FORMAL CHARACTER TABLES

Stephen M. Gagola, Jr.

1. Introduction. The character table of a finite group satisfies so many tight
arithmetic restrictions that it is hard to imagine that such a table can exist without
a corresponding group. Indeed, in the case of the Lyons-Sims group LyS and the
Fischer-Griess group Fj, the character tables were computed before the existence
of the groups was established. Of course, extensive and consistent subgroup infor-
mation about these groups was also known prior to the existence proofs. In §2, a
definition is given for a formal character table, as well as a method for producing
examples that are not necessarily character tables of groups. It does not appear
likely that necessary and sufficient conditions will be found for a square matrix
in order that it be a character table of a finite group (problem 6 of [2]).

The method itself produces examples of formal character tables in which arow
exists containing exactly two nonzero entries. This can happen in the character
table of a group, and the structure of such groups has been determined in [4].
Theorem 2.4 may be used to obtain examples of formal character tables in which
no row contains only two nonzero entries.

Theorem 3.1 may be useful to show that Definition 2.2 does lead to formal
character tables (in particular examples) which are not actual character tables,
while Theorem 3.2 gives an infinite family of examples.

2. “Character tables” that are not character tables. Some of the more well-
known arithmetic properties of character tables are formalized in the definition
below.

DEFINITION 2.1. A kX k matrix X is a formal character table if the following

five conditions are satisfied:

(1) The first row of X consists entirely of 1’s and the first column consists of
positive integers x;;. Every entry Xx;; is a sum of exactly x;; nth roots of 1
where n = 3%_, xA. (The integer n will be referred to as the order of X).

(2) The algebraic conjugate of any row (resp. column) of X is a row (resp.
column) of X,

(3) Define ¢; = Xf_ |x;;|% Then Xf., x,; X /ci = 6pq. (Notice that ¢, =n and
c;=1 by (1), so the sum is defined.)

(4) The (pointwise) product of any two rows of X is a nonnegative integral
combination of the rows of X.

(5) Define apq, for 1=p,q,r<k by

n X xgpXeaXsr

a =
pqr
Cqu s=1 xSl

Then a,,, is a positive integer or zero for all p, g, r.
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Each property listed above, of course, is satisfied by the character table of any
finite group (subject to reordering the rows or columns of X, or even, for some
people, taking a transpose). One good reference for character theory is [5].

Of course, other well known properties of character tables may be included in
this list, but many of these are already consequences of (1)-(5) above. For con-
venience, we list a few of these. Numbers and letters in parentheses after each
assertion indicate specifically which statements imply the assertion.

For every p and g, 3f_ X, X7 =6p5¢, (3).

For every j, c; is a positive integer (1, 2).

For every j, c; divides n (1, 2, 5, A).

The integers a,,, are structure constants for a commutative and associa-
tive algebra. That is, if {by, b, ..., bs} is a basis for a C-space, say Z, and
if a multiplication is defined on Z by the equations b, b, = >k, Apgrbr
and linearity, then Z is a commutative and associative algebra (3, 5).

E. For each i, the linear function w;: Z— C given by w;(b;) =x;;n/c;x; is
an algebra homomorphism. In particular, w;(b;) is an eigenvalue of the
integer matrix A"’ = (a;pq). The corresponding eigenvector is v; where
v = (wi(b1), wi(b3), ..., wi(br)). Hence w;(b;) is an algebraic integer for
alli and j (3, 5, D).

F. For every i, x;; divides n (1, 3, E).

In an actual character table X, the integers c; are the centralizer orders for the
various conjugacy class representatives. Notice that property (1) of Definition 2.1
may be refined so that x;; is required to be a sum of exactly x;; cjth roots of unity.
Other possible refinements include the incorporation of power maps, and the
introduction of p-blocks, but this will not be done here.

The following definition and theorem provide a way of constructing new formal
character tables from old ones.

Cowp

DEFINITION 2.2. Let X be a k£ X kK matrix which is a formal character table of
order n. Assume n=ds where d and s are positive integers with s dividing d.
Define (X, s) to be the (kK+1) X (k+1) matrix given in blocked form by

v | x
X: = — |
(X9) [d ]

w
where v is the first column of X and w = (—-s,0,0,...,0).

As a way of motivating this definition, it is interesting to interpret what (X, s)
is when X happens to be the character table of an actual group AH. In this case
write |H|=ds=s2¢t and let G be a group with a normal subgroup N of order
t+1 and quotient G/N isomorphic to H. (Take G = H X N, for example.) Set
o = (1/st)(pGg — pg/N), Where p denotes the regular character. The class function
o is not generally a character of G, but an easy calculation shows it has norm 1.
The matrix (X, s) consists of o appearing in the bottom row, and the irreducible
characters of G whose kernels contain N, with redundant columns deleted. In
other words, (X, s)is a “condensed” version of a character table of G. It.is possi-
ble to prove that (X, s) is a formal character table using the ordinary characters
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of G. However, (X, s) is always a formal character table whenever X is, as the
next result shows.

THEOREM 2.3. Let X be a formal character table of order n where n =ds and
s|d. Then (X, s) is a formal character table of order n+d?*=d(d +s).

Proof. For notational convenience, index the rows of (X, s) by the integers
1,2,...,k+1 and the columns by 0, 1, ..., k. Let x;; denote the ij entry of (X, s)
SO thatxU —x,, fori<kandj=1. Also x,o —-x,| fori<kandxii1,0=d, Xk+1,1=
—s while xf,, ;=0 for j >1. We also define ¢} = 353/ |x}|

To verify property (1) of Definition 2.1 it suffices to consider only the entries of
the last row of (X,s). Any zero entry of that row (corresponding to xj ., ; for
J >1) can be expressed as a sum of f fth roots of 1 if f=ged(d,c;)>1, and
hence, as a sum of d fth roots of 1. If ged(d, cj) =1 then, as c; |ds and s | d, we
must have c¢; =1. This is possible by the “second orthogonality relation” (prop-
erty A) only when n =ds =1, and in this case (X, s) = (X, 1) is the character table
of the cyclic group of order 2.

Consider next the entry xx +;,; = —s. Clearly, —1 is a sum of the d/s fth roots
of 1 which are different from 1 where f=d/s+1. Notice that f divides d+s
which in turn divides s(d +s) =c¢i. Hence, —s is a sum of d fth roots of 1 where
J | cf. This proves that property (1) of Definition 2.1 holds for (X, s).

Property (2) obviously holds for (X,s). The “first orthogonality relation”
(property (3)) holds for any pair of rows not including the last row by using the
identity

1 1 1

ct o
and the “first orthogonality relation” for X. Calculating inner products with the
last row is easy since there are only two nonzero entries. The result is that property
(3) holds for (X,s).
Clearly (4) holds for the product of any pair of rows of (X,s) not involving
the last ow. If r; denotes the ith row of (X,s) then the pointwise product of
r; with Fr+1 is obviously Xi1 "k+1 for i < k, while for i =k +1 the product is

k
2 Xxiali+(d—S)riq

i=1

(where we have used property A applied to X). This verifies that (X, s) satisfies
4.
The last property of Definition 2.1 unfortunately is the messiest one to verify.
Define
n* K4 x.;gpx:q}g

a;q,= * %k E

CpCq s=1 Csh

for 0<p,q,r<k and n*=n+d?=d(d+s). Since this expression is symmetric
in p and q, it suffices to prove aj,, is a nonnegative integer for p < gq. Define
O=1andi=ifor 1=<i=< k. Then, after some computation, we have the result that
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d\ c;
atgr= (1 + —)—‘Z—aﬁqf for g>1.
s/ cp
This is easily checked to be a nonnegative integer using cj=c; for p>1 while
cf =s(d+s), cg=d(d+s) and c5=cj=ds. For p <q <1 we tabulate:

0 if r>1
ati, =1 (d—s)/s if r=1
d/s if r=0
ot = 0 if r>1o0r r=0
1 if r=1
ot 0 if r=1
%771 if r=0.
In each case, a},, is a nonnegative integer, and Theorem 2.3 is proved. O

Notice that if X is a formal character table of order n then (X, s) is always
defined for s =1. Of course, if »n is square free then (X, s) is defined only for
s = 1. There are severe restrictions on s if (X, s) is the character table of a group
(see Theorem 3.1 below).

This method of obtaining new formal character tables from old ones may be
iterated. It is amusing to observe that if X =[1] (the character table of the iden-
tity group), then (X, 1) is the character table of C; (a cyclic group of order 2) and
((X, 1), 1) is the character table of S; (symmetric group on 3 letters). Also, if X is
the character table of C,x C, then (X,2) is the character table of Dg or Qg
(dihedral or quaternion group of order 8) and ((X, 2), 1) is the character table of
Qs X Ey where Ey is an elementary abelian group of order 9 on which Qg acts
Frobeniusly.

If X and Y are matrices, let X® Y denote the Kronecker product of X and Y.
If X and Y are character tables of groups then so is X&® Y. The next result applies
this to formal character tables.

THEOREM 2.4. Let X and Y be formal character tables. Then XQY is a
formal character table. Moreover, X®Y is the character table of a group if and
only if X and Y are character tables of groups.

Proof. If X is a kX k matrix and Y is an / X/ matrix then X® Y is a
k! X kI matrix whose rows and columns are naturally indexed by the pairs
(G, NI|1=i=<k, 1=j=<l}. The (i, j), (i, j') entry of X®Y is x;;-y;;-. The veri-
fication that X® Y is a formal character table is straightforward and is omitted.

If X and Y are character tables of groups, say G and H, then X®Y is the
character table of G X H.

Suppose conversely that X®Y is the character table of some group, say G,
where X and Y are formal character tables. Then the conjugacy classes of G and
the irreducible characters of G are indexed by the set {(/, j) |1=i<k, 1=<j=<}
so that if x(;, ;) is the irreducible character corresponding to (i, /) and if ge G
belongs to class (i’, j’) then x, j (&) =Xii'¥jj.
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Let N be the union of those conjugacy classes of G corresponding to indices of
the form (i,1) when 1<i=<k and let I ={x(, ) |1 =/ =!}. An easy calculation
shows that N M, <o ker x. If ge N, e ker x and g belongs to the class (i, /')
then an application of the “second orthogonality relation” (property A) applied
to columns 1 and j’ of Y yields j'=1 so that ge N. Thus, N=\,cqo ker x is a
normal subgroup of G.

If x, ) is any irreducible character of G with kernel containing N then the
“first orthogonality relation” (property 3) applied to rows 1 and i of X shows
i =1so that x;, j) € . Thus, X contains exactly those irreducible characters of G
with kernel containing N. The character table of G/N is constructed from the
character table of G by deleting all rows coresponding to characters not in 9 and
by deleting redundant columns. When this is done for X&® Y, the resulting matrix
is Y so that Y is the character table of G/N. Similarly, X is the character table of a
group (in fact, a factor group of G) completing the proof of Theorem 2.4. [J

The last two theorems may be used to produce examples of formal character
tables (that are not character tables of groups) in which every row contains more
than just two nonzero entries.

We close this section with an example of a formal character table that is not
readily dismissed as being the character table of a group. The matrix below is
(X, 2) where X is the character table of As.

[~ ]

1 1 1 1 1 1
3 3 -1 0 (1+V5)/2 (1-V5)/2
3 3 -1 0 (-V5)/2 (1+V5)/2

4 4 0 1 —1 —1
55 1 —1 0 0
(30 -2 0 0 0 0 |

The matrix above may be “constructed” as follows. The alternating group As
is isomorphic to SL(2,4) and so acts on a 2-dimensional vector space V over
GF (4). Let G denote an extension of V' by Asrelative to this action, and regard V'
as a normal subgroup of G. Now G acts transitively on the nonprincipal char-
acters of V, so if A denotes one of these, then the inertia group of A has index 15
in G. Call this inertia group P. Thus |P: ¥V |=4 and P is a Sylow 2-subgroup of
G. This leads to the two cases:

(i) A has four extensions to P.

(ii) There exists an irreducible character @ of P such that 8, =2)\.

Actually, the second case leads to a contradiction, but never mind that the
group doesn’t exist, it does lead to the “character table” given above! As if to
compensate for the nonexistence of a group in case (ii), there actually occur two
nonisomorphic groups corresponding to case (i), and these have the same char-
acter table.

The formal character table given above satisfies even more properties than
those listed in Definition 2.1. For example, “defect” and “Brauer characters”
may be defined for p=2,3 and 5. Characters in the “principal block” for p=3
and 5 form a tree, and those of defect zero vanish on appropriate p-singular
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elements. In fact, I am aware of no arithmetic property of character tables in
general that fails for the “character table” given above (short of insisting that it
come from a group, of course).

If power maps are used however, it is possible to show that the third column
must correspond to an element g of order 2 or 4. In either case, the determinant
of p(g) is —1 where p is a representation affording the last row of the table. How-
ever, the only linear character of G is the principal one, and this is a contradic-
tion. (This argument is due to Marty Isaacs.)

The example above is part of an infinite family of examples, none of which are
actual character tables. See Theorem 3.2 below. The ad hoc argument above
using power maps only works for the first term of this family.

3. Conclusion. Definition 2.2 and Theorem 2.3 in the previous section pro-
duced examples of formal character tables of the form (X, s) in which the last
row vanishes except for the first two entries. If (X, s) is the character table of an
actual group G, then the two conjugacy classes of G corresponding to the first
two columns of (X, s) are contained in the kernels of the characters of G corre-
sponding to all but the last row. This happens in general whenever an irreducible
character vanishes on all but two classes [4, Theorem 2.1]. Moreover, X itself is
necessarily a character table of a group in this case. The following theorem im-
poses extra arithmetic conditions on (X, s) for it to be an actual character table.

THEOREM 3.1. Suppose X and (X, s) are character tables of groups. Then,
there exists a prime p such that s is a power of p, and if the order of X is n, thenn
has the form s*t where t +1 is a power of p.

Proof. Let G be a group whose character table is (X, s) and let x be the ir-
reducible character of G corresponding to the last row of (X,s). Set N=
{xe G|x(x)0}. Then N may also be described as the intersection of the kernels
of all the irreducible characters of G other than x, so /N is a normal subgroup of
G. Since all its non-identity elements are conjugate in G, N is an elementary
abelian p-group for some prime p.

Set G = G/N and adopt the bar convention for this quotient. As X is the char-
acter table of G we have n=|G|. Now, by deﬁnltlon n has the form n=s%¢ and
x has degree d = st, so that G has order n+ d?=s%t(t+1) and hence N has order
t +1. The first paragraph shows that 7+ 1 is a power of p and it remains to prove
that s is a power of p.

Let y be any p’-element of G. As is well-known,

Ce(y)=Cs(»),

because y is a p’-element and N is a p-group. Assuming also that y %1 and com-
puting centralizer orders from X and (X,s), we have |Cg(y)|= |CG( ¥)|. Thus
|Ce(¥)| = |Cs(»)| and so Cn(y) = 1. This means that for all xeN*, Cg(x) isa
p-group. Computing from (X, s) we get ICc;(x)l =n+si=s (t+1), so s2(t+1)
is a power of p, as desired. (In fact, Cg(x) is a Sylow p-subgroup of G.) O

Some special cases of Theorem 3.1 are worth pointing out. For example, if G
has character table (X, s) where ¢ =1then |Z(G)|=¢+1=2 and s is a power of 2.
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Hence, G is a 2-group of order 2s2. Moreover, G is a group of central type.
Little more can be said about G since, if T is any finite 2-group, there exists a
2-group G of central type in which |Z(G)| =2 such that G/Z(G) contains a sub-
group isomorphic to 7. (See Theorem 1.2 of [3] or Theorem 6.3 of [4].)

At the other extreme is s =1, and this is easily seen to correspond to a doubly-
transitive Frobenius group (allowing |G| =2 as a degenerate case).

It is possible to define, for a given formal character table X, formal character
subtables of X, as well as power maps. This has been done already in [1], where
the resulting structure is referred to as a pseudo-group. Obviously, any addition
made to Definition 2.1 will affect the proofs (or even the statements) of Theorems
2.3 and 2.4. For example, if an axiom asserting the existence of power maps is
added to Definition 2.1, which coincides with the axioms (IV)-(VI) for pseudo-
groups in [1], then Theorem 2.3 remains true under the additional hypotheses
that both s and (d/s)+1 are powers of the same prime p. In view of Theorem
3.1, this is not a serious restriction.

The following result provides for the infinite family of formal character tables
that was promised at the end of the last section.

THEOREM 3.2. Let s be a power of the prime p and let g = s*. If X is the char-
acter table of SL(2, q), then (X, s) is a formal character table which is no! the
character table of any group.

Proof. Assume G is a group with character table (X, s), and let x be the irre-
ducible character of G corresponding to the last row of (X, s). Then, as in the
proof of Theorem 3.1, N={xe G|x(x)#0} is a normal elementary abelian
p-subgroup of G, here of order g2. As before, set G = G/N, which has character
table X. Using X it is not difficult to conclude that a Sylow p-subgroup of G is
elementary abelian of order ¢ and has normalizer in G of order g(g—1). (The
case p =2 is slightly easier than p > 2.) Thus, if P is a Sylow p-subgroup of G, its
normalizer in G has order g3(g—1). Let H be a complement to P in its normal-
izer in G, so that |H|=qg—1. Let Z=Z(P)NN, so Z # 1. Since any non-identity
p’-element y of G satisfies Cn(y) =1 (as in the proof of Theorem 3.1), H acts
fixed point freely on Z. Hence |Z|=|H|+1=gq. If xe P and x ¢ N, then Cg(x)
contains x and Z, and so has order strictly greater than g. However, the obvious
calculation from (X, s) yields the contradiction |Cg(x)|=gq. O

We remark that Theorem 3.2 also follows from Theorem 6.2 of [4] since N =
O,(G) implies by that theorem the contradiction that G must be a doubly-transi-
tive Frobenius group with Frobenius kernel N.

I would like to thank the referee for his many suggestions, especially the self-
contained proofs of the theorems of this section (without heavy dependence on
the results of [3] and [4]).
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