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1. Introduction. Let {A4;:1=<j < m]} be a commuting set of continuous lirear
operators on a Banach space X and let {B;: 1 < j < m} be a commuting set of con-
tinuous linear operators on a Banach space Y. In this paper we address the prob-
lem of determining the existence of continuous linear operators Q: Y — X satis-
fying the system of equations

(1.1) A;Q—-Q0B;=U;, 1=<j=m,

where U;: Y > X, 1<j=m, is a given m-tuple of continuous linear operators,
and of finding estimates on |Q]|.

In the case of a single equation (s =1) the situation is relatively well under-
stood. The question of the existence of a solution is essentially determined in [14];
the relevant criterion is that the spectra ¢(A4) and ¢(B) should be disjoint. Find-
ing estimates on | Q| is somewhat more involved and requires restrictions on the
operators A and B. For instance, if X and Y are Hilbert spaces and 4 and B are
normal operators in X and Y, respectively, then it is known that there exists a
(universal) constant ¢ > 0 such that

(1.2) |0l =cé~|U|,

where 6 is the distance between the disjoint sets o(A4) and o(B) [1].
In [9] it was indicated that estimates for |Q|, where Q is a solution of (1.1), are
possible in the case when the commuting m-tuples

1:1=(A1s"'sAm) and B=(Bl""’Bm)

generate bounded groups, that is, when |e”“#’| < o < w0 and [[e** 2’| <8 < oo for
each £ e R"™. Here £, A)=3X7_,&;A;. Each operator 4; and B; in such an m-
tuple necessarily has real spectrum. Furthermore, the m-tuple 4 (resp. B) admits
an L{(R™)-functional calculus which takes its values in the Banach space L(X)
(resp. L(Y)) of all continuous linear operators from X (resp. Y) into itself. Here
LY(R™) is the space consisting of all functions which are the inverse Fourier trans-
forms of elements of L, (R"). If Z=L(Y, X), the Banach space of all continuous
linear operators from Y into X, and 7; € L(Z), 1 <j < m, is defined by

(1.3) T;(Q)=A,;0—-0B;, QeZ,

then the commuting m-tuple 7'= (73, ...,7,,) also has a functional calculus, say
®: LY(R™)— L(Z), whose support is the set Sp(7") = Sp(4)—Sp(B) where Sp(-)
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denotes the Taylor spectrum. Under the assumption that Sp(4)NSp(B)=, a
proof was outlined in [9] which showed (via an interesting use of Clifford analy-
sis) that a unique solution Q of (1.1) exists if and only if the compatibility con-
ditions

(1.4) AU, —UB;=AU;—U;By, 1<k<j=<m,

are satisfied. Furthermore, there exists a universal constant c¢,, such that if the
distance between Sp(A4) and Sp(B) is 6 >0, then

1.5) 1@l = aBend ™ |Uly- xm,

where |U|y xm=sup{(Z/=,|U;»|)*; y €Y, | y| <1}; see [9, Thm. 1].

In this paper we shall give a detailed proof of the results announced in [9]. In
doing so we relax the requirement that 4 and B generate bounded groups. It will
suffice that the groups grow no faster than O((1+]|£|)*), £ e R™, for some s = (;
see Theorem 2. In this case the constant c¢,, in (1.5) will also depend on s. The
functional calculus needed to treat such m-tuples is briefly described in Section 2;
it is systematically developed in [10]. As for the case of bounded groups, such
operators A; and B;, 1< j=m, necessarily have real spectrum. For certain types
of m-tuples A and B this restriction can also be relaxed; see Theorem 1.

In Section 3 we consider symmetric norms |-| on subspaces 9 of L(Y, X). In
this case, if the data elements U;, 1 <j < m, belong to 91T, then the solution Q of
(1.1), whenever it exists, is also an element of 9 and estimates for Q] of the
type given in Theorem 1 remain valid with the symmetric norm |- | replacing the
operator norm | -|. The desirability of admitting symmetric norms on subspaces
of L(Y, X) is discussed in [1].

Section 4 is devoted to various perturbation results for commuting m:-tuples of
generalized scalar operators with real spectrum. The idea is that a fixed commut-
ing m-tuple A of such operators in a Banach space X is given together with an
invariant subspace Z. If A is perturbed within the class of commuting m-tuples
consisting of generalized scalar operators with real spectrum, and if Y is an in-
variant subspace of the perturbed m-tuple, then the basic problem is to estimate
how close (in a sense made precise in §4) elements of Y are to the original sub-
space Z. Such results are used to show that if 4 and B are commuting m-tuples
of generalized scalar operators with real spectrum and if 4 and B are sufficiently
close, then the Hausdorff distance between their joint Taylor spectrum is also
small (cf. Theorem 5). In the case of finite-dimensional spaces more can be stated.
For example, suppose that X is a finite-dimensional Hilbert space and that 4 and
B are commuting m-tuples of self-adjoint operators. In this case there is a con-
stant ¢, depending only on m, such that if |4 —B| < d/c then there exists a per-
mutation 7 of {1,..., N} such that |u; —X,)| <d for every 1 <i<N. Here

fpil<i<N} and {N:1=i=N]j

are the joint eigenvalues of 4 and B (counted according to multiplicity) and N =
dim(X). This answers a question of Davis [4].
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In the final section the techniques developed earlier in the paper are used to
provide estimates for |Q|, where now Q is the solution of the so-called elemen-
tary operator equation

m
'EIAjQBj - U.
J=

Some attention, especially in the Hilbert space setting, has been devoted to find-
ing criteria which guarantee the existence of a solution Q; see [3], for example,
and the references therein. However, we are more interested in indicating some
reasonable estimates for the solution Q which apply to a large class of the co-
efficient operators 4; and B;, 1<j=<m.

2. Solutions of systems of operator equations. We require some further nota-
tion and definitions. If W is a commuting m-tuple of elements from L(E) for
some Banach space E, then Sp(W, E) or Sp(W) denotes the Taylor spectrum of
W [16]. The distance d(K, L) between two closed subsets K and L of C” is defined
by d(K,L)=inf{|x—y|:xe K, yeL}.

Let E be a Banach space, W be a commuting m-tuple of elements from L(E),
and 6 > 0. If there exist constants o« =1 and s = 0 such that

2.1) le’* ¥ < a(1+8|£])5, EeR™,

then W is said to be of type («, s) with respect to 4. In this case W necessarily con-
sists of generalized scalar operators with real spectrum [2, Ch. 5, Thm. 4.5].

Suppose that E is a Banach space and W= (W), ..., W,,) is an m-tuple of ele-
ments from L(E). A partition of W is a 2m-tuple

T(..,W) = (Wlli seey Wml’ Wle: ooy WmZ)
of elements from L (E) such that
2.2) W]=W,1+IW,2, l=j=m.

We say that W is strongly commuting if there exists a partition T(l) of W which
is a commuting 2m-tuple of operators with real spectrum. Examples of classes of
operators with the property that any commuting m-tuple of elements from such
a class is necessarily strongly commuting include spectral operators, prespectral
operators, and regular generalized scalar operators [11], where a generalized sca-
lar operator 7 is regular if it has a spectral distribution all of whose values lie in
the bicommutant of 7.

Let 7 =1 be an integer. If s = 0, then the space LY (s, R™) consists of the inverse
Fourier transforms f = g of those measurable functions g: R” — C for which
frm (1+]£])°|2(£)| d£ is finite. We shall write f for g. The Fourier inversion for-
mula being used is

fey=@mym| e Of(E)dE, xeR™
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Note that L} (s, R"”) is a Banach algebra with respect to pointwise addition and
multiplication [10, §8], where the norm is defined by

Irl=@m~ | A+|EDIA@®) a8, feLis,R™).

THEOREM 1. Let A and B be commuting m-tuples of elements from L(X) and
L(Y), respectively, such that d(Sp(A4),Sp(B))=46>0.

(i) If U is an m-tuple of elements from the Banach space Z=L1(Y,X), then
there exists a solution Q € Z of the system

1.1 A;Q—QB;j=U;, 1=<j=m,
if and only if the compatibility conditions
(1.9 AjUpr—Ur B =A U;—U;By, 1=k<j=m

are satisfied. In this case Q is unique.

(ii) Suppose that A and B are strongly commuting m-tuples which have com-
muting partitions T(A) and T(B) of type (ay,s1) and (a3, s;) with respect to 6.
If Q€ Z is a solution of the system (1.1), then

(2.3) 1] <1028 e, s | Uy xm5
where s = s,+5, and
m R 1/2
@.4) em,s =inf [(zfn)-""" [, a+ |£|)S( ) m(snz) ds},
Jj=

the infimum being taken over all functions f: R?”™ - C™ whose components S
1 <j<m, are elements of LY{(s, R?™) and satisfy

m —1
2.5) S =eo=im( B oF +y,-2))
ji=

whenever (x,y) e R"xXR" and 37, (x,?‘ +yj2) > (1—e€) for some 0<e<l1.

REMARK 1. (i) The existence of functions satisfying (2.5) and belonging tc
LY (s, R®>™) can be established as for the case m=1, s =0 in [1].

(ii) If 4 and B are commuting m-tuples of normal operators in Hilbert spaces,
then the choices A;; = %(Aj +Aj)and A, = %i(A}‘ —Aj), 1=j=m, for T(4) and
(similarly) B;; = %(Bj +Bj) and Bj, = %i(B}" —B;j), 1=j=m, for T(B) produce
commuting partitions (by Fuglede’s theorem) of self-adjoint operators, and hence
a; =03 =1 and s = 0. The estimate (2.3) then reduces to

10l =ems ' U]y xm,

where e,, = e,; o depends only on m and, in the case of m =1, coincides with the
constant c¢ in (1.2).

(iii) It will become apparent from the proof of Theorem 1 that the norm
|- |y-xm in (2.3) can be replaced by any norm ||- || in L(Y, X')" satisfying

m

> oU;
ji=1

2.6) Kee, U] = <la|JUll, UeL(y,X)™,
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for each o € C”, where || denotes the Euclidean norm of «. For example, we
could take || Ul = (7= |U; )2

(iv) It will also become apparent from the proof of Theorem 1 that if the parti-
tions T(A) =V and T(B) =W are such that V;, =0=W), whenever 0</< j=m
and satisfy the estimates |’ ¥?| = a;(1+ 6| £|)*1and |e*& | < ap (14 6| &), for
each £ e R” xR/, then the constant en,s given by (2.4) can be replaced by one
defined using m-tuples of functions f;: R™*' 5 C, 1=<j=<m, from LY(s,R"*")
such that

=) |3 1=sj=l,

(2"7) fl(x’y)z{le(x’y)l—-Z, l<jsm.

In the special case when /=0, let us denote this constant by c,, ;. Then we have
the following result.

THEOREM 2. Let A and B be commuting m-tuples of operators with real spec-
tra (in X and Y, respectively) such that d(Sp(A), Sp(B)) =6 > 0. Suppose that A
is of type («ay, s1) with respect to 6 and B is of type (o, S3) with respect to 6. Let
UeL(Y,X)". If Qe L(Y, X) is the solution of the system (1.1) and s =s;+s,,
then

(2.8) 10l =106 i s | Uy xm.

REMARK 2. If 4 and B generate bounded groups, then s;=0=s, and ¢, =
cm,0 depends only on m. In this case the estimate (2.8) reduces to (1.5). Still more
specifically, if 4 and B consist of Hermitian operators [5, Ch. 4], in which case
s1=0=s5 and a;=1=«a; [5, Thm. 4.7], then (2.8) reduces to

|l < cmd ™ U]y xm

which is of the form (1.2) when m =1. It is known [15] that ¢; = %w. We remark
that Hermitian operators in Hilbert spaces are just self-adjoint operators [5, Thm.
7.23]. However, in Banach spaces (even reflexive ones) they need not even be
spectral operators {5, p. 195].

Theorem 1 is a consequence of the following results from [10].
Let Z be a Banach space and n=1 an integer. Let 7 be a commuting z-tuple of
elements from L(Z) such that

le“tD | = M1 +|£))°, teR?,
for some M =1 and s = 0. Then the linear map ®: LY (s, R") » L(Z) defined by

2.9) e(N=en"| f@e D, feliis,RY,

is a functional calculus for 7" in the sense of [10]. In particular, ® is a continuous
(multiplicative) homomorphism of the Banach algebra LY (s, R") into L(Z) [10,
§§8, 9]. Furthermore, the support of & is precisely Sp(7’). This follows from The-
orem 6.2 of [10] and the identity Sp(7) =~ (7) [10, Cor. 10.2], where
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v(I) = {XeR";Oea % (Ti—)\j1)2>}.
Jj=1

We remark that the integral (2.9) exists as a Bochner integral in the Banach space
L(Z). Indeed, for each fe LY(s,R"), the integrand is strongly measurable [6,
§3.5] as an L(Z)-valued function (using the continuity of ¢ — e’ *7*) and

| 17 ®)e 4 D dt < M@2m)"|f] < o0.

Accordingly, |®| = M. Furthermore, for each fe LY(s, R") and z € Z the Z-val-
ued function £~ f(£)e’®* T’z is also Bochner integrable and its integral over R" is
(27)"®(f)z.

Let B(6) denote the open unit ball of C” with center zero and radius 6 > 0. The
following result is Theorem 11.1 of [10].

PROPOSITION 1. Let T be a commuting m-tuple of elements from L(Z) such
that Sp(T)NB(6) =D for some 6> 0. Let z€ Z™. Then the system of equations
(2.10) Tig=z;, 1=<j=m,

has a solution q € Z if and only if T; zy =Ty z; for all j, k. In this case q is unique.
Suppose further that T; = M; +iN;, 1 < j < m, where the operators M; and Nj;,
1<j=<m, all commute with each other, and that

(2.11) JeX™ LMD < k(14-8|N])5, NeR3?™,
Jor some k=1 and s =0. Then the solution q satisfies the estimate
2.12) lgl =< xem 87" |21l

where e, s is given by (2.4) and || -|| is any norm in Z" satisfying an inequality of
the type (2.6).

REMARK 3. An examination of the proof of Proposition 1 (given in [10]) shows
that the solution ¢ (when 6 =1) is given by

(2.13) q=(21r)_2”’§ e (1) § fiNz;da= § ®(f))z),
R2Zm j=1 j=1

where ®: LY (s, R*™) - L(Z) is defined by (2.9) with T'=(M,N)and n=2m, and
the functions f;, 1 <j =< m, are elements of LY(s, R?") satisfying (2.5). It is clear
that (2.12) follows from (2.13) by properties of the Bochner integral and (2.6). It
is also clear from (2.13) that if N; =0 for each 0 </ < j <m and if (2.11) holds in
this case whenever A € R” x R/, then em,s can be replaced by the constant defined
using functions f;, 1 <j =< m, which satisfy (2.7). The case when § = 1 follows by
a scaling argument as in [9].

Proof of the Theorems 1 & 2. Let A and B satisfy the hypotheses of Theorem 1
and let Z=L(Y, X). Let T = (T;) denote the commuting m-tuple of elements from
L(Z) defined by 7;(Q) = A; Q— OB; (cf. (1.3)). The idea of the proof of Theorem
1 is to establish the inclusion
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(2.14) Sp(T) =Sp(4)—Sp(B),
for it then follows from the hypothesis d(Sp(4), Sp(B)) = 6> 0 that
Sp(T)NB(6)=D.

Theorem 1(i) then follows from the first part of Proposition 1 applied in Z=
L(Y,X). Theorem 1(ii) will also follow from Proposition 1 once an estimate of
the form (2.11) is established for suitable (M, N). Finally, Remark 1(iii) and (iv),
and hence also Theorem 2, then follow from Remark 3 applied to the present set-

up.
So, our first aim is to establish (2.14). Let
T(A)=(Aus-ees A1, A1y ooy Am2) and  T(B)= (B, .+ B, B2y ..., Bp2)

be partitions as in Theorem 1. Define elements L, and R of L(Z), for each 1=
J=mand ke{l, 2}, by

Ljy(Q)=AjuQ and Rj;=QBj, QelZ.

Then define a commuting 2m-tuple (M, N) in L(Z)*" by M;=L;—Rj and N; =
Lj»—Rj;, 1 <j=m, in which case we have T; =M; +iN; for each j=1,2, ..., m.
Finally, let S denote the commuting 4m-tuple (L, L», R;, R,) where L; =
(Ly,s--es L), Lo=(Ly2s ..., L1n2), and Ry and R, are defined similarly.

LEMMA 1. With the above notation it is the case that
(2.15)  v(9) Sv(T(A)) Xv(T(B)) ={(u,v): uey(T(4)), vey(T(B))}.
If X =Y, then this inclusion is actually an equality.

To establish Lemma 1 we will require the following two facts. The first follows
from Taylor’s spectral mapping theorem [16] applied to the polynomial y: C"— C
given by y¥(z) =X7-,z;. The second fact is essentially Theorem 3.1 and Corol-
lary 3.3 of [14]; the proofs given there for B a Banach algebra can be adapted to
the situation where @ is the Banach space L(Y, X) and 7(Q) =AQ— OB for Qe
LY, X).

Fact 1. Let E be a Banach space and W be a commuting m-tuple of elements
from L(E) such that o(W;) < [0, o) foreach j =1, ..., m. Thenalso (X7 W)) =
[0, ).

Fact 2. Let X and Y be Banach spaces, G e L(X) and H € L(Y). Then the equa-
tion GQ— QH = U is well-posed (i.e., for every Ue L(Y, X) there is a unique
Qe L(Y,X) such that GOQ— QH = U) whenever o(G)No(H)=O.

REMARK 4. If X =Y, then it follows from a result of Kleinecke [8, Thm. 10]
that the well-posedness of GQ — QH = U is actually equivalent to

o(G)No(H)=D.

Proof of Lemma 1. By definition, an element (u, v) € R>” x R>" belongs to
v(S) if and only if
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m
z (L — ;) +(Ljz—Ujr m)*+(Rj1—0;)* + (Rj2—Vj1m)”
j:
is not invertible in L(Z), that is, if and only if

3 (Ap—w)* + (A=t ) O
(2.16) 7=l ~
+Q .El (Bj1—v;))*+(Bjz— vj+m)2) =U
Jj=

is not well-posed in Z which, by Fact 2, implies that

(EI(A,I u,-)2+(A,-2—u,-+m)2)
=

(2.17)
ﬂo(— S (Bj1— u,-)2+(B,-2-—v,-+m)2) = Q.

However, by Fact 1 this is possible if and only if the intersection in (2.17) is pre-
cisely {0}, that is, if and only if e y(T(A4)) and v e y(T(B)). This establishes
(2.15). In the case where X =Y the ill-posedness of (2.16) is actually equivalent to
(2.17) (by Remark 4) and we then have equality in (2.15). O

The proof of (2.14) now follows easily. Indeed, applying Taylor’s spectral map-
ping theorem to the coordinate projections of C#” onto C and noting that

O'(ij)=0’(Ajk) and O'(Rjk)=O'(Bjk) forall l=sj=m, 1=k=<2,
it follows that
Sp(S) _H1 o (Aj1) X H a(Aj2) ¥ H o (Bj1) X Hl 6(Bj2) SR,
J= Jj=
Accordingly, Sp(S) =y (S) by Proposition 10.1 of [10]. It follows from Lemma 1
that
(2.18) Sp(S) S v(T(4)) xy(T(B)).

Noting that M =L,—R; and N=L,— R, it follows from Taylor’s spectral map-
ping theorem {16, Thm. 4.8] that Sp((M, IV)) = Sp(¥(S)) = ¥ (Sp(S)), where ¢:
C4m - C2m j5 defined by y(u, v) =u—v for each (u, v) e C?"x C2™. Then (2.18)
implies that

(2.19) Sp((M, N)) =v(T(4)) —v(T(B)).

If p: C?" > C™ is defined by p(z) = (Z1+ iZm41s -+-» Tm + iZ2m) for each z e C>™,
then Theorem 10.8 of [10] states that p(y(T(A))) = Sp(A4) and p(y(T(B))) =
Sp(B). Combining these identities with 7'= p(M, N) it follows from (2.19), lin-
earity of p, and the spectral mapping theorem that

Sp(T") = p(Sp((M, N))) € p(v(T(A))) —p(v(T(B))) =Sp(4)—Sp(B),

which is the desired inclusion (2.14). O
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REMARK 5. If X =Y, then we have shown that (2.14) is actually an equality.

Thus, Theorem 1(i) is established. Assume now that T(A) and T(B) satisfy
the additional hypotheses of Theorem 1(ii). If A € R?”, then it follows (from the
power series expansion of the exponential function, for example) that

(2.20) (ei()\, (M,LV)))(Q) — ei()"T(é))Qe—io"T(E», QeZ.
It follows from this identity and the assumptions on T(A) and T(B) that
le" ™ M| < ooy (14+8|N[) 1152, Ne R

This is precisely an estimate of the form (2.11) needed to apply Proposition 1, and
so (2.3) follows from (2.12). This completes the proofs of Theorems1and 2. [

EXAMPLE 1. It was noted earlier that if 7" is a commuting m-tuple of regular
generalized scalar operators then 7 is strongly commuting. Actually more is true;
there exists a commuting partition T(7') each of whose components is a general-
ized scalar operator with real spectrum (cf. [2, Ch. 4, Lemma 6.1] and [11, Prop.
4]). It then follows that given any é > O there exist constants =1 and s = 0 such
that T(7) is of type («, s) with respect to 6 [2, Ch. 5, Thm. 4.5]. We remark that
spectral operators of finite type, which include all linear operators in finite-di-
mensional spaces, are regular generalized scalar operators; see Theorem 3.6 and
Example 3.12 in Chapter 4 of [2].

3. Symmetric norms. The aim of this section is to establish estimates of the
type given in Theorem 1 for symmetric norms. Throughout X and Y are Banach
spaces and m = 1. A subspace 9N of L(Y, X)) is a symmetric normed space if it is
equipped with a norm |- | (with respect to which 9 is complete) satisfying | S| <
| S| for each S € M, and such that Re L(X), Se M, and T € L(Y) implies RST e
O and |RST|=<|R||S||T|.- Examples are the spaces of nuclear operators from
Y to X and the absolutely r-summing operators from Y to X, 1 <r <o, each
equipped with their usual norm. If X and Y are Hilbert spaces, then the Schatten
p-classes, 1 < p < oo, with their standard norm are also symmetric normed spaces;
the cases p =1 and p = 2 correspond to the trace class operators and Hilbert-
Schmidt operators, respectively.

THEOREM 3. Let (9, |-|) be a symmetric normed subspace of L(Y,X). Let
A and B be commuting m-tuples of elements from L(X) and L(Y), respectively,
such that d(Sp(A), Sp(B)) = 6 > 0. Suppose that, for the usual bound norm,
T(A) is a commuting partition in L(X)*" of type («,,s;) with respect to 6 and
that T(B) is a commuting partition in L(Y)?" of type (a,, S,) with respect to é.
If U is an m-tuple of elements from O, then there exists a solution Q of the sys-
tem (1.1), necessarily belonging to U, if and only if the compatibility conditions
(1.4) are satisfied. In this case Q is unique and

(3.1 |Q|Sa1a25_lcm,s|"£f"|,

where s =s1+s5, and ||-|| is any norm in O satisfying
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m
(3.2) _El|"j||Uj|5|”H"g"|’ veC”.
Jj=
The proof of Theorem 3 requires the following result.

LEMMA 2. Let (I, |-|) be a symmetric normed subspace of L(Y,X). If f:
R — M is Bochner integrable in the Banach space I, then f is also Bochner inte-
grable with respect to the usual bound norm when considered as an L(Y, X)-
valued function and v fdp= [gm fdp. Here p is Lebesgue measure in R™, {35
denotes the integral in M, and {gm denotes the integral in L(Y, X).

Proof. Let P={£eR": | f(£)| > 0}. If n> 0 then there exists a decomposition
of P into disjoint measurable sets {£ ,g")},";l such that, for arbitrary points 5,5” e
E{™, the function f, defined by f,(£) = f(£{") if ¢ E{™ (k=1,2,...) and by
Jn(£) =0 if £ ¢ P is 9-Bochner integrable and satisfies fgm | f—fu| du<n™! [6,
p. 81, Corollary]. It is clear that each f,, is strongly measurable as a function with
values in the Banach space L(Y,X). Since

| mldu= | 1fuldu<oo,

it follows that f;, is L(Y, X)-Bochner integrable. By disjointness of the sets E{"
we have

o % N
(3.3) o S = Z SEDWEM) = lim 3 SEDIED),

where convergence is with respect to |-|. Since f, is also L(Y, X')-Bochner inte-
grable it follows similarly that

N
(3.4 | Srdu=lim 3 fEMMED),

N-oow k=1

where convergence is with respect to ||-|. Since each partial sum

N
2 SEDIMED), N=1,2,...,

belongs to M, it follows from (3.3), (3.4), and properties of the symmetric norm
that (¥ f, du=§gm S du for every n=1. Accordingly,

T = g o] | Sl ] <

=

[ e s

for every n=1, 2, ..., from which the desired conclusion follows. O

Proof of Theorem 3. The estimates
(3.5) Iei()\,T(é)) Ue —-i()\,T(B))l < “ei()\,T(é)) " I UI "e —i()\,T(g))“ )

valid for-each A e R*” and U € 9, show that the M -valued function
g(\) = ei(X.T(d))Ue—i()\,T(E))’ Ae R2m,
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is continuous. Accordingly, for each y e LY (s, R?"), the 9 -valued function f=
gy is weakly measurable (i.e., (f(-), ») is measurable for each » in the dual space
of M) and has separable range, and hence is strongly measurable in O [6, Thm.
3.5.3]. Then the estimates assumed for T(A4) and T(B) with respect to the bound
norm in L(Y, X), together with (3.5), imply that f is 9lt-Bochner integrable.
Therefore, whenever a solution Q of (1.1) exists (assuming 6 =1) it follows from
the substitution of (2.20) into (2.13) and Lemma 2 that

m m . . N
o=Cm7" % | o €T Y TINTER £ ) .

In particular, Q € 9. Furthermore, (3.1) then follows from (3.2), (3.5), and the
definition of e, ;. Since we have shown that whenever a solution Q exists in
L(Y, X) it actually belongs to 9 (assuming that U € 9™), the first part of Theo-
rem 3 follows from Theorem 1(i). O

4. Applications to perturbation theory. The purpose of this section is to illus-
trate the use of the results in Section 2 to obtain information concerning the per-
turbation of spectra and spectral subspaces of certain classes of commuting #:-
tuples of operators. See [1] for the case m =1 (in the Hilbert space setting).

We first make some comments about the restriction to invariant subspaces of
a commuting m-tuple 7" (in a Banach space E) which is of type («, s) with respect
to some 6 > 0. Thus, let V' be a closed subspace of £ which is invariant for each
operator 7}, 1 <j < m. Then V is also invariant for each operator e’™?’, A eR",
and hence an argument as in the proof of Lemma 2 shows that V is an invariant
subspace for each operator

@.1) smy=eo | MDA, feLis,R™.

Denote by 73 the commuting m-tuple in L(V)"” whose jth component is the re-
striction of 7; to V, 1 <j <m. Then Ty is also of type («, s) with respect to é and
the restriction of f(7°) to V, denoted by f(7T')y, is precisely the operator

4.2) S@=en | &Ny aN,  feLi(s,R™).

Accordingly, if ®: LY(s, R™) — L(E) is the functional calculus ®(f)=f(7T) de-
fined by (4.1) and ®,: LY (s, R™) — L(V) is the functional calculus
Sy ()=S(V)=S(Dv=2(D)v

defined by (4.2), then Supp(®) € Supp(®). Here Supp(P) denotes the support of
&: it is the smallest closed set K < R such that ®(f) =0 whenever fe LY(s,R™)
is a function with compact support contained in R” \ K. The support of &, is de-
fined similarly. Observing that

Supp(®) =+(7)=Sp(Z) and Supp(®y)=v(Zy)=Sp(Zy)
[10, Thm. 6.2 & Cor. 10.2], it follows that
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(4.3) Sp(Zy) =Sp(1).

We now list some notation and conditions which are assumed fixed for the re-
mainder of this section. Let X be a Banach space and 6 > 0. Let A and B be com-
muting m-tuples in L(X)" such that A (resp. B) is of type («;, s1) (resp. (a2, s2))
with respect to 6. Given d > 0 define

k(d) = ayaz ¢ sd ' max{l, 6°d 75},

where s =s;+ 5, and ¢, s is as in Theorem 2. If X is a Hilbert space and 4 and B
consist of self-adjoint operators, then «(d) = ¢,, /d. The following conditions will
be assumed at various stages.
Condition (i). There is a closed subspace Y of X which is invariant for each
operator B;, 1 <j=<m, and K is a closed set in R such that Sp(By) = X.
Condition (ii). There is a closed subspace Z of X which is invariant for each
operator A;, 1 <j=m, and L is a closed set in R"” such that Sp(4z) S L.

LEMMA 3. Suppose that conditions (i) and (ii) hold. Let d satisfy 0 < d <
d(K,L) and let Se€ L(X) be an operator commuting with each A;, 1 < j < m,
such that R(S) © Z where R(S) ={Sx:x e X}. If Sy denotes the restriction of S to
Y, considered as an element of L(Y, Z), then

ISyl =x()|S||A—B|x- xm-

Proof. Let Jye L(Y, X) denote the natural inclusion of Y into X. Then the
operator Q= SJy e L(Y, Z) is a solution of the system of operator equations (no-
tation is obvious)

4.9 AzQ—QOBy=S(A4—-B)Jy

and d(Sp(Az),Sp(By)) =d. Thus, if d =6, then Theorem 2 applied to (4.4) in
L(Y, Z) yields

ISyl = STy = c1z2Cm, sd | S| |A—B| x - xm-

If d < 8, then A (resp. B) is of type («;6°1d ~°1,81) (resp. («26°2d ~°2, s,)) with re-
spect to d. So, applying Theorem 2 again to (4.4) in L(Y, Z) but now considering
A and B as having their type with respect to d gives

ISyl =8Iyl < o102, s8°|A— Bl x - xm|S|/d°*. L
If V and W are closed subspaces of X, define
4.5) AV, W)=sup{inf{lv—w|: weW};veV, |v|=1};

see [7, p. 197]. Then O=A(V,W)<land A(V,W)=0ifandonlyif VS W. If X
is a Hilbert space, then A(V, W) < |(I — Pw)Py|, where Py (resp. Py/) is the or-
thogonal projection onto V (resp. W).

THEOREM 4. Suppose that conditions (i) and (ii) hold, d satisfies 0 < d <
d(K,L), and |A—B|x- xm<e. In addition, assume that there is a continuous
projection E(Z) in X with range Z such that A;E(ZY=E(Z)A;, 1=j=m.
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(@) If E(Z)y denotes the restriction of E(Z) to Y, considered as an element of
L(Y, Z), then |E(Z)y| < ex(d) |E(Z)|.

(b) Ife<w(d) 'E(Z)|7, then ZNY ={0}.

(©) If MUE(Z))={xeX; E(Z)x =0}, then A(Y, N(E(Z))) <ex(d)|E(Z)].

Proof. (a) This follows from Lemma 3 with S=FE(Z).
(b) If e<x(d)"'|E(Z)|", then (a) implies that |E(Z)y| <1 and hence ZNY =

{0}.
(¢) This follows from the inequality

AY, UEZ))) =supl|ly—(V—E2Z)p)|:yeY,|y|=1}=|E2Z)y|. 0O

If X is a Hilbert space and T'e L(X )" is a commuting m-tuple of self-adjoint
operators, then associated with 7 is its joint resolution of the identity which as-
signs a projection, necessarily an element of the commutant {7;:1<j<m}, to
each closed subset K of R™. The range of this projection will be called the spec-
tral subspace of T with respect to K.

COROLLARY 4.1. Let X be a Hilbert space and A € L(X)™ be a commuting m-
tuple of self-adjoint operators. Let d and e be positive numbers and suppose that
Be L(X)™ is a commuting m-tuple of type (a,,S,) with respect to d such that
|A—B|x_ xm <e. Suppose K is a closed subset of R™ and Y is a closed subspace
of X which is invariant for each operator B;j, 1< j<m, such that Sp(By) <= K.
Then

A(Y, Xg) = a25cm,s2/d,

where X, is the spectral subspace of A with respect to the closed set K+ B(d).
In particular, if B is also an m-tuple of self-adjoint operators and Y is the spec-
tral subspace of B with respect to K, then

A(Y, Xg)<ec, /d.

REMARK 6. To interpret Corollary 4.1 we should think of A4 as given, B as an
approximation to 4, and Y as a known “spectral subspace” of B associated with
K. The conclusion is that elements of Y are near the spectral subspace of A cor-
responding to a set which is slightly larger than XK.

Proof of Corollary 4.1. Let F be the projection in the joint resolution of the
identity for A assigned to the closed set K+ B(d). Then X;= R(F). So, put Z=
R(I—F)and E(Z)=1—F. Then Sp(4z) <L and d(K, L) =d, where L is the clo-
sure of R”\ (K + B(d)). Thus, with § = d all the hypotheses of Theorem 4 are sat-
isfied and hence Theorem 4(c) implies, after noting «; =1, 5, =0, and |E(Z)| =1,
that

A(Y, Xq) = A(Y, UE(Z))) < ex(d) = azeCpy,5,d .

If B is also self-adjoint, then «; =1 and s, =0. 1

LEMMA 4. Suppose that condition (i) holds and |A—B|x_xm<e. Let fe
LY (51, R™) have compact support, Supp(f), in R and let 0 < d < d(K, Supp(f)).
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If Xy is the closure of R(f(A)), then f(A)y, considered as an element of L(Y, X ),
satisfies

1/ (Q)y]| = ex(@d) | S(AD].

Proof. Let S= f(A), Z= Xy, and L =Supp(f). Then it follows that condition
(ii) is satisfied, that is, Sp(A4z) < L. The conclusion follows from Lemma 3. O

Concerning perturbation of the Taylor spectrum as a whole we have the fol-
lowing result.

THEOREM 5. Let d and € be positive numbers. Let A (resp. B) be a commut-
ing m-tuple in L(X )" such that A (resp. B) is of type (a1, 51) (resp. (o, 53)) with
respect tod and |A—B|x_ xm<e. If

4.6) o O EC, < d,
then Sp(A) C Sp(B)+ B(d) and Sp(B) CSp(4)+ B(d).

Proof. Let 6=d, K=Sp(B), and K;=K+B(d). Let feLY(s;,R™) be any
function with compact support satisfying Supp(f)NK;= . By Lemma 4 with
Y =X we have | f(A4)| = ex(d)| f(A)]|. But k(d) = ayoz¢,,, s /d since 6 =d, and so
J(A4)=0 by (4.6). 1t follows that Supp(®) C K;, where ® is given by (4.1) with
T=A, and hence Sp(4) C K;. A similar argument establishes the other inclu-
sion. Ll

Suppose now that dim (X') < co. In this case, if Vand W are subspaces of X then
4.7 AWV, W)<1 implies that dim(}V') <dim(W);

see [7, p. 200]. If T is a commuting m-tuple in L(X)", then Sp(7’) is necessarily a
finite set, say {\1, ..., A/} [11, Prop. 7]. Elements of Sp(7’) are called joint eigen-
values of 7. There exists a direct sum decomposition X = X; @ --- @ X, where
each subspace X is invariant for each operator 7;, 1 < j < m, and Sp(Zx, ) = { «},
1=k =<r [16, Thm. 4.9]. The dimension of X} is called the multiplicity of \x, 1 =
k =r. So, counting multiplicity, 7" has precisely N joint eigenvalues where N =
dim(X). )

We require a further definition. Let X be a Banach space (not necessarily finite-
dimensional) and 7€ L(X )" be a commuting m-tuple of type («, s) with respect
to some 6 > 0. For each p >0 and each subset VS Sp(7) let F(V, p) denote the
collection of all fe C°(R™) which are 1 in a neighbourhood of V and satisfy
Supp(f) €V +B(p). Then, for p > 0, define

M, (T) =suptinf{| f(T)|: € TV, p)}; V=Sp(T)]}.

If X is a Hilbert space and T consists of self-adjoint operators, then M, (7)) =1
for every p > 0. In general, M,(7") depends on the type («, s) of 7" and the geom-
etry of the set Sp(7’).

THEOREM 6. Let N=dim(X) be finite, d and e be positive numbers and A be
a commuting m-tuple in L(X )" of type (a,,s,) with respect to d. Let B be a com-
muting m-tuple in L(X)"™ of type (a3, s2) with respect to d such that
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|A—Blx-xm=e.

Suppose that Sp(A)={N\;:1=<I=<N} and Sp(B) ={p;:1<1=<N} are the joint
eigenvalues of A and B repeated according to multiplicity. Then, for any p>0
such that

(4.8) M,(A)eajazcp,, s <d,
there exists a permutation « of {1,2, ..., N} such that
|,u1——)\,r(1)|<(d+p), 1</=<N.

REMARK 7. For X a Hilbert space and A a commuting m-tuple of self-adjoint
operators it follows that there exists a permutation z such that

(4.9) lwi—Axy| <d, 1=<I<N,

whenever ea;c,,, s, <d. If B is also an m-tuple of self-adjoint operators, then the
conclusion is that there exists a permutation 7« such that (4.9) holds whenever
|4A—B| <d/c,,. This answers a question of Davis [4] as foreshadowed in [9];
the case m =1 is discussed in [1].

If Te L(X)™ is a commuting m-tuple of type («, s) with respect to some § >0
(it is not assumed that dim(X) < o), and if Sp(7)=K UL where K and L are
non-empty, disjoint, compact sets, then it follows from the LY (s, R™)-functional
calculus for 7 (cf. (4.1)) that there exist disjoint commuting projections E£(K) and
E(L) such that E(K)+ E(L)=1. The range of E(K) (resp. E(L)) will be called
the spectral subspace of T with respect to the component K (resp. L) of Sp(T’).

Proof of Theorem 6. Let A={1,2,...,N}. Define a relation ®Rin A XAbyi®Rj
if and only if |u; —\;| < (d+ p). For any subset I" of A let #(I') denote the num-
ber of elements in I and R(I')={je A; iRj for some i eT'}.

CLAIM. #(I') < #(R ")) for every I' € A.

The conclusion of the theorem will follow directly from this Claim by appealing
to a combinatorial result, called the Marriage Theorem [17, Thm. 25A], which
states that if ® is a relation on a finite set with the property that #(I') <= #(R(1"))
for every subset T, then there exists a one-one mapping of the set onto itself that
is a restriction of (.

To establish the Claim, fix a subset I' of A and then define K={u;:ieI'}. Let
V={NeSp(A):d(\,K) = p+d}, in which case d(K, V+ B(p)) = d. By (4.8) there
is Y € F(V,p) such that | (A)| <d/ea;acnm, s. Hence, d(K, Supp(¥)) =d, and if
Y denotes the spectral subspace of B with respect to the component K of Sp(B)
then the hypotheses of Lemma 4 are satisfied with 6 =d. Hence

Wyl <ex(d)|¥(D]<1 andso YN{xeX;y¥(Ax=x]={0}.
It follows that dim(Y) +dim(91(7 —y¥(A))) < N. Since
dim(Y)=#T) and dim(NIT—y¢(A)))=N-—-#(RT)),
the Claim follows. O
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Our final result of this section deals with the stability of multiplicity with re-
spect to perturbations.

THEOREM 7. Let N=dim(X) be finite, d be positive, ¢ € (0,1], and A be a
commuting m-tuple in L(X)" of type (ay,s1) with respect to d. Let B be a com-
muting m-tuple in L(X)™ of type (a5, s,) with respect to d and suppose that

(4.10) |A—Blx_ xm=<defoyozCpm,s.

IFmin{|\; —Ag|: Nj = A} >2d where Sp(A)=[\y:1<k=r}, and e<min{|E,| ™"
L =Sp(A)} where E; is the spectral projection of A with respect to the compo-
nent L of Sp(A), then

(4.11) dim(Xg(k))=n,, 1<k=<r.

Here ny is the multiplicity of Ny and X (k) is the spectral subspace of B with re-
spect to the component ({\;}+ B(d))NSp(B) of Sp(B).

REMARK 8. Theorem 7 states that if 4 is given and B is a perturbation of A4,
then even though a joint eigenvalue \; of 4 may “split” into multiple joint eigen-
values of B, the dimension of the spectral subspace of B with respect to the compo-
nent ({\;}+B(d))NSp(B) of Sp(B), which is non-empty by Theorem 5, remains
at n;. In particular, ({\;}+B(d))NSp(B) contains at most #; elements. If X is a
Hilbert space and A is an m-tuple of self-adjoint operators, then the assumptions
simplify somewhat since a; =1, 5, =0, and |E.| =1 for every L € Sp(A4).

Proof of Theorem7.Fixke(l,2,...,r}. Let K={N\;} and L =Sp(A)\ K. If Xy
(resp. X ) is the spectral subspace of A with respect to the component K (resp. L)
of Sp(A4), then it follows that

A(Xa(k), Xk) = sup{|u—Exu|: ue Xq(k), Ju| =1} = |EL k)|

where Jg4) is the natural inclusion of X,;(k) into X and E; Jx(4) is considered
an element of L(X,4(k), X.). But Q =E| Jg(a) is a solution, in L(Xyz(k), X), of
the system of equations A; Q — OBg4) = EL (A — B)Jkay, where A4 is the restric-
tion of 4 to X, and Bgq) is the restriction of B to X;(k). Since d(A, Bxa)) =
d(L,K+ B(d))>d it follows from Theorem 2 that

VELIk@| = cracm,sd ™ Ul x 00 - xps
where U = E; (A — B)Jk@)- Then the inequality (4.10) together with

1Yl x 00 - xp = |ELIA—B|x— xm

shows that A(X,(k), Xx) < €¢|E.| < 1. Applying (4.7) we have dim (X (k)) <
dim(Xg) =ny. Since this is forevery 1=k <r and X=X,(1)® --- ® X4(r), the
equality (4.11) follows. (]

REMARK 9. All the results in this section have natural analogues for m-tuples
A and B which are strongly commuting with respect to some partitions T(A4) and
T(B) consisting of generalized scalar operators with real spectrum. The argu-
ments are based on Theorem 1 rather than Theorem 2. In particular, this includes
the case when A4 and B consist of normal operators in a Hilbert space X.
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5. Elementary operators. Let X and Y be Banach spaces and 4 and B be com-
muting m-tuples in L(X)™ and L(Y)"™, respectively. Some attention has been
given to the operator 7: L(Y, X) —» L(Y, X), called an elementary operator, de-
fined by

.1 7(Q)= _ElAjQBjs Qe L(Y, X),
j=

especially in the setting of Hilbert spaces. For example, if X =Y is a Hilbert
space, then it is known [3] that

(5.2) o(T)={{u,v): ueSp(4),veSp(B)],

where (u, v) =237 u;v;. Using the methods of this paper we have the following
result.

PROPOSITION 2. Let X, Y be Banach spaces and let Ae L(X)" and Be L(Y)"
be strongly commuting m-tuples. If Te L(L(Y, X)) is the operator

m
O~ X A;0B;,
then /=1

(5.3) o(T) S Ku,v): ueSp(4), ve Sp(B)].
If X =Y, then the inclusion (5.3) is actually an equality.

Proof. Let T(A) and T(B) be partitions with respect to which 4 and B are
strongly commuting. Let S = (L, L,, R;, R,) be the commuting 4m-tuple defined
in Lemma 1. Since Sp(S) € R*” (cf. proof of Theorem 1), it follows that Sp(S) =
v(S) [10, Cor. 10.2]. If y: C"x C"x C" x C" > C is defined by y(u,v,w,z)=
27 (uj+ivj)(w;+iz;) then T=y(S), and so Taylor’s spectral mapping theo-
rem implies that

o(T) =¥ (Sp(3)) =¥ (v(8)) =S¥ (v(T(A4)) X v(T(B)));

see Lemma 1. But y(u, v, w, z) = {p(u, v), p(w, z2)), where p: C>*" - C™ is the
polynomial defined in the proof of Theorem 1. Accordingly, Theorem 10.8 of [10]
implies that

V(v(T(A) Xy (T(B)) =p(n), p(r)): pev(T(4)),»ev(T(B))}
=[N\ E): NeSp(4), £eSp(B)],

which is (5.3). The case of equality, when X =Y, follows from the second part of
Lemma 1. 0

REMARK 10. If X =Y is a Hilbert space, then it is known that the Taylor spec-
trum in (5.2) can be replaced by the Harte spectrum [3]. The same is trueif X=Y
is a Banach space and 4 and B satisfy the assumptions of Proposition 2 [10, Thm.
10.8].

COROLLARY 2.1. Let X and Y be Banach spaces and let A and B be as in Prop-
osition 2. If
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5.4 7(4, B) =inf{|<u, v)|: u e Sp(4), ve Sp(B)}
is positive, then for each U e L(Y, X) there is a unique solution Q in L(Y, X) of
the equation

(5.5) _21 A;QB; =U.
j:

Proof. The condition 7(A4, B) > 0 is equivalent to 0 ¢ o(7T’), that is, to 7 being
invertible. Here T is the operator (5.1). L]

We now consider the problem of finding estimates on |Q] where Q is the so-
lution of (5.5). It is assumed henceforth that 7(A4, B) >0 and that A and B are
commuting m-tuples of generalized scalar operators with real spectrum. Let Z =
L(Y,X). If L; and R; are the elements of L(Z) defined by L;: Q— A4;Q and R;:
O~ QOBj,1<j=m,foreach Qe Z,thenT=3%7_, L; R; (cf. (5.1)) is a generalized
scalar operator with real spectrum [12]. Then [2, Ch. 5, Thm. 4.5] guarantees the
existence of constants o =1 and s = 0 such that

le"T| <= a(14+7(4, B)|t])°, teR.
Accordingly, Proposition 1 applies with m=1 and Z and T as above to yield
1Q] = accy,s7(4, BY MU

This approach is discussed in [12]. However, it may be difficult to apply in prac-
tice if the explicit dependence of the type («, s) of 7 with respect to 7(A4, B) is re-
quired in terms of the type («y,s1) of 4 and the type («,, s;) of B (with respect to
7(A, B)). The purpose of this section is to outline an alternative approach for
finding estimates on |Q|.

Suppose that 7(4, B) > 0 and that |e**?| < o (1 +|£])*1, £€R™, and |52 | <
az(1+]|£])°2, £eR™, for some constants o, =1 and 5, =0, ref{l,2}. If L; and
Rj, 1= j=m, are the operators defined above and S is the commuting 2m-tuple
(L, R), then

. m m
e’()"§>Q = (exp [I .El )\jAj] )Q CcXp [l .EI >\m+ij]: AE R2m,
j= ji=
for each Qe Z. It follows that
(5.6) le" ™| = "™ EB < oy (1+][N])°, NeR*™,

where s =s,+5,, and so S admits an LY (s, R*")-functional calculus given by

6D S®=SLBR)=Cn)™| e LBV £y, ) du dv

RMxRM
for each fe LY(s, R*™). Furthermore, it was noted earlier that
Sp(S) SSp(L) XSp(R) =Sp(4) XSp(B).

Now, Corollary 2.1 implies that there exists a unique solution Q € L(Y, X)) to the
equation 4, QOB+ --- + A,,OB,, = U. Using the formula (5.7) it follows that

(5.8) Il =2 v(4, B)|U|,
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where
v(4,B)= inf{(z':r)‘z’” SRmem A+ |(u, v)|)¥| f(u, v)| du dv} ,

the infimum being taken over all functions f in LY(s, R>”) such that f(x, )=
1/{x, ¥ in a neighbourhood of Sp(4) X Sp(B). Indeed, as T=(L, R) we see for
such fthat f(L,R)=T"'and so Q=T"'U=f(L,R)U.

The problem is to understand how v(A4, B) depends on the geometry of the sets
Sp(A4) and Sp(B). For example, is v(4, B) <c/7(A4, B)l“ for some constant ¢ de-
pending only on m and s? The answer to this is no, as seen by the following ex-
ample (where s = 0).

EXAMPLE 2. Let X =Y = C" where n is to be chosen suitably large. Then with
m=2define A=(D,I)and B=(D —1 I) where D is the diagonal matrix with en-
tries 2, 22, ..., 2" It follows that

7(4, B) =inf{[<(2/,1), @ 5 1)|: 1=j=n, 1=k =n}=(1+2"")>1

and the solution Q of the corresponding equation (5.5), namely DQD !4+ Q="U,

is the matrix whose (j, k)th entry is given by g = t;x(1+2/~%)~1. Choose U=

(u;x) to be the n X n Toeplitz matrix corresponding to the function g(0) = i(w—8)

on [0,2x], that is, u;;, = (j—k)d —08j¢). Then |U| == and |Q| = DNog(n)-2,

where the second inequality follows by estimating |Qw| with w=(1,1,...,1). Ac-

cordingly, there can be no constant ¢ = c(m) such that v(4, B) <c7(4, E)_].
We require some further definitions. Define

d(A)=inf{|u|: u € Sp(A4))
(d(B) is defined similarly) and

[Ku, 03] |
|u]-]v]

(4, B) =inf{ ueSp(d), ueSp(t})}.
Then

d(A)d(B)d(4,B)<7(4,B) and 7(4,B)>0
if and only if d(4)d(B)d(4, B) > 0.

THEOREM 8. Let A (resp. B) be a commuting m-tuple in L(X)" (resp. L(Y)™)
such that |e"*?| < a (1 +|£])% and |e" ¢ B < ay (1 + |£])52 for each e R™. If
7(A, B) >0, then the unique solution Q € L(Y, X') of the equation

AIQBl‘l‘ tee +AmQBm =U
satisfies the estimate
1+|log d(4, B)|
d(A)d(B)d(A4, B)*"+s’
where s = s,+ s, and c(m, s) is a constant depending only on m and s.

Proof. Let V=d(A4) '4 and W=d(B) !B, in which case d(V)=1=d(W).
Then the inequalities

(5.9) 10l = a0, max{l, d(4)~1d(B) *2}c(m,s)|U|
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le"® P < oy max ({1, d(A) "1} (1+]£])*, £eR”,
and .
le"®®?| < ay max({l, d(B)2}(1+|£))2, £eR”,

are valid. Since the solution Q of (5.5) also satisfies the equation

m

(5.10) Y V;QW;=d(A)"'d(B)"'U,
j=1

it follows from (5.8) applied in the context of equation (5.10) that

_ _s, (L) |U|

.11 = 51 2} ——= .

(5.11) 1Q| = oy max{l, d(4)"1d(B) "2} d(4)d(B)
Noting that d(A4, B) =d(V, W), the desired estimate (5.9) follows from (5.11) and
the following lemma. O

LEMMA 5. Let V (resp. W) be a commuting m-tuple in L(X)"™ (resp. L(Y)")
such that V is of type (B,,s1) with respect to 1, W is of type (32, s2) with respect
tol,and d(V)=1=d(W). Let s =s1+s5,. Then there exists a constant c(m,s),
depending only on m and s, such that

1+|log d(¥, W)
d(l/’ W)2m+s

v(V,W)=c(m,s)

Proof. We proceed via a Littlewood-Paley argument. Let ¢ € C”(R) be a real-
valued function supported in {# e R; 3/4 <|¢| <3} such that

[¥lo=1 and 5 (=1

whenever |¢|=7/8, where Y (¢) = v(27%1), teR. Let he C®(R) be a real-valued
odd function such that A(¢) =1/t whenever |¢|=1/2, and let #; denote the func-
tion ¢ —d 'h(t/d), t e R, where d =d(V, W). Define g: R” xR"” >R by

g\ ) =YUNDY (D hadN p)), N, peR™,
and

gixOnp) =827\, 27%0), A\ peR™,

for each j,k€{0,1,2,...}. Let Li(im) denote the Banach space L'(p) where p is
the measure (1+|(u, v)|)°du dv in R” xR"”. The norm will be denoted by ||, .
Using the inequalities

A+ |(u, v)]) = A4+277 75| 27u, 2%v) ) = 1 +|(27u, 2*v)|, u,veR”,

it can be shown that |g;|:,s =|£&[:,s for all j and k.
Define f: R” xR — R by

foam=3 3 27 g\ u),
j=0£k=0

in which case it follows that f(\, ) = 1/{\, u) whenever |\|=7/8, |p|=7/8, and
KN, @] IN 7Y »] 7! = 8d/9. That is,
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SO 1) =1/N, p)

in a neighbourhood of Sp(V') X Sp(W). Now, the series for f converges in S/ (R*™),
where 8$(R?*™) is the Schwartz space of rapidly decreasing functions; thus also

(5.12) f=3 T 2777 g,
Jj=0 k=0

with convergence in 8’(R?”). Suppose for the moment that

1+ |logd]|

(5.13) (271')-2m||g“1,ssc(m’s) dzm+s

In particular then, |£|; s <oo, and so the series for f converges absolutely in
1(m) since

(5.14) > Y27 Hgulhs= 2 X 277758l s =48],

i=0k=0 ji=0 k=0
Since the inclusions Lj(m) < L'(R?*") < 8’(R?*™) are continuous it follows that
feL5(m). That is, fe LY(s, R*™) and satisfies f(\, x) = 1/{\, ) in a neighbour-
hood of Sp(V) X Sp(W). Furthermore, (5.12), (5.13), and (5.14) imply that

1+|logd|

(2w)~2m Snzm (14| (u, v))°¥|f(u, v)| du dv < 4c(m, s) Samts

So, to prove the lemma it remains to establish (5.13).
Fix / = 1. By direct computation it can be established that

(5.15) max{]d'g(\, £)/IN;]1, |8'g (N, 1) /i3 < Ym,1d 7,

for each 1 < j < m, where v,,, ; depends only on m, / and on the choice of ¥ and A.
The case /=0 yields

(5.16) lgl1 = Ym,0(1+|logd]).

It should be remarked that in establishing (5.15) and (5.16) we have made use of
the fact that 0 < d <1 and, in estimating the various Jacobians and integrals along
the way when variables are changed from rectangular to spherical polar coor-
dinates, the radial symmetry of (X, p) — ¥(|\|)¥(|n|) plays a crucial role. It fol-
lows from (5.15), (5.16), and the identity [(p)"~(2)|=]¢|'| p(¢)| (valid for suit-
ably smooth functions p: R — C) applied to the partial derivatives of g tha:

|81, V)| <y, o0(1+]|logd|), u,veR”,
and
(u)?+|v|»)"?|g(u, v)| < vi,d~', u,veR™,

for suitable constants vy, ;. Using these inequalities and decomposing the integral

S| A
SRmem (1+|(u, v|)¥|&(u, v)| du dv

into integrals over the disjoint regions K = {(u, v): |u|*+|v|* =d ~2} and R*"\K,
the estimate (5.13) follows upon choosing / = 2m + s+ 1. This completes the proof
of the lemma and also of Theorem 8. O
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REMARK 11. (i) If 4 and B are as in the statement of Theorem 8, then it fol-
lows from Lemma 6 that

v(d(A)'4, d(B)~'B) < c(m, s) 1110844, B)|

d(é, 5)2m+s
Furthermore, if 8 and <y are arbitrary positive constants, then it follows from the
definition of »(-) that

v(4, B) =max{1, 3%, v*)v(v4, BB).

Combining these two estimates (with the choice v = d(4) ! and 8 =d(B)™!) yields
the inequality

1+]logd(4, B)|
d(4,§)2m+s ’

which gives some indication, via the notion d(A4, B) (a measure of how close the
sets Sp(A4) and Sp(B) are to being “orthogonal”), of the dependence of »(A4, B)
on the geometry of the sets Sp(A4) and Sp(B).

(ii) The computations used in the proof of Lemma 6 are somewhat crude and
can probably be improved. This suggests the question of whether the estimate
(5.17) can be sharpened. Suppose, for example, that s; =0 =s,. Is it the case that

v(4,B)=c,/d(4)d(B)d(4, B)

5.17) v(A4, B) <c(m,s)max{l,d(A)"* d(B)"°}

or, perhaps,
(4, B) < c,,(1+|logd(4, B)|)/d(4)d(B)d(4, B)?

(iii) Theorem 8 can be extended to m-tuples A and B which have commut-
ing partitions T(A) and T(B) consisting of generalized scalar operators with real
spectrum. In particular, 4 and B could be commuting m-tuples of normal oper-
ators in Hilbert spaces.

(iv) We have restricted ourselves to a consideration of the single elementary
operator equation (5.5) rather than a linear system of such equations, say

m
E AijBjk=Uk, l<=k=n.
Jj=1

The reason is that the compatibility conditions required to guarantee solutions of
such systems (together with some estimates of a different nature to those of this
section and those in [12]) are presented in the recent paper [13].

REFERENCES

1. R. Bhatia, Ch. Davis, and A. McIntosh, Perturbation of spectral subspaces and solu-
tion of linear operator equations, Linear Algebra Appl. 52/53 (1983), 45-67.

2. 1. Colojoara and C. Foias, Theory of generalized spectral operators, Gordon & Breach,
New York, 1968.

3. R. E. Curto, The spectra of elementary operators, Indiana Univ. Math. J. 32 (1983),
193-197.



SYSTEMS OF OPERATOR EQUATIONS 65

4. Ch. Davis, Perturbation of spectrum of normal operators and of commuting tuples.
Linear and complex analysis problem book, 219-222, Lecture Notes in Math., 1043,
Springer, Berlin, 1984.

. H. R. Dowson, Spectral theory of linear operators, Academic Press, London, 1578.

E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc.

Colloq. Publ., Vol. 31 (4th rev. ed.), Providence, R.I., 1981.

7. T. Xato, Perturbation theory for linear operators, (corrected printing of 2nd ed.),
Springer, Berlin, 1976.

8. G. Lumer and M. Rosenblum, Linear operator equations, Proc. Amer. Math. Soc. 10
(1959), 32-41.

9. A. MclIntosh and A. Pryde, The solution of systems of operator equations using Clif-
JSord algebras, Miniconference on linear analysis and function spaces (Canberra, 1984),
212-222, Australian Nat. Univ., Canberra, 1984.

, A functional calculus for several commuting operators, Indiana Univ. Math.

J. 36 (1987), 421-439.

11. A. Mclntosh, A. Pryde, and W. Ricker, Comparison of joint spectra for certain classes
of commuting operators, Studia Math. 88 (1987), 23-36.

, Estimates for solutions of the operator equation %7_, A;QOB; =U. Proc. of
XIth international conference on operator theory (Bucharest, Romania, 1986), to
appear.

13. A. Pryde, Estimates for linear systems of operator equations. Miniconference on op-
erator theory and PDE’s (North Ryde, 1986), 35-51, Australian Nat. Univ., Canberra,
1986.

14. M. Rosenblum, On the operator equation BX — XA = Q, Duke Math. J. 23 (1956),
263-270.

15. B. Sz.-Nagy, Bohr inequality and an operator equation, Report to Xth Conference in
Operator Theory, Bucharest, 1985.

16. J. L. Taylor, The analytic-functional calculus for several commuting operators, Acta
Math. 125 (1970), 1-38.

17. R. J. Wilson, Introduction to graph theory, Academic Press, New York, 1972.

p\u.

10.

12.

School of Mathematics and Physics
Macquarie University NSW 2109
Australia

Department of Mathematics
Monash University

Clayton VIC 3168

Australia

Centre for Mathematical Analysis
Australian National University
Canberra ACT 2601

Australia






