OPERATORS WITH COMMUTATIVE COMMUTANTS

M. Radjabalipour and H. Radjavi

It is a well-known consequence of the Putnam-Fuglede theorem that if a normal operator N is a quasiaffine transform of a normal operator M, then M and N are unitarily equivalent. Problem 199 of [4] shows that the result does not remain true if M and N are merely subnormal, even if they are quasisimilar. In the present paper we show that if M (resp. N) is the direct sum of k (resp. m) copies of an operator A having a commutative commutant, where m and k are countable cardinalities, and if N is a quasiaffine transform of M, then k = m (see Theorem 1). In the special case where A is the simple unilateral shift, this extends a result of Hoover [5], who shows that quasisimilar isometries are unitarily equivalent. In fact, using a result of Fan [3], we show that if an isometry N is a quasiaffine transform of an isometry M, and if the unitary part of the Wold decomposition of N has a singular scalar-valued spectral measure, then M and N are unitarily equivalent (see Theorem 2).

We conclude the paper with a result about multiplications M_z by $g(z) \equiv z$ on function spaces $R^2(X, \mu)$, where μ is a positive measure supported on a compact subset X of \mathbb{C} ; every nonscalar operator commuting with $(M_z)^{(n)}$ has a hyperinvariant subspace if $(M_z)^*$ has an eigenvalue and $n < \infty$ (see Theorem 3). This generalizes a result of Sz.-Nagy and Foiaş [8, p. 191] and Nordgren [6] about the unilateral shift (see also [7, p. 149]).

Let us here fix some notations and definitions. For the commutant of an operator A we use the usual notation $\{A\}'$. If A is an operator on a Hilbert space \mathcal{C} , then $A^{(k)}$ denotes the direct sum of k copies of A acting on the direct sum $\mathcal{C}^{(k)}$ of k copies of \mathcal{C} , where k is any cardinality; if k = 0 then $\mathcal{C}^{(0)} = \{0\}$. A bounded linear transformation between two Banach spaces is called a quasiaffinity if it is injective and has dense range; an operator N is a quasiaffine transform of an operator M if CM = NC for some quasiaffinity C. The operators M and N are quasisimilar if $C_1M = NC_1$ and $MC_2 = C_2N$ for some quasiaffinities C_1 and C_2 .

For a compact subset X of \mathbb{C} , $\mathrm{Rat}(X)$ denotes the algebra of all rational functions with poles off X. If μ is a positive Borel measure supported on X, then $R^2(X,\mu)$ denotes the closure of $\mathrm{Rat}(X)$ in $\mathfrak{L}^2(\mu)$.

An operator A on \mathfrak{IC} , with spectrum contained in X, is called Rat(X)-cyclic if there exists a vector e in \mathfrak{IC} such that the linear manifold $\{r(A)e: r \in Rat X\}$ is dense in \mathfrak{IC} .

THEOREM 1. Let $A \in B(\mathfrak{R})$ and assume $\{A\}'$ is commutative. Let C be a bounded linear transformation such that $CA^{(k)} = A^{(m)}C$ for some finite or countable cardinalities k and m. Then

- (a) $k \le m$ if C is injective, and
- (b) $k \ge m$ if C has dense range.

Received May 12, 1987. Michigan Math. J. 35 (1988). *Proof.* Represent $C: \mathcal{R}^{(k)} \to \mathcal{R}^{(m)}$ by the $m \times k$ operator matrix $((C_{ij}))$, where $C_{ij}: \mathcal{R} \to \mathcal{R}$. Since $CA^{(k)} = A^{(m)}C$, $C_{ij}A = AC_{ij}$ and hence $C_{ij} \in \{A\}'$ for all pairs (i,j).

To prove (a), assume that C is injective and, if possible, that k > m. Then m is finite. Let $n \le m$ be the largest natural number such that the (operator-valued) determinant of at least one $n \times n$ submatrix B of $((C_{ij}))$ is nonzero. Since C is injective, such a number exists. By rearranging the direct summands, we can assume, without loss of generality, that $B = ((C_{ij}: 1 \le i \le n, 1 \le j \le n))$ has nonzero determinant. For an arbitrary (n+1)-tuple $Z = (Z_j: 1 \le j \le n+1)$ of operators in $\{A\}'$, let D_Z be the $(n+1) \times (n+1)$ matrix whose ith row is $(C_{ij}: 1 \le j \le n+1)$ for $1 \le i \le n$ and whose (n+1)th row is Z. Let

$$\det D_Z = Z_1 X_1 + \dots + Z_n X_n + Z_{n+1} \det B$$

be the expansion of det D_Z in terms of the last row (so that $X_1, ..., X_n$ are independent of Z). Now, if $Z = (C_{ij}: 1 \le j \le n+1)$ for any fixed $i \in \{1, 2, ..., m\}$, then det $D_Z = 0$; for either D_Z has two identical rows or it is an $(n+1) \times (n+1)$ submatrix of $((C_{ij}: 1 \le i \le m, 1 \le j \le k))$. Let $X: 3C \to 3C^{(k)}$ be a linear transformation represented by the $k \times 1$ (column) matrix with entries $X_1, ..., X_n$, det B, 0, 0, ... It follows that CX = 0. Since $X \ne 0$, C is not injective, a contradiction. Thus $k \le m$.

The proof of (b) follows from the fact that C^* is injective, $C^*A^{*(m)} = A^{*(k)}C^*$, and $\{A^*\}'$ is commutative.

The above theorem holds for any cardinalities k and m if 3C is separable; this reduces to the given case via a dimensionality argument. For definiteness we shall henceforth assume the underlying space to be separable.

COROLLARY 1. Let S be a Rat(X)-cyclic subnormal operator for some compact set $X \supseteq \sigma(S)$. Assume $CS^{(k)} = S^{(m)}C$ for some quasiaffinity C and cardinalities k and m. Then k = m.

Proof. By Yoshino's theorem [9], the commutant of S is commutative ([2, pp. 146–147]). Thus k = m.

COROLLARY 2. Let the completely nonunitary isometry $V \in B(\mathcal{K})$ be a quasi-affine transform of an isometry $U \in B(\mathcal{K})$. Then U and V are unitarily equivalent.

Proof. Let $U \cong W \oplus S^{(k)}$ be the Wold decomposition of U, where W is a unitary (possibly acting on the zero subspace), S is the simple unilateral shift, and k is some finite or countable cardinality. (If k = 0, then $S^{(0)}$ is the zero operator acting on the zero subspace.) Let \mathfrak{M} be the domain of W, and let C be the quasi-affinity such that CU = VC. It is easy to see that $(C\mathfrak{M})^- \in \text{Lat } V$, $V \mid (C\mathfrak{M})^-$ is subnormal, and (as in [6])

$$(C \mid \mathfrak{M})W = [V \mid (C\mathfrak{M})^{-}](C \mid \mathfrak{M}).$$

By [1], W and $V \mid (C\mathfrak{M})^-$ are unitarily equivalent and hence $V \mid (C\mathfrak{M})^-$ is normal. Since V is completely nonnormal, $C\mathfrak{M} = \{0\}$ and thus $\mathfrak{M} = \{0\}$. Now the equivalence of U and V follows from Theorem 1 and the fact that V is also unitarily equivalent to $S^{(m)}$ for some finite or infinite cardinality m.

The following example shows that an isometry V may be a quasiaffine transform of an isometry U without being unitarily equivalent to it.

Let **T** be the unit circle and let *U* be the simple bilateral shift defined on $L^2(\mathbf{T})$ by (Uf)(z) = zf(z). Partition **T** into disjoint arcs $\Gamma_1, \ldots, \Gamma_n$ $(n \ge 1)$ and let $\psi_j \in L^{\infty}(\Gamma_j)$ be a cyclic vector for $U \mid L^2(\Gamma_j)$ $(1 \le j \le n)$. Extend ψ_j to all of **T** by defining it to be zero on $\mathbf{T} \setminus \Gamma_j$. Define $C: (H^2)^{(n)} \to L^2(\mathbf{T})$ by $C(f_1 \oplus \cdots \oplus f_n) = \psi_1 f_1 + \cdots + \psi_n f_n$, where H^2 is the Hardy space of the unit disc. The linear transformation *C* is bounded and injective, and has dense range. (Note that if $f \in H^2$ and $f(e^{i\theta}) = 0$ on a set of nonzero 1-dimensional Lebesgue measure, then $f \equiv 0$.) It is easy to see that $CS^{(n)} = UC$, where *S* is the unilateral shift $U \mid H^2$. Clearly, $S^{(n)}$ and *U* are not even similar.

The following theorem is a sharpening of Corollary 2. For the definition of a scalar-valued spectral measure see [2, p. 91].

THEOREM 2. Let $V = V_s \oplus V_a \oplus S^{(k)}$ be an isometry such that V_s (resp. V_a) is a unitary operator with a singular (resp. absolutely continuous) scalar-valued spectral measure. S is the simple unilateral shift and k is any cardinality. Assume V is a quasiaffine transform of a contraction operator T. Then $T = T_1 \oplus T_2$, where V_s is unitarily equivalent to T_1 , and $V_a \oplus S^{(k)}$ is a quasiaffine transform of T_2 . Moreover, if $V_a = 0$ and T is an isometry, then V and T are unitarily equivalent.

Proof. Assume without loss of generality that V and T act on the same Hilbert space H. Let C = PW be the polar decomposition of the quasiaffinity C satisfying CT = VC. (Here W is unitary and P is an injective positive operator.) Then $PWTW^* = VP$. Let M = VP. Since WTW^* is a contraction operator, it follows that

$$0 \le \|Px\|^2 - \|WT^*W^*Px\|^2$$

$$= \|Px\|^2 - \|PV^*x\|^2 = (P^2x, x) - (VP^2V^*x, x)$$

$$= ([P^2 - VP^2V^*]x, x) = ([M^*M - MM^*]x, x)$$

for all $x \in H$. Thus M is hyponormal. Let H_s be the domain of V_s . By [3, Thm. 2], H_s is a reducing invariant subspace of M and $M \mid H_s$ is normal. Hence H_s reduces P and $P_s V_s = V_s P_s$, where $P_s = P \mid H_s$. Therefore, $WTW^* = V_s \oplus P_0^{-1}(V_a \oplus S^{(k)})P_0$, where $P_0 = P \mid H_s^{\perp}$. (Note that $P^{-1}VP$ and consequently $P_0^{-1}(V_a \oplus S^{(k)})P_0$ are well-defined bounded operators.) This shows that $T = T_1 \oplus T_2$, where T_1 is unitarily equivalent to V_s .

Next, assume that T is an isometry and $V_a = 0$. Then $P_0^{-1}S^{(k)}P_0$ is an isometry and $P_0(P_0^{-1}S^{(k)}P_0) = S^{(k)}P_0$. It follows from Corollary 2 that $P_0^{-1}S^{(k)}P_0$ and $S^{(k)}$ are unitarily equivalent. Hence T and V are also unitarily equivalent. \square

REMARK. Let V be a unitary operator with an absolutely continuous scalarvalued spectral measure. Then V is unitarily equivalent to a direct sum $\sum_{i \in \Lambda} \oplus U_i$, where each U_i is the multiplication by $g(z) \equiv z$ on $L^2(E_i)$ for some $E_i \subset T$ [2, p. 92]. (Here the measure on T is the normalized 1-dimensional Lebesgue measure.) Assume with no loss of generality that E_i has positive measure and that $\overline{E}_i \neq T$ for every i. Let $A_i: H^2 \to L^2(E_i)$ be the map sending $\phi \in H^2$ to $\phi \mid E_i$ $(i \in \Lambda)$. It is easy to see that $A = \Sigma \oplus A_i$ is a quasiaffinity and $AS^{(k)} = (\Sigma \oplus U_i)A$, where k is the cardinality of Λ . Thus the unitary operator V is a quasiaffine transform of the pure isometry $S^{(k)}$.

Our final result is about the hyperinvariant subspaces of operators commuting with $(M_z)^{(n)}$, where $n < \infty$ and M_z is the multiplication by $g(z) \equiv z$ in some $R^2(X, \mu)$.

THEOREM 3. Let $S = M_z$ be the multiplication by $g(z) \equiv z$ in $R^2(X, \mu)$, where μ is a positive measure supported on a compact subset X of \mathbb{C} . Assume S^* has an eigenvalue. Then any nonscalar operator commuting with $S^{(n)}$ has a hyperinvariant subspace if $n < \infty$.

Proof. We prove more: if T_1 and T_2 commute with $S^{(n)}$, then some nontrivial linear combination $a_1T_1+a_2T_2$ has nondense range. (If T commutes with $S^{(n)}$, then $\{T\}'$ leaves invariant the range of any linear combination of, say, T and T^2 .)

Note that by Yoshino's theorem [9] any operator commuting with $S^{(n)}$ has an $n \times n$ matrix representation $((\phi_{ij}))$ with ϕ_{ij} in $L^{\infty}(\mu) \cap R^2(X, \mu)$.

Let $\bar{\lambda}$ be an eigenvalue of S^* . Then λ is a bounded point evaluation for $R^2(X,\mu)$; that is, the linear functional e_{λ} defined on Rat(X) by $e_{\lambda}(r) = r(\lambda)$ has a bounded extension to $R^2(X,\mu)$ [2, p. 169]. It is not hard to see that if $\psi \in L^{\infty}(\mu) \cap R^2(X,\mu)$ and $f \in R^2(X,\mu)$ then $\psi f \in R^2(X,\mu)$ and $e_{\lambda}(\psi f) = e_{\lambda}(\psi)e_{\lambda}(f)$. Let $((\phi_{ij}))$ and $((\psi_{ij}))$ be $n \times n$ matrices with entries in $\{S\}' = L^{\infty}(\mu) \cap R^2(X,\mu)$. If one of the numerical $n \times n$ matrices $((e_{\lambda}\phi_{ij}))$ and $((e_{\lambda}\psi_{ij}))$, say $((e_{\lambda}\psi_{ij}))$, is not invertible then let $((\theta_{ij})) = ((\psi_{ij}))$. Otherwise, let η be an eigenvalue of the matrix $((e_{\lambda}\phi_{ij}))((e_{\lambda}\psi_{ij}))^{-1}$, and let $((\theta_{ij})) = ((\phi_{ij} - \eta\psi_{ij}))$. In either case $\theta_{ij} \in L^{\infty}(\mu) \cap R^2(X,\mu)$ and $((e_{\lambda}\theta_{ij}))$ is not invertible.

Let $0 \neq x \in \mathbb{C}^{(n)}$ be such that $(((e_{\lambda}\theta_{ij}))y \mid x) = 0$ for all $y \in \mathbb{C}^{(n)}$. Define $Lf = e_{\lambda}(f(z) \mid x)$ for $f \in [R^2(X, \mu)]^{(n)}$, where $(f(z) \mid x)$ is the inner product of f(z) and $x \in \mathbb{C}^{(n)}$. Observe that

$$|Lf| \le M \left[\int |(f(z)|x)|^2 d\mu \right]^{1/2} \le M ||x|| \cdot ||f||,$$

where $M = ||e_{\lambda}||$ and ||f|| denotes the norm of f in $[R^2(X, \mu)]^{(n)}$. Thus L is a bounded linear functional on $[R^2(X, \mu)]^{(n)}$ and $Lx = ||x||^2 \neq 0$, where x is now regarded as a constant function in $[R^2(X, \mu)]^{(n)}$. On the other hand,

$$L[((\theta_{ij}))g] = e_{\lambda}(((\theta_{ij}(z)))g(z) | x)$$
$$= (((e_{\lambda}\theta_{ij}))(e_{\lambda}g) | x) = 0$$

for all $g \in [R^2(X, \mu)]^{(n)}$. This shows that the range of $((\theta_{ij}))$ is not dense. \square

The proof of Theorem 3 suggests the following corollary. We first need some terminology. Let \mathcal{K} be a separable Hilbert space and let μ be a positive measure supported on a compact subset X of \mathbb{C} . Let $L^2_{\mathcal{K}}(\mu)$ denote the Hilbert space of all measurable functions $f: \mathbb{C} \to \mathcal{K}$ such that $||f||^2 =: \int ||f(z)||^2 d\mu < \infty$. Let $R^2_{\mathcal{K}}(X, \mu)$ be the closure in $L^2_{\mathcal{K}}(\mu)$ of all functions of the form $r_1x_1 + \cdots + r_kx_k$, where $k \in \mathbb{N}$,

 $\{r_1, ..., r_k\} \subset \operatorname{Rat}(X)$, and $\{x_1, ..., x_k\} \subset \operatorname{3C}$. Let T be the multiplication by $g(z) \equiv z$ in $R_{3\mathbb{C}}^2(X, \mu)$ and let $A \in \{T\}'$. Then $T \cong S^{(n)}$ and $A \cong ((\psi_{ij}))_{n \times n}$ for some family of functions $\psi_{ij} \in L^{\infty}(\mu) \cap R^2(X, \mu)$, where $n = \dim \operatorname{3C}$ and S is the multiplication by $g(z) \equiv z$ in $R^2(X, \mu)$. (Note that $\operatorname{3C}$ may be finite- or infinite-dimensional.)

COROLLARY 3. Let \mathfrak{FC} , μ , X, T, A, S, n, and $((\psi_{ij}))$ be as defined above. Assume A has dense range. Then the numerical matrix $((e_{\lambda}\psi_{ij}))$ as an operator on \mathfrak{FC} has dense range for all bounded point evaluations λ on $R^2(X, \mu)$.

REMARK. In the case where S is the simple unilateral shift and $n < \infty$, more is proved by Sz.-Nagy and Foiaş [8, p. 191]. They show that if $X = \mathbf{D}$ and μ is the normalized 1-dimensional Lebesgue measure on $\mathbf{T} = \partial \mathbf{D}$, then the numerical $n \times n$ matrix $((\phi_{ij}(z)))$ has dense range for all z in the interior of \mathbf{D} and for almost all z on \mathbf{T} if $A = ((\phi_{ij}))$, as an operator acting on $[R^2(X, \mu)]^{(n)}$, has dense range.

REFERENCES

- 1. J. B. Conway, *On quasisimilarity for subnormal operators*, Illinois J. Math. 24 (1980), 689–702.
- 2. —, Subnormal operators, Pitman, Boston, 1981.
- 3. P. Fan, Cartesian and polar decompositions of hyponormal operators, Math. Z. 188 (1985), 485-492.
- 4. P. R. Halmos, A Hilbert space problem book, 2nd ed., Springer, New York, 1982.
- 5. T. B. Hoover, Quasi-similarity of operators, Illinois J. Math. 16 (1972), 678-686.
- 6. E. A. Nordgren, Transitive operator algebras, J. Math. Anal. Appl. 32 (1970), 639-643.
- 7. H. Radjavi and P. Rosenthal, *Invariant subspaces*, Springer, New York, 1973.
- 8. B. Sz.-Nagy and C. Foiaş, *Harmonic analysis of operators on Hilbert space*, Akadémiai Kiadó, Budapest, 1970.
- 9. T. Yoshino, Subnormal operators with a cyclic vector, Tôhoku Math. J. (2) 21 (1969), 47–55.

Department of Mathematics University of Kerman Kerman, Iran

and

Department of Mathematics Dalhousie University Halifax B3H 3J5 Nova Scotia, Canada