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K. Astala and F. W. Gehring
Dedicated to Professor George Piranian on his seventieth birthday
1. Introduction. Suppose that D is a domain in euclidean n-space R”. We say

that D is uniform if there exist positive constants @ and b such that each pair of
points x;, x, € D can be joined by a rectifiable arc v C D for which

1.1 I(y) < al|x;— x|

and

1.2) min /(v;) < bd(x, dD)
j=12

for each x € v; here I(y) denotes the length of v and +, v, the components of
v\ {x3.

Suppose next that D and D’ are domains in R” and that f: D — D’ is K-quasi-
conformal with Jacobian J;. Then log J; is integrable over each ball BC D and
we set

1
(1.4) (log /)= | 1og sam.
In particular, for each x e D we let
1
(1.5) ar(x) = exp <~n~ (log Jf)B(x)) ;

where B(x) = B(x, d(x, dD)), the open ball with center x and radius equal to the
distance d(x, dD) from x to dD. If n=2 and f is conformal in D, then log J; is
harmonic,

(log J;) p(x) = log Jr(x) =2 log| f' (x)]

and hence a;(x) =|f"(x)|.

We observed recently in [1] that for certain distortion properties of quasicon-
formal mappings the function a, plays a role exactly analogous to that played
by |f’| when n=2 and f is conformal. We investigate this analogy further by
establishing in this paper quasiconformal versions of the following two well-
known results due to Koebe [8, p. 22] and Hardy-Littlewood [6], respectively.

1.6. THEOREM. Suppose that D and D’ are domains in R%. If f:D—> D' is
conformal, then
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d(f(x), dD’)
d(x,dD)

1 d(f(x),8D")
4 d(x,dD)

=|f'(x)| <4

for xe D.

1.7. THEOREM. Suppose that D is g uniform domain in R? and that o and m
are constants with 0<a <1 and m=0. If f is analytic in D and if

| f/(x)| < md(x, aD)* !
Jor xe D, then f has a continuous extension to D\ {o} and

| f(x1) = f(x2) | = em|x— x| ®

Jfor x;, x,€ D\ {0}, where c is a constant which depends only on o and the con-
stants for D.

See [4] for the above somewhat more general version of the original result of
Hardy and Littlewood.
We shall prove the following quasiconformal analogues of these two results in

Sections 2 and 3.

1.8. THEOREM. Suppose that D and D’ are domains in R”. If f:D—> D’ is
K-quasiconformal, then

1 d(f(x),dD") d(f(x),dD’)
¢ dx.oD) YW= ey

for xe D, where c is a constant which depends only on K and n.

1.9. THEOREM. Suppose that D is a uniform domain in R" and that o and m
are constants with 0<a=<1 and m=0. If f is K-quasiconformal in D with
S(D)CR" and if

as(x) < md(x,dD)*!
for xe D, then f has a continuous extension to D\ {o} and
(1.10) | f(x1) = f(x2)| = em(|x; — x2| +d(xy, D))

Jor x;, x, € D\ {00}, where c is a constant which depends only on K, n, o and the
constants for D.

Suppose that # =2 and f is conformal. Then as(x) = | f’(x)| in D and the con-
clusion of Theorem 1.8 reduces to that in Theorem 1.6 where ¢ =4. Next (1.10)
in Theorem 1.9 implies that

(1.11) | f(x1) = f(x2)| < em|x;— x5 |*
for x;, x,€ dD\ {0} and, in the case where D is unbounded, that
(1.12) | f(x)|=O(]x]*)

as x —» oo in D. From these conditions it follows that f satisfies (1.11) for all
X1, X € D\ {0}; see for example [3]. Hence Theorem 1.9 reduces to Theorem 1.7
in this special case, apart from the value of the constant c.
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The example given in Remark 3.12 shows that the term d(x;, D) in (1.10)
cannot be omitted.

2. Proof of Theorem 1.8. Suppose that D and D’ are domains in R” and that
J:D—- D’ is K-quasiconformal. Fix x;e D and set ry=d(x;,0D) and d,=
d(f(x1), 0D’"). We shall show that there exists a constant ¢ = c(K, n) such that

1 4, d,

2.1 ——=<afx)<c—.

2.1) PEAY "
Set r,=r;/2, choose x, € D so that |x,—x;| =r, and

| f(x))=f(x)|= max |f(x)—f(x)|=d,,

lxj—x|=r;

and set R = B,\ B, where B;=B(x,, r;) for j=1,2. Since f is K-quasiconformal
and since f(R) separates f(x;) and f(x,) from the complement of D’,

d
2.2) log 2=mod R<KY"=D mod f(R)<KY"= D mod RT<7‘) ,
2
where Ry(¢) is the Teichmiiller ring
Rr(t)=R"\{x=(s,0,...,0): —1<5=<0, t <5< 0]}
for 0<t<oo ([2], [7]). Next, if d, >d, let R’ = B{\ B}, where Bj=B(f(x1),d;)
for j=1,2. Then f~!(R’) separates x; and x, from the complement of D and

d
(2.3) log —-=mod R’ < KY" D mod f~YR’) < KY"V mod R (2),

d,
an inequality which holds trivially if d| < d,. Combining (2.2) and (2.3) yields
1 4
2.4 —=<—=<
where ¢; = ¢(K, n).
Since f(B;) C B(f(x)), d>),
B d
(log Jy)p, < log(m) <nlog -z
m(B,) ra
(2.5)
< 2C1d1)
<n(log——
n

by Jensen’s inequality and (2.4). Next, by the n-dimensional version of Lemma
5.10 in [1],

m(B,)

e
(2.6) |(log Jr)p,— (log Jf)32| =< ~2~<log WBz) + 1) |log J¢| «,

where |log J|« denotes the BMO norm of logJ; in D, a quantity which is
bounded above by a constant ¢, = c,(K, n) [10]. Thus by (2.5) and (2.6),

2c,d
(log Jr)p, < n(log C: L +202>
1
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and

1 2¢,d
2.7 ap(xy) = exp(;(log Jf)Bl> <

exp(2¢c;).

Finally, if we apply the n-dimensional form of Lemma 5.15 in [1] to f in B;, we
obtain

dy = | f(x1) — f(x2)|
< c3a7(x)) d(x1, 3By)? | % — x|} ¢
=2%;as(x)ry,
where a = (e/2)|log J7|+ <2c; and ¢;=c3(K, n) = 1. Thus
d
(2.8) —rl < ¢1032%2a ()
1
and (2.1) follows from (2.7) and (2.8) with

c=2cc;e%,

Theorem 1.8 yields the following analogue for the operator a; of the familiar
composition rule for derivatives,

(g |=1g"S1]f].
2.9. COROLLARY. Suppose that D,D’, D" are domains in R". If f:D— D’
and g: D’ — D" are K,- and K,-quasiconformal mappings, then

1
(2.10) ;ag(f(X))af(x) = a,.5(X) = ca, (f(x))as(x)

Jor x e D, where c is a constant which depends only on K,, K, and n.
Proof. For example, by Theorem 1.8 there exist constants ¢;, ¢;, c; depending
only on K, K, and n such that
1 d(f(x),8D’)
aq dix,0D) °’

1 digofx), aD")
WDz, a0

d(g°f(x),dD")
d(x, D)

af(x) =

Qg r(X) =03
for xe D, and we obtain the right-hand side of (2.10) with c=c;¢,¢;3.

3. Proof of Theorem 1.9. We require the following two preliminary results.

3.1. LEMMA. Suppose that 1 = b < o and that {u;}§ is a sequence of nonnega-
tive numbers such that
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(3.2) S u;<bu,
for k=0,1,.... Then

(3.3) > uf<cuf
j=0

Jor each 0 < a <1, where c is a constant which depends only on b and o.

Proof. Set

S = E U;
=k
for k=0,1,.... Then u;, =s;—s;,; and (3.2) is equivalent to
b—1
(3.4) sk+ls( . )sk

for k=0,1,.... Inequality (3.4) then implies that

) o ) N N ) b—1 Jo
> U sfss¢ X 5
j=0 0 j=0

IA

b—1\*\"!
s@(l—(T)) <cug,

c=b*(b*—(b—-1)*)"L

where

3.5. LEMMA. Suppose that D is a uniform domain in R" and that o, r and m
are constants with 0<a =<1, 0<r<land m=0. If g: D—- R" is an open map-
ping and if

(3.6) |8(x1) — g(x2) | = m|x; — x| *

Jor x1,x,€ D with |x;—x,| =rd(x;,dD), then g has a continuous extension to
D\ {0} and

(3.7) | &(x1) — g(x2)| = em(|x; — x| +d(x, D))~

Jor x1, x,€ D\ [0}, where c is a constant which depends only on o, r and the con-
stants for D.

Proof. Fix x;,x,e€ D. Because D is uniform, we can find a rectifiable arc vy
joining x; and x;, in D which satisfies (1.1) and (1.2) with constants @ and b which
depend only on D. Let x; denote the midpoint of +. Since d(v, dD) >0, we can
choose points yy, ¥, ..., ¥; € v with the following properties:

yO = x()’
Yj+1 lies in the component of y\{y;} which contains x;,

|yj+1—y;| =rd(y;,8D),
|x1—y)| = rd(y,,8D).

3.8)
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We now use Lemma 3.1 to show that

3.9) lg(y1) —g(x0)| = crm|x; —x2|%

where ¢; = ¢ (r, o, a, b); obviously we may assume that /=1. Set
u:{ lyie1—y,| if0<j=<I-1,
7o if /<j<oo.

If 0<k=<I/-1, then

-1

2 U= |yir1—=Yil <lv) =1(v2),
=k k

where v; is the component of v\ { ¥} which contains x;, while

j:

b b
[(71) =bd(yy, 0D) = " | Vks1— 2kl = P
by (1.2) and (3.8). Hence

<—b
u,=<
k T

M8

(3.10) U.

J
Inequality (3.10) is trivially true if £ =/ and hence we can apply (3.8), (3.6), (3.3),
and (1.1) to obtain

—1
le(y)—gxo)| = _Eomly,-+1—yj|°‘
j=
< com|y;—yo|®
= ClmIX]—‘X2|a,

where ¢y =cy(b/r,a) and ¢; = (a/2)%cy.
Next, because g is open,

lg(x1) —g(yn)| = supf|g(x)—g¥)|: |x—y/| =rd(y,, 3D)}
< m(rd(y;, 0D))*
< c3md(x,, 8D)°,
where ¢, =r*(1—r)~ %, and with (3.9) we have
|g(x1) — g(x0)| = (c1+c2) m(|x; — x2| +d(x;, 0D))*.
By the same argument with x, in place of x,,
|g(x2) — g(x0)| = (c1+ c2) m(|x1—x2| +d(x2, D))*,
and since
d(x3, D) < |x1—x3|+d(x,, 8D),

we obtain (3.7) with c=3(c¢;+ ;) for x1,x, € D.
Next if xo € D\ {oo} and if {x;} is a sequence of points in D which converge to
Xo, then
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|e(x;) —g(xi)| = em(|x;—xi |+ |x;— x| )*— 0

as j, k — o by (3.7). Hence g has a finite limit at x, and a continuous extension to
D\ {0} which satisfies (3.7). This completes the proof of Lemma 3.5.

3.11. PROOF OF THEOREM 1.9. Choose x;, x, € D with
|x1—x2| =%d(x1,6D)

Then by the n-dimensional version of Lemma 5.15 in [1] applied to
B(xy, d(x;, dD)),

| f(x1) = f(x) | < crap(xy) d(xy, 8D)* | x;— x, |17
=2%as(x;)|x;— ;|
where a = (e/2) |log J¢|« < c; and ¢;=c;(K, n) for j=1,2. Next by hypothesis,
ap(x;) < md(x;, 8D)* ! < m|x;—x,|* !
and hence
| f(x) = fCa)| = €122m| x — x| .
The desired conclusion now follows from Lemma 3.5 with r= 1.
3.12. REMARK. The mapping
Sx)=|x]*"1x, a=KV(-m,

is K-quasiconformal with as(x) bounded in the unit ball D. Hence f satisfies the
hypotheses of Theorem 1.9 with o =1. Since

| f(x)—f(0)| = [x-0[",
we see that when K > 1, i.e. when K=" < ¢, the conclusion that
| fCa) = f(x2) | < em(]x,— X2| +d (1, 0D))*
in Theorem 1.9 cannot be replaced by the stronger assertion that
| fCx1) = f(x2)| < em|x; — xa | *.

On the other hand, the following two alternative quasiconformal analogues of
Theorem 1.7 yield sharper estimates for | f(x;) — f(x;)| in the special cases where
a<KY1=" or D is bounded.

3.13. THEOREM. Suppose that D is a uniform domain in R" and that o and m
are constants with 0 < a < K"~ gnd m= 0. If f is K-quasiconformal in D with
S(D)CR" and if

as(x) <md(x,dD)*!
Jor xe D, then f has a continuous extension to D\ {~} and
| /(1) = fOa)| < em|xy—x,|*

Sfor x|, x, € D\{}, where c is a constant which depends only on K, n, o and the
constants for D.
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Proof. By Theorem 1.8,
d(f(x),df(D)) =cas(x)d(x, D) <cymd(x, D)%, ¢ =c|(K,n)

for x € D. Then since o < K/~ the desired conclusions follow from Theorems
3.4 and 2.24 in [5].

3.14. THEOREM. Suppose that D is a bounded uniform domain in R" and
that o and m are constants with 0 < a <1 and m=0. If f is K-quasiconformal in
D with f(D)CR" and if

as(x) <md(x,dD)*"!
for x e D, then f has a continuous extension to D and
3.15) |fCe) =S ()| <em|xi—x2|P,  B=min(a, K/17")

Sfor xi,x,e€ D, where c is a constant which depends only on K, n, a and the con-
stants and diameter of D.

Proof. By Theorem 1.9, f has a continuous extension to D and

| f(x1) = f(x2)| = eym|x; —x|*

for x; € 8D and x, € D, where c; depends only on X, n, o and the constants for D.
Inequality (3.15) then follows from Theorem 1 in [9] with

w— K1/—=n)
),

¢ =c;c, max(1, dia(D) c;=cy(n).

3.16. REMARK. Using the example in 3.12 it is not difficult to construct a
K-quasiconformal self-mapping f of a half space D for which a, is bounded and
the conclusion (3.15) fails. Thus the hypothesis that D be bounded is necessary in
Theorem 3.14.

Finally, Theorem 1.8 allows us to establish the following converse for The-
orem 1.9.

3.17. THEOREM. Suppose that D is a domain in R" and that o and m are con-
stants with 0<a <1 and m=0. If f is K-quasiconformal in D with f(D)CR”"
and if

| f(x1) = f(x2)| = m(|x; — X2 | +d (x;, D))”
Jor all x;,x,e D, then
as(x)<cmd(x, 3D)*"!
for x e D, where c is a constant which depends only on K and n.
Proof. Choose x; € D and x; € dD\ {e} such that
|x1—x2| =d(x1, dD).
Then f has a continuous extension to D\ {oo},

d(f(x1), af(D)) < | f(x1) — f(x2)| < m|x1—x2]%,
and
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d(f(x1), /(D))
d(xl,aD)

ap(x))<c <cmd(xy, 0D)* ™!

by Theorem 1.8.

10.
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