OPERATORS WITH COMMUTATIVE COMMUTANTS

M. Radjabalipour and H. Radjavi

It is a well-known consequence of the Putnam-Fuglede theorem that if a nor-
mal operator N is a quasiaffine transform of a normal operator M, then M and N
are unitarily equivalent. Problem 199 of [4] shows that the result does not remain
true if M and N are merely subnormal, even if they are quasisimilar. In the pres-
ent paper we show that if M (resp. N) is the direct sum of k (resp. m) copies of
an operator A having a commutative commutant, where m and k are countable
cardinalities, and if NV is a quasiaffine transform of M, then k = m (see Theorem
1). In the special case where A is the simple unilateral shift, this extends a result
of Hoover [5], who shows that quasisimilar isometries are unitarily equivalent.
In fact, using a result of Fan [3], we show that if an isometry NV is a quasiaffine
transform of an isometry M, and if the unitary part of the Wold decomposition
of N has a singular scalar-valued spectral measure, then A and N are unitarily
equivalent (see Theorem 2).

We conclude the paper with a result about multiplications M, by g(z)=z on
function spaces R2(X, ), where p is a positive measure supported on a compact
subset X of C; every nonscalar operator commuting with (M,)" has a hyper-
invariant subspace if (M;)* has an eigenvalue and n < o (see Theorem 3). This
generalizes a result of Sz.-Nagy and Foias [8, p. 191] and Nordgren [6] about the
unilateral shift (see also [7, p. 149]).

Let us here fix some notations and definitions. For the commutant of an opera-
tor A we use the usual notation {A4}’. If A is an operator on a Hilbert space 3C,
then A denotes the direct sum of k copies of A acting on the direct sum 3¢’ of
k copies of 3C, where k is any cardinality; if £ =0 then 3C(® = {0}. A bounded
linear transformation between two Banach spaces is called a quasiaffinity if it
is injective and has dense range; an operator N is a quasiaffine transform of an
operator M if CM = NC for some quasiaffinity C. The operators M and N are
quasisimilar if C; M = NC; and MC, = C, N for some quasiaffinities C; and C,.

For a compact subset X of C, Rat(X) denotes the algebra of all rational func-
tions with poles off X. If u is a positive Borel measure supported on X, then
R?(X, p) denotes the closure of Rat(X) in £2(u).

An operator 4 on JC, with spectrum contained in X, is called Rat(X)-cyclic if
there exists a vector e in JC such that the linear manifold {r(A)e: r e Rat X} is
dense in JC.

THEOREM 1. Let A€ B(3C) and assume {A} is commutative. Let C be a
bounded linear transformation such that CA® = A" C for some finite or count-
able cardinalities kK and m. Then

(@) k=mif Cis injective, and

(b) k=m if C has dense range.
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Proof. Represent C: 3¢¥) = 3¢ by the m x k operator matrix ((Cij)), where
C;j: 3¢ — 3C. Since CA®) = A" C, C;; A= AC;; and hence C;; € {A}’ for all pairs
(i, J7)-

To prove (a), assume that C is injective and, if possible, that k¥ > m. Then m s
finite. Let n < m be the largest natural number such that the (operator-valued)
determinant of at least one # X n submatrix B of ((C;;)) is nonzero. Since C is in-
jective, such a number exists. By rearranging the direct summands, we can as-
sume, without loss of generality, that B = ((C;;: 1 <i <n, 1 =<j < n)) has nonzero
determinant. For an arbitrary (n+1)-tuple Z=(Z;:1=<j < n+1) of operators in
{AY})’, let Dz be the (n+1) X (n+1) matrix whose ithrowis (C;;: 1<j=<n+1) for
l1=<i=<n and whose (n+1)throwis Z. Let

detDz=ZlX1+-—- +Zan+Zn+1 det B

be the expansion of det Dz in terms of the last row (so that X, ..., X, are inde-
pendent of Z). Now, if Z=(C;;:1<j=<n+1) for any fixed i € {1, 2, ..., m}, then
det Dz =0; for either Dz has two identical rows or it is an (n+1) X (n+1) sub-
matrix of ((Cjj:1=i=m, 1=<j=<k)). Let X: 3¢ > JC® be a linear transformation
represented by the £ X 1 (column) matrix with entries X3, ..., X}, det B, 0,0, ....It
follows that CX =0. Since X #0, C is not injective, a contradiction. Thus k < m.

The proof of (b) follows from the fact that C* is injective, C*4* (™ = 4**) C*,
and {A*}’ is commutative. O

The above theorem holds for any cardinalities & and m if JC is separable; this
reduces to the given case via a dimensionality argument. For definiteness we shall
henceforth assume the underlying space to be separable.

COROLLARY 1. Let S be a Rat(X)-cyclic subnormal operator for some com-
pact set X 2 a(8S). Assume CS® = S C for some quasiaffinity C and cardinali-
ties k and m. Then k =m.

Proof. By Yoshino’s theorem [9], the commutant of S is commutative ([2, pp.
146-147]). Thus k= m. ]

COROLLARY 2. Let the completely nonunitary isometry Ve B(X) be a quasi-
affine transform of an isometry Ue B(3C). Then U and V are unitarily equivalent.

Proof. Let U=W®S® be the Wold decomposition of U, where W is a uni-
tary (possibly acting on the zero subspace), S is the simple unilateral shift, and £
is some finite or countable cardinality. (If k=0, then S is the zero operator
acting on the zero subspace.) Let 9T be the domain of W, and let C be the quasi-
affinity such that CU=VC. It is easy to see that (CO) " eLatV, V| (CON)  is
subnormal, and (as in [6])

(C|MW=[V[(CM)” (C|M).

By [1], W and V | (CO)~ are unitarily equivalent and hence V' | (COL)™ is nor-
mal. Since V is completely nonnormal, COT = {0} and thus M = {0}. Now the
equivalence of U and V follows from Theorem 1 and the fact that ¥ is also uni-
tarily equivalent to S ™ for some finite or infinite cardinality m. O
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The following example shows that an isometry ¥ may be a quasiaffine trans-
form of an isometry U without being unitarily equivalent to it.

Let T be the unit circle and let U be the simple bilateral shift defined on L*(T)
by (Uf)(z) =zf(z). Partition T into disjoint arcs I'y,...,I', (n=1) and let ¥; €
L™(T;) be a cyclic vector for UILZ(I‘,-) (1=j=n). Extend ¢; to all of T by de-
fining it to be zero on T\TI. Define C: (H?2)" — L*(T) by C(/i® ---®fn) =
i fi+ - + ¥, fn, where H?is the Hardy space of the unit disc. The linear trans-
formation C is bounded and injective, and has dense range. (Note that if fe H?
and f(e’?) =0 on a set of nonzero 1-dimensional Lebesgue measure, then f =0.)
It is easy to see that CS = UC, where S is the unilateral shift U | H2 Clearly,
S and U are not even similar. 1

The following theorem is a sharpening of Corollary 2. For the definition of a
scalar-valued spectral measure see [2, p. 91].

THEOREM 2. Let V=V,®V,®S*) be an isometry such that V, (resp. V,) is a
unitary operator with a singular (resp. absolutely continuous) scalar-valued spec-
tral measure. S is the simple unilateral shift and k is any cardinality. Assume V is
a quasiaffine transform of a contraction operator T. Then T=T,®T,, where V; is
unitarily equivalent to T, and V,®S® is a quasiaffine transform of T,. More-
over, if V,=0 and T is an isometry, then V and T are unitarily equivalent.

Proof. Assume without loss of generality that ¥ and T act on the same Hilbert
space H. Let C = PW be the polar decomposition of the quasiaffinity C satisfy-
ing CT=VC. (Here W is unitary and P is an injective positive operator.) Then
PWTW*=VP. Let M =VP. Since WTW™* is a contraction operator, it follows
that

0 < |Px|*>— |WT*W*Px|?
= | Px|*— | PV*x|* = (P%x, x) — (VP*V*x, x)
=([P2—VP*V*]x,x) = ([M*M — MM*]x, x)

for all x e H. Thus M is hyponormal. Let H; be the domain of V;. By [3, Thm. 2],
H; is areducing invariant subspace of M and M | H, is normal. Hence H; reduces
Pand P,V,=V, P, where P,=P | H,. Therefore, WTW*=V,®P; '(V,®S®)P,,
where Py=P | H;. (Note that P~!VP and consequently Py (V,®S®))P, are
well-defined bounded operators.) This shows that 77=T; ®7>, where 7T; is unitarily
equivalent to V.

Next, assume that 7 is an isometry and ¥, =0. Then P; !S®) P, is an isometry
and Po(Py1S®py)=S®p,. It follows from Corollary 2 that Py 'S® P, and
S *) are unitarily equivalent. Hence 7 and V are also unitarily equivalent. O]

REMARK. Let V be a unitary operator with an absolutely continuous scalar-
valued spectral measure. Then V is unitarily equivalent to a direct sum Y ; c n@U;,
where each U; is the multiplication by g(z) =z on L2(E;) for some E;CT [2, p.
92]. (Here the measure on T is the normalized 1-dimensional Lebesgue measure.)
Assume with no loss of generality that E; has positive measure and that £; # T
for every i. Let A;: H> — L*(E;) be the map sending ¢ € H>to ¢ | E; (i€ A). It is
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easy to see that A =X @®A; is a quasiaffinity and AS® = (Z @ U;)A, where k is
the cardinality of A. Thus the unitary operator V is a quasiaffine transform of the
pure isometry S *).

Our final result is about the hyperinvariant subspaces of operators commut-
ing with (M), where n < « and M, is the multiplication by g(z) =z in some
R*(X, ).

THEOREM 3. Let S = M, be the multiplication by g(z) =z in R*(X, n), where
u is a positive measure supported on a compact subset X of C. Assume S* has an
eigenvalue. Then any nonscalar operator commuting with S has a hyperinvari-
ant subspace if n < co.

Proof. We prove more: if 7; and 75 commute with S, then some nontrivial
linear combination a;7; +a, 7> has nondense range. (If 7 commutes with S,
then {7}’ leaves invariant the range of any linear combination of, say, 7"and 7°2.)

Note that by Yoshino’s theorem [9] any operator commuting with S has an
n X n matrix representation ((¢;;)) with ¢;; in L®(p)NR%*(X, p).

Let X be an eigenvalue of S*. Then \ is a bounded point evaluation for
R?(X, p); that is, the linear functional e, defined on Rat(X) by e,(r) =r(\) has
a bounded extension to R?(X,p) [2, p. 169]. It is not hard to see that if ¢ e
L®(p)NR*(X, p) and f e R*(X, p) then yf € R*(X, p) and ex(¥.f) = ex(¥)er(/).
Let ((¢;7)) and ((¥;;)) be n X n matrices with entries in (SY=L®(r)NRYX,p).
If one of the numerical nx n matrices ((ex¢;;)) and ((exvi;)), say ((exvij)), is
not invertible then let ((6;;)) = ((¥i;)). Otherwise, let n be an eigenvalue of the
matrix ((exdi;))((exyi;))~1, and let ((0;;)) = ((¢ij — 7¥i;)). In either case 6;; €
L¥(p)NR?(X, pn) and ((er0;;)) is not invertible.

Let 0 x e C"™ be such that (((ex8;;))y |x)=0 for all ye C"’. Define Lf=
ex(f(z) |x) for fe[R%(X,n)1"™, where (f(z)|x) is the inner product of f(z)
and x e C™. Observe that

1/2
Lri=mflu@ 0P =M1,

where M = |e,| and |f] denotes the norm of f in [R?(X, x)]"™. Thus L is a
bounded linear functional on [R2(X, p)]'" and Lx = |x|*#0, where x is now
regarded as a constant function in [R2(X, x)]*". On the other hand,

LI((0:;))gl=ex(((0;;(z)))g(z) | x)
= (((ex0ij)) (erg) | x) =0
for all g€ [R%(X, n)1". This shows that the range of ((6;;)) is not dense. O

The proof of Theorem 3 suggests the following corollary. We first need some
terminology. Let 3C be a separable Hilbert space and let 4 be a positive measure
supported on a compact subset X of C. Let L%:(x) denote the Hilbert space of all
measurable functions f: C — 3C such that | f|2=:{ | f(z)]|? dr < . Let R3(X, 1)
be the closure in L3 (1) of all functions of the form ryx;+ --- + 7y Xz, where k eN,
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{ri, ..., rr}JCRat(X), and {x;, ..., X} C IC. Let T be the multiplication by g(z)=z
in R%(X, ) and let A € {T}". Then T = S and 4 = (({¥i;))nx for some family of
functions ¥;; € L* (n) NR2(X, ), where n=dim 3C and S is the multiplication by
g(z) =z in R%(X, p). (Note that 3C may be finite- or infinite-dimensional.)

COROLLARY 3. Let 3C, pu, X, T, A, S, n, and ((y;;)) be as defined above. As-
sume A has dense range. Then the numerical matrix ((exvy;;)) as an operator on
3C has dense range for all bounded point evaluations \ on R*(X, w).

REMARK. In the case where S is the simple unilateral shift and 7 < co, moreis
proved by Sz.-Nagy and Foias [8, p. 191]. They show that if X =D and u is the
normalized 1-dimensional Lebesgue measure on T = 3D, then the numerical n x n
matrix ((¢;;(z))) has dense range for all z in the interior of D and for almost all z
on T if A= ((¢;;)), as an operator acting on [R*(X, )], has dense range.
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