mult

m:BZ/px ---xBZ/p ™, BZ/p ™, 0¥ BZ/p,

one obtains a commutative diagram

BZ/pA---ABZ/p X", oy BZ/p
l QX Ba
Ban:--nBa& QX BGL(F,)*
lev

BGL(F,)* A -+- ABGL(F,)* £% BGL(F,)*,

where ev is the evaluation map. Setting ¥ =ev-QX Ba, it follows that 4 induces
surjections on m;( ;F,) for all i.

To pass to GL(F,), we consider the transfer map tr: BGL(F,)* - BGL(F,)".
This is the map induced by choosing a basis for F, over F, and thereby viewing
GL,,(F,) as a subgroup of GL,,_;)(F,). In the other direction, the canonical
inclusion F, < F; defines a map i/: BGL(F,)* - BGL(F,)*, and the composite
trei induces multiplication by p —1 on homotopy. Thus tr induces surjections on
7« ( ;F,). Combining this with the previous paragraph we conclude:

LEMMA 5.3 ([2]). The composite
QT BZ/p- BGL(F,)* - BGL(F,)*

induces a split epimorphism on mod-p homotopy groups.
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Proof of Proposition 5.1. Recall the inclusions
ay: Z/p — GLg(,—1)(Fg) > GL(F,)

defined in §2, and consider the map +* defined as the composite

QX Bag

vS:QEBZ/p QEBGL(F,)* —> BGL(F,)*.

We claim that s induces epimorphisms on 7, ( ;F,) providing s is prime to p.
For s =1, the homomorphism « is the composite of the map a: Z/p — GL(F,)
defined above (with # = g”~!) and the inclusion GL(F,) - GL(F,), which defines
the transfer. Since the transfer commutes with the evaluation map, y!is precisely
the composite tro¥ of Lemma 5.3. Thus, for s =1, the claim follows from Lem-
ma 5.3. For s > 1, o = @°«{ and hence v* is homotopic to s-v!, where multipli-
cation by s is defined via the direct sum H-space structure on BGL(F,)*. It fol-
lows that whenever s is prime to p, v induces epimorphisms on w.( ; Z/p).

Now recall from the proof of Lemma 3.4 that «g factors through a map p:
Z/p—-T,, g= %s( p—1). Hence we have a commutative diagram

v$: QEBZ/p— QEBGL,,(F,)* — QEBGL(F,)* — BGL(F,)*

l 7 ) T T Br
QLBI; o «——QZBI; | ———> QLBI't —— BT+,

For s >> i, the map QX BI';;( « QX BT';t, is i-connected and so (choosing s prime
to p) the surjection

factors through Br,. This proves the proposition. EI

Added in proof: A complete calculation of H*(I'g o; F,,) will appear in work of
the second author, C.-F. Boédigheimer, and M. Peim.
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