## ON THE ZEROS OF JONQUIÈRE'S FUNCTION WITH A LARGE COMPLEX PARAMETER

Wolfgang Gawronski and Ulrich Stadtmüller

1. Introduction and summary. In this paper we are dealing with Jonquière's function (cf. [10, p. 33], [15, p. 364], [18, p. 280]) defined by its power series

(1) 
$$f_{\kappa}(z) := \sum_{1}^{\infty} n^{\kappa} z^{n}, \quad \kappa = \kappa_{0} + i \cdot \kappa_{1} \in \mathbf{C}$$

for |z| < 1; by analytic continuation it is seen to be holomorphic in the cut plane

(2) 
$$C^* := \{z \in \mathbb{C} \mid \text{If Re } z \ge 1, \text{ then Im } z \ne 0\}.$$

If  $\kappa = k$  is a positive integer, then  $f_k$  is connected with the geometric series by the simple relation

$$f_k(z) = \left(z \frac{d}{dz}\right)^k \frac{1}{1-z}$$

[14, p. 7, problem 46]. Moreover, Jonquière's function is of some significance in various parts of mathematics and physics. For instance, it occurs in analytic number theory [8] as a generalization of Riemann's  $\zeta$ -function, in summability theory concerning equivalence problems for Césaro and certain discontinuous Riesz means [13, ch. IV, 3], and in research on the structure of polymers [17]. Questions in Riesz summability, especially, require the number and the location of the zeros of  $f_{\kappa}$  in  $\mathbb{C}^*$  when  $\kappa$  is *real*. The first complete result for this case is due to A. Peyerimhoff [12] stating that all zeros in  $\mathbb{C}^*$  are real and  $\leq 0$ . Moreover, they have order one and their exact number is k+1 if  $k < \kappa \leq k+1$ ,  $k \in \mathbb{N}_0$ , and 1 if  $\kappa \leq 0$ . Different and modified proofs as well as the dependence of the zeros on the real parameter  $\kappa$  were given in a series of papers [2, 3, 4, 5, 6, 7, 11, 12, 16, 19]. In continuation of these investigations we ask the following questions.

- (i) In case of *real*  $\kappa$ , how are the zeros distributed on the negative real axis if  $\kappa$  becomes large?
  - (ii) What can be said about the zeros of  $f_{\kappa}$  when  $\kappa$  is complex?

In view of the close relation of  $f_{\kappa}$  with Riemann's  $\zeta$ -function (observe that  $f_{\kappa}(-1) = (2^{\kappa+1}-1)\zeta(-\kappa)$ ) the second question without any restriction for  $\kappa$  includes the problem of finding all complex zeros of  $\zeta$ . Fornberg and Kölbig [1] investigated the zeros of  $f_{\kappa}(x)$  in the half-plane  $\{\kappa \in \mathbb{C} \mid \text{Re } \kappa < 0\}$ , for fixed  $x \in (-1,1)$ . Their considerations are restricted to the behaviour of these zeros when  $x \to 0$  and  $x \to 1^-$ . The latter case is used to get a numerical approach to the zeros of the  $\zeta$ -function. We are interested in the zeros of  $f_{\kappa}(z)$  in the z-plane for fixed  $\kappa \in \mathbb{C}$ . Treating the first question above, it turns out that most of the arguments used there are also valid for complex  $\kappa$ , and that we can obtain good

Received August 15, 1983. Final revision received May 5, 1984. Michigan Math. J. 31 (1984).

approximations for the zeros of  $f_{\kappa}$  in  $\mathbb{C}^*$  when  $|\kappa|$  becomes large in the angular region

(3) 
$$W_T := \{ \kappa = \kappa_0 + i \kappa_1 \mid \kappa_0 > 0, \ |\kappa_1| \le T(\kappa_0 + 1) \},$$

 $T \ge 0$  arbitrarily fixed. Thus we restrict  $\kappa$  to values in  $W_T$ . We know from the results in [4] that for fixed complex  $\kappa$  the number of zeros of  $f_{\kappa}$  in  $\mathbb{C}^*$  is finite. Now we consider  $\kappa$  on the ray

(4) 
$$S_{\tau} := \{ \kappa = \kappa_0 + i \kappa_1 \mid \kappa_1 = \tau(\kappa_0 + 1), \ \kappa_0 > 0 \}, \quad \tau \in \mathbf{R} \text{ fixed,}$$

and show that for sufficiently large  $\kappa_0$  the number of zeros in  $\mathbb{C}^*$  is given by  $[((\kappa_0+1)\xi_\tau-1)/2]+1+n_0$ , where  $n_0 \in \{-1,0,1\}$  is undetermined and  $\xi_\tau$  is the solution of a certain transcendental equation satisfying  $\frac{3}{2}(1+\tau^2) < \xi_\tau \le 2(1+\tau^2)$ . The central result says that for large  $|\kappa|$  in  $W_T$  all zeros in  $\mathbb{C}^*$  are approximated by the explicit quantities

(5) 
$$\tilde{z}_{\kappa,\nu} := -\exp\left(-\pi \cot \frac{2\nu+1}{\kappa+1} \frac{\pi}{2}\right),$$

 $\nu \in \mathbb{N}_0$  suitably, except for " $o(|\kappa|)$  many" which are located in a "small" neighborhood of the origin or (if  $0 < \kappa \to \infty$ ) are sufficiently large in modulus. The error term in this approximation is of the form  $O(c^{\kappa_0})$ , 0 < c < 1, where the constants are uniform for zeros in any compact subset in  $\mathbb{C}^*$  omitting the origin. If  $\kappa$  is restricted to  $S_\tau$  in (4) it follows from (5) that the zeros are asymptotically located on the curve (Theorem 2, Lemma 1)

(6) 
$$z(\xi) = -\exp\left(-\pi \cot \frac{\pi \xi}{2(1+i\tau)}\right), \quad 0 < \xi < \xi_{\tau}, \ \tau \ge 0,$$

which reduces to the negative real axis when  $\tau = 0$ . For the latter case the asymptotic distribution function of the zeros can also be derived from (5) in explicit form (Theorem 1).

The proofs essentially are based on the so-called Lindelöf-Wirtinger expansion of  $f_{\kappa}$  giving a representation of the analytic extension onto  $\mathbb{C}^*$  (see Section 2).

2. Preliminary results. In this section we use an explicit formula for the analytic extension of  $f_{\kappa}$  valid in C\* which is suitable for discussing its zeros. Applying residue calculus [8, 9, 20] or Poisson's sum formula (see also [11]) we obtain from (1) the Lindelöf-Wirtinger expansion

(7) 
$$f_{\kappa}(z) = \Gamma(\kappa + 1) \sum_{m = -\infty}^{\infty} \frac{1}{(2m\pi i + \log(1/z))^{\kappa + 1}}, \quad \text{Re } \kappa > 0,$$

giving the unique analytic extension onto  $\mathbb{C}^*$  where for the logarithm the principal branch in  $\mathbb{C}^*$  is chosen; that is,  $\log 1/z$  is real for real positive z. According to this choice the power in (7) is defined by  $(u+iv)^{\kappa+1} = \exp((\kappa+1)\log(u+iv))$ , where

(8) 
$$\log(u+iv) = \frac{1}{2}\log(u^2+v^2) + i\arg(u+iv)$$

with

(9) 
$$\arg(u+iv) = \begin{cases} \pi - \arctan(v/u), & u < 0, v \ge 0 \\ \pi/2, & u = 0, v > 0 \\ \arctan(v/u), & u > 0 \\ -\pi/2, & u = 0, v < 0 \\ -\pi + \arctan(v/u), & u < 0, v \le 0 \end{cases}$$

arctan being the principal branch, that is,  $-\pi/2 < \arctan x < \pi/2$  for real x. This exhibits again that (7) is a single valued function in  $\mathbb{C}^*$  and  $f_{\kappa}$  can be extended analytically across the cut from 1 to infinity along the positive real axis with branch points 1 and  $\infty$ . For reasons of symmetry we put

(10) 
$$w := -z = re^{i\phi}, \quad \log(1/w) = \log(1/r) - i\phi, \quad -\pi \le \phi \le \pi$$

and write

(11) 
$$f_{\kappa}(z) = \Gamma(\kappa+1) \sum_{m=-\infty}^{\infty} \frac{1}{((2m+1) \cdot \pi i + \log(1/w))^{\kappa+1}} = \frac{\Gamma(\kappa+1)}{(\log(1/w) + i\pi)^{\kappa+1}} \{H_{\kappa}(w) + R_{\kappa}(w)\}$$

with

(12) 
$$H_{\kappa}(w) := 1 + \left(\frac{\log(1/w) + i\pi}{\log(1/w) - i\pi}\right)^{\kappa + 1}$$

and

(13) 
$$R_{\kappa}(w) := (\log(1/w) + i\pi)^{\kappa+1} \sum_{m=1}^{\infty} \left\{ \frac{1}{(\log(1/w) + (2m+1)\pi i)^{\kappa+1}} + \frac{1}{(\log(1/w) - (2m+1)\pi i)^{\kappa+1}} \right\}.$$

Writing  $\kappa+1=(\kappa_0+1)(1+i\tau)$  (see (3) and (4)), by symmetry (see (1)) we may confine our investigations to the case  $\tau \ge 0$ . We keep  $\tau$  fixed throughout; that is,  $\kappa$  tends to infinity on the ray  $S_{\tau}$  (see (4)). To recognize  $H_{\kappa}$  and  $R_{\kappa}$  as a principal term and a remainder for  $f_{\kappa}$  in  $\mathbb{C}^*$ , respectively, we have to consider  $H_{\kappa}$  and  $R_{\kappa}$  on the Riemann surface of  $H_{\kappa}(w)$ , that is, the surface of  $\log(\lceil \log(1/w) + i\pi \rceil / \lceil \log(1/w) - i\pi \rceil)$  (see (12)). For technical reasons which will become apparent in the proof of Lemma 1 below, we replace the w-plane with a cut from 0 to  $\infty$  along the negative reals (see (10)) by

$$\mathbf{C}_{\tau}^{*} := \left\{ w = re^{i\phi} \mid |\phi| < \pi, \text{ if } r \ge 1; \ \tau \log \frac{1}{r} < \pi - \phi \le \tau \log \frac{1}{r} + 2\pi, \text{ if } r < 1 \right\},\$$
(14)
$$\tau \ge 0.$$

that is, the cut connecting w = 0 and w = -1 is deformed into the exponential spiral

(15) 
$$r = r(\phi) = \exp(-(\pi - \phi)/\tau), \quad \phi < \pi, \text{ if } \tau > 0.$$

Now the key to our results is the following approximation of  $f_{\kappa}$  by  $H_{\kappa}$  in  $\mathbb{C}_{\tau}^*$ .

LEMMA 1. (i) Suppose that  $\tau, \delta > 0$  are fixed. If  $\kappa \to \infty$ ,  $\kappa \in S_{\tau}$ , then

(16) 
$$f_{\kappa}(z) = \frac{\Gamma(\kappa+1)}{(\log(1/w) + i\pi)^{\kappa+1}} \{H_{\kappa}(w) + O(c^{\kappa_0})\},$$

where  $c \in (0,1)$  depends on  $\tau$  and  $\delta$  only, when  $w \in \mathbb{C}_{\tau}^* \cap \{w = re^{i\phi} \mid |\log r| \le 1/\delta\}$ . (ii) Suppose that  $\phi_0, \delta > 0$  are fixed. If  $0 < \kappa \to \infty$  (i.e.,  $\tau = 0$ ), then (16) holds with  $c \in (0,1)$ , depending on  $\phi_0$  and  $\delta$  only, when

$$w \in \mathbb{C}_0^* \cap \{w = re^{i\phi} \mid 0 \le \pi - \phi \le 2\pi - \phi_0, |\log r| \le 1/\delta\}.$$

(iii) Suppose that  $\phi = 0$  (i.e., z = -w = -r) and  $0 < \delta \le 1/3\pi$ . If  $0 < \kappa \to \infty$ , then for  $|\log r| \le 1/\delta$ ,

(17) 
$$f_{\kappa}(-r) = \frac{\Gamma(\kappa+1)}{(\log(1/r) + i\pi)^{\kappa+1}} \left( H_{\kappa}(-r) + O\left(\frac{1}{\delta}e^{-2\pi^2\kappa\delta^2}\right) \right),$$

the constant involved in the O-term being independent of r and  $\delta$ .

*Proof.* According to (11) we have to estimate  $R_{\kappa}$  in (13). In view of (8), (9), and (10) we have, for  $w \in \mathbb{C}_{\tau}^*$ ,

$$|R_{\kappa}(w)|$$

$$\leq \sum_{1}^{\infty} \left\{ \frac{\log^{2} r + (\pi - \phi)^{2}}{\log^{2} r + ((2m+1)\pi - \phi)^{2}} \exp[2\tau \cdot (\arg(\log(1/r) + ((2m+1)\pi - \phi)i) - \arg(\log(1/r) + (\pi - \phi)i))] \right\}^{(\kappa_{0} + 1)/2}$$

$$+\sum_{1}^{\infty} \left\{ \frac{\log^{2} r + (\pi - \phi)^{2}}{\log^{2} r + ((2m+1)\pi + \phi)^{2}} \exp[2\tau \cdot (\arg(\log(1/r) - ((2m+1)\pi + \phi)i) - \arg(\log(1/r) + (\pi - \phi)i))] \right\}^{(\kappa_{0} + 1)/2}$$

$$=: \sum_{1}^{l} {}^{(1)} + \sum_{l+1}^{\infty} {}^{(1)} + \sum_{1}^{l} {}^{(2)} + \sum_{l+1}^{\infty} {}^{(2)},$$

with obvious notations where l is a positive integer to be chosen suitably below. Next, we consider the function

(19) 
$$g_{\tau}(x) := (1+x^2) \exp(-2\tau \arctan x), \quad x \in \mathbb{R}, \ \tau \ge 0,$$

arctan again being the principal branch as in (9). It is readily verified that  $g_{\tau}$  is a convex function with

(20) the minimum at  $x = \tau$  and  $g_{\tau}(\tau - h) > g_{\tau}(\tau + h)$  for all h > 0, where the latter statement holds for fixed  $\tau > 0$ .

(I) Suppose that  $r \ge 1$ . Then, by (14), we have  $|\phi| \le \pi$ . Further, by (8) and (9) we get, for  $m \in \mathbb{N}$ ,

(21) 
$$\arg(\log(1/r) + ((2m+1)\pi - \phi)i) - \arg(\log(1/r) + (\pi - \phi)i) \le 0$$
  
and

(22)  $\arg(\log(1/r) - ((2m+1)\pi + \phi)i) - \arg(\log(1/r) + (\pi - \phi)i) \le -\pi/2$  which we use to obtain

(23) 
$$\sum_{l+1}^{\infty} {(1) \choose l+1} + \sum_{l+1}^{\infty} {(2) \choose l} \le 2\{\log^2 r + (\pi - \phi)^2\}^{(\kappa_0 + 1)/2} \sum_{l+1}^{\infty} \frac{1}{(2\pi m)^{\kappa_0 + 1}}$$

$$\le \frac{2l}{\kappa_0} \left\{ \frac{\log^2 r + (\pi - \phi)^2}{4\pi^2 l^2} \right\}^{(\kappa_0 + 1)/2}$$

Next, we infer from (18), (21), and (22) that

(24)
$$\sum_{1}^{l} {}^{(1)} + \sum_{1}^{l} {}^{(2)} \le l \left\{ \frac{\log^2 r + (\pi - \phi)^2}{\log^2 r + (3\pi - \phi)^2} \right\}^{(\kappa_0 + 1)/2} + l \left\{ \frac{\log^2 r + (\pi - \phi)^2}{\log^2 r + (3\pi + \phi)^2} e^{-\tau \pi} \right\}^{(\kappa_0 + 1)/2}$$

(II) Suppose now that r < 1. Then, by (14), we have

(25) 
$$\tau \log(1/r) < \pi - \phi \le \tau \log(1/r) + 2\pi.$$

Next, we observe that, for  $m \in \mathbb{N}$ ,

(21') 
$$\arg(\log(1/r) + ((2m+1)\pi - \phi)i) - \arg(\log(1/r) + (\pi - \phi)i) \le \pi$$
  
and

(22') 
$$\arg(\log(1/r) - ((2m+1)\pi + \phi)i) - \arg(\log(1/r) + (\pi - \phi)i) \le 0$$
, giving (see (18) and (25))

$$\sum_{l+1}^{\infty} {}^{(1)} + \sum_{l+1}^{\infty} {}^{(2)} \leq \sum_{l+1}^{\infty} \left\{ \frac{\log^2 r + (\pi - \phi)^2}{\log^2 r + ((2m+1)\pi - \phi)^2} e^{2\pi \tau} \right\}^{(\kappa_0 + 1)/2}$$

$$+ \sum_{l+1}^{\infty} \left\{ \frac{\log^2 r + (\pi - \phi)^2}{\log^2 r + ((2m+1)\pi + \phi)^2} \right\}^{(\kappa_0 + 1)/2}$$

$$\leq \left\{ (\log^2 r + (\pi - \phi)^2) e^{2\pi \tau} \right\}^{(\kappa_0 + 1)/2} \sum_{l+1}^{\infty} \frac{1}{(2m\pi)^{\kappa_0 + 1}}$$

$$+ \left\{ \log^2 r + (\pi - \phi)^2 \right\}^{(\kappa_0 + 1)/2} \sum_{l+1}^{\infty} \frac{1}{(2m\pi - \tau/\delta)^{\kappa_0 + 1}}$$

$$\leq \frac{2}{\kappa_0} \left( l - \frac{\tau}{2\pi\delta} \right) \left\{ \frac{\log^2 r + (\pi - \phi)^2}{(2\pi l - \tau/\delta)^2} e^{2\pi \tau} \right\}^{(\kappa_0 + 1)/2},$$

provided  $l > \tau/2\pi\delta$ . For estimating  $\Sigma_1^{l(1)}$  and  $\Sigma_1^{l(2)}$ , by (9), (note that  $\log(1/r) > 0$ ) we have, for  $m \in \mathbb{N}$ ,

$$\arg(\log(1/r) + ((2m+1)\pi - \phi)i) = \arctan(((2m+1)\pi - \phi)/\log(1/r))$$
  
$$\arg(\log(1/r) - ((2m+1)\pi + \phi)i) = -\arctan(((2m+1)\pi + \phi)/\log(1/r)).$$

Then from (18) and (19) we conclude, by (20) and (25), that

$$\sum_{1}^{l} {}^{(1)} + \sum_{1}^{l} {}^{(2)} = \sum_{1}^{l} \left\{ g_{\tau} \left( \frac{\pi - \phi}{\log(1/r)} \right) \middle| g_{\tau} \left( \frac{(2m+1)\pi - \phi}{\log(1/r)} \right) \right\}^{(\kappa_{0}+1)/2} \\
+ \sum_{1}^{l} \left\{ g_{\tau} \left( \frac{\pi - \phi}{\log(1/r)} \right) \middle| g_{\tau} \left( -\frac{(2m+1)\pi + \phi}{\log(1/r)} \right) \right\}^{(\kappa_{0}+1)/2} \\
\leq l \left\{ g_{\tau} \left( \frac{\pi - \phi}{\log(1/r)} \right) \middle| g_{\tau} \left( \frac{\pi - \phi}{\log(1/r)} + \frac{2\pi}{\log(1/r)} \right) \right\}^{(\kappa_{0}+1)/2} \\
+ l \left\{ g_{\tau} \left( \frac{\pi - \phi}{\log(1/r)} \right) \middle| g_{\tau} \left( \frac{\pi - \phi}{\log(1/r)} - \frac{4\pi}{\log(1/r)} \right) \right\}^{(\kappa_{0}+1)/2} \right\}$$

Now, combining (23), (24), (26), and (27), we obtain, by (18),

$$|R_{\kappa}(w)| \leq \frac{2l}{\kappa_0} \left\{ \frac{\log^2 r + (\pi - \phi)^2}{4\pi^2 l^2} \right\}^{(\kappa_0 + 1)/2} + l \left\{ \frac{\log^2 r + (\pi - \phi)^2}{\log^2 r + (3\pi - \phi)^2} \right\}^{(\kappa_0 + 1)/2} + l \left\{ \frac{\log^2 r + (\pi - \phi)^2}{\log^2 r + (3\pi + \phi)^2} e^{-\tau \pi} \right\}^{(\kappa_0 + 1)/2}$$

if  $r \ge 1$ ,  $|\phi| \le \pi$  and

$$|R_{\kappa}(w)| \leq \frac{2}{\kappa_{0}} \left( l - \frac{\tau}{2\pi\delta} \right) \left\{ \frac{\log^{2} r + (\pi - \phi)^{2}}{(2\pi l - \tau/\delta)^{2}} e^{2\pi\tau} \right\}^{(\kappa_{0} + 1)/2}$$

$$+ l \left\{ g_{\tau} \left( \frac{\pi - \phi}{\log(1/r)} \right) \middle/ g_{\tau} \left( \frac{\pi - \phi}{\log(1/r)} + \frac{2\pi}{\log(1/r)} \right) \right\}^{(\kappa_{0} + 1)/2}$$

$$+ l \left\{ g_{\tau} \left( \frac{\pi - \phi}{\log(1/r)} \right) \middle/ g_{\tau} \left( \frac{\pi - \phi}{\log(1/r)} - \frac{4\pi}{\log(1/r)} \right) \right\}^{(\kappa_{0} + 1)/2}$$

if r < 1 and  $\tau \log(1/r) < \pi - \phi \le \tau \log(1/r) + 2\pi$ .

(i) Suppose that  $\tau > 0$  and  $|\log r| \le 1/\delta$ . Choosing l in (28) such that  $l = [(\log^2 r + (3\pi - \phi)^2)^{1/2}/2\pi] + 1$ , a straightforward estimation leads to

(28') 
$$|R_{\kappa}(w)| \leq M(\delta) c(\tau, \delta)^{\kappa_0}, \quad \kappa_0 \geq 1$$

for some  $c(\tau, \delta) \in (0, 1)$ . Next, in (29) we obtain from (19), (20), and (25)

$$\frac{g_{\tau}\left(\frac{\pi-\phi}{\log(1/r)}\right)}{g_{\tau}\left(\frac{\pi-\phi}{\log(1/r)} + \frac{2\pi}{\log(1/r)}\right)} \leq \max \left\{ \frac{g_{\tau}(\tau)}{g_{\tau}\left(\tau + \frac{2\pi}{\log(1/r)}\right)}, \frac{g_{\tau}\left(\tau + \frac{2\pi}{\log(1/r)}\right)}{g_{\tau}\left(\tau + \frac{4\pi}{\log(1/r)}\right)} \right\} \\
\leq \max \left\{ \frac{g_{\tau}(\tau)}{g_{\tau}(\tau + 2\pi\delta)}, \frac{1}{4} \right\}$$

and

(31) 
$$\frac{g_{\tau}\left(\frac{\pi-\phi}{\log(1/r)}\right)}{g_{\tau}\left(\frac{\pi-\phi}{\log(1/r)} - \frac{4\pi}{\log(1/r)}\right)} \leq \frac{g_{\tau}\left(\tau + \frac{2\pi}{\log(1/r)}\right)}{g_{\tau}\left(\tau - \frac{2\pi}{\log(1/r)}\right)} \leq \frac{g_{\tau}(\tau + 2\pi\delta)}{g_{\tau}(\tau - 2\pi\delta)},$$

where in addition we have used in (30) that (h>0)

$$\frac{d}{dx}(g_{\tau}(x)/g_{\tau}(x+h)) \begin{cases} <0 & \tau \leq x < x_0 \\ >0 & x_0 < x \end{cases}$$

for some  $x_0 > \tau$  and in (31) that  $g_{\tau}(\tau + h)/g_{\tau}(\tau - h)$  is a decreasing function with respect to h > 0. Now, using (20), a very similar estimate as above leads to

$$(29') |R_{\kappa}(w)| \leq M(\tau, \delta) c(\tau, \delta)^{\kappa_0}, \quad \kappa_0 \geq 1,$$

completing the proof for part (i).

(ii) The estimate for  $r \ge 1$  is an analogue to (28) in the preceding part. For (29) we only mention that (30) becomes

(30') 
$$\frac{g_0\left(\frac{\pi - \phi}{\log(1/r)}\right)}{g_0\left(\frac{\pi - \phi}{\log(1/r)} + \frac{2\pi}{\log(1/r)}\right)} \le \max\left\{\frac{1}{1 + (2\pi\delta)^2}, \frac{1}{4}\right\}$$

and (31) has to be replaced by

(31') 
$$\frac{g_0\left(\frac{\pi-\phi}{\log(1/r)}\right)}{g_0\left(-\frac{3\pi+\phi}{\log(1/r)}\right)} = \frac{\log^2 r + (\pi-\phi)^2}{\log^2 r + (3\pi+\phi)^2},$$

implying part (ii).

(iii) If  $\tau = \phi = 0$  and  $|\log r| \le 1/\delta$ , then inequalities (28) and (29) coincide and become

$$|R_{\kappa}(-r)| \leq \frac{2l}{\kappa_0} \left\{ \frac{\log^2 r + \pi^2}{(2\pi l)^2} \right\}^{(\kappa+1)/2} + 2l \left\{ \frac{\log^2 r + \pi^2}{\log^2 r + (3\pi)^2} \right\}^{(\kappa+1)/2}$$

Further, the choice  $l := [(\log^2 r + (3\pi)^2)^{1/2}/2\pi] + 1$  leads to

$$R_{\kappa}(-r) = O\left(\frac{1}{\delta} \left\{ \frac{1 + \pi^2 \delta^2}{1 + 9\pi^2 \delta^2} \right\}^{(\kappa + 1)/2} \right) = O\left(\frac{1}{\delta} e^{-2\pi^2 \kappa \delta^2} \right)$$

as  $\kappa \to \infty$  (observe that  $\delta \le 1/3\pi$ ). Now the proof of Lemma 1 is complete.  $\square$ 

REMARKS. (i) It should be emphasized that the estimates in the proof of Lemma 1 are good enough to give explicit bounds for  $R_{\kappa}$  ( $\kappa$  finite) required for numerical calculations. But for the purpose of this paper O-estimates are sufficient.

(ii) The restriction  $-\pi + \phi_0 \le \phi \le \pi$  in part (ii) of the Lemma only is caused by extracting the factor  $(\log(1/w) + i\pi)^{-\kappa - 1}$  in (11). Extracting  $(\log(1/w) - i\pi)^{-\kappa - 1}$  would result in  $-\pi \le \phi \le \pi - \phi_0$ .

Next, we discuss the zeros of  $H_{\kappa}$  (see (12)), which turn out to be "good approximations" for those of  $f_{\kappa}$  in  $\mathbb{C}^*$  (see Theorems 1 and 2).

LEMMA 2. Suppose that  $\tau \ge 0$  is fixed. Then all zeros of  $H_{\kappa}$  in  $\mathbb{C}_{\tau}^*$  are located on the curve  $K_{\tau}$  with representation

(32) 
$$w(\xi) := r(\xi)e^{i\phi(\xi)} = \exp\left(-\pi \cot \frac{\pi \xi}{2(1+i\tau)}\right), \quad 0 < \xi \le \xi_{\tau},$$

with

(33) 
$$r(\xi) := \exp\left(-\pi \cdot \frac{\sin(\pi \xi/(1+\tau^2))}{\cosh(\pi \xi \tau/(1+\tau^2)) - \cos(\pi \xi/(1+\tau^2))}\right),$$

(34) 
$$\phi(\xi) := -\pi \cdot \frac{\sinh(\pi \xi \tau / (1 + \tau^2))}{\cosh(\pi \xi \tau / (1 + \tau^2)) - \cos(\pi \xi / (1 + \tau^2))},$$

and

(35) 
$$\xi_{\tau} := \max \left\{ \xi \in (0, 2(1+\tau^2)] \mid \exp\left(\frac{\pi \xi \tau}{1+\tau^2}\right) \cos\left(\frac{\pi \xi}{1+\tau^2}\right) = 1 \right\}.$$

For fixed  $\kappa+1=(\kappa_0+1)(1+i\tau)$  on  $S_{\tau}$ , all zeros of  $H_{\kappa}$  in  $\mathbb{C}_{\tau}^* \cup \{w=re^{-i\pi} \mid r \geq 1\}$  are given by

(36) 
$$w_{\kappa, \nu} := w \left( \frac{2\nu + 1}{\kappa_0 + 1} \right) = \exp \left( -\pi \cot \frac{2\nu + 1}{\kappa + 1} \frac{\pi}{2} \right), \quad \nu = 0, ..., N,$$

where

(37) 
$$N = N(\kappa_0, \tau) = [((\kappa_0 + 1)\xi_\tau - 1)/2].$$

REMARK. (i) As an immediate consequence of (35) we have

$$\frac{3}{2}(1+\tau^2) < \xi_{\tau} \le 2(1+\tau^2)$$
 and  $\xi_{\tau} \sim 2(1+\tau^2)$  as  $\tau \to 0, \infty$ .

ASYMPTOTIC CURVE OF THE ZEROS OF  $\mathbf{f}_{\kappa}$ 



Figure 1



Figure 2



Figure 3

(ii) It follows from (32), (33), and (34) that  $K_0$  is the positive real axis (in the w-plane!) and for  $\tau > 0$ ,  $K_{\tau}$  is a spiral with the origin as an asymptotic point  $(\xi \to 0)$ . Moreover we have  $r(\xi) < 1$  if  $\xi < 1 + \tau^2$ ,  $r(\xi) > 1$  if  $\xi > 1 + \tau^2$ , and  $K_{\tau}$  traverses the unit circle in  $w(1+\tau^2) = \exp(-i\pi \tanh(\pi\tau/2))$ .  $K_{\tau}$  "leaves"  $\mathbb{C}_{\tau}^*$  at  $w(\xi_{\tau}) \in (-\infty, -1)$  and  $w(\xi_{\tau}) \to -1$  as  $\tau \to \infty$  and  $w(\xi_{\tau}) \to -\infty$  as  $\tau \to 0$ . For various values of  $\tau$  we have drawn  $-K_{\tau}$  (the curve of the zeros in the z-plane!) in Figures 1, 2, and 3.

*Proof of Lemma* 2. First we observe that all zeros of  $H_{\kappa}$  (on its Riemann surface) are the solutions of the equation (see (12))

$$\left(\frac{\log(1/w)+i\pi}{\log(1/w)-i\pi}\right)^{\kappa+1}=-1$$

which clearly are given by  $w_{\kappa,\nu}$ ,  $\nu \in \mathbb{Z}$ , in (36), and they are located on the curve with representation  $w(\xi)$ ,  $\xi \in \mathbb{R}$ , in (32). All we have to show is that  $w(\xi) \in \mathbb{C}_{\tau}^*$  precisely for  $\xi \in (0, \xi_{\tau})$  (see (35)). To this end we verify that

(38) 
$$\tau \log \frac{1}{r(\xi)} < \pi - \phi(\xi) < \tau \log \frac{1}{r(\xi)} + 2\pi, \quad 0 < \xi < 1 + \tau^2$$

(39) 
$$r(\xi) \ge 1, \ -\pi \le \phi(\xi) \le -\pi \tanh(\pi \tau/2), \ 1 + \tau^2 \le \xi < \xi_{\tau}$$

(40) 
$$w(\xi) \notin \mathbb{C}_{\tau}^*, \quad \xi \geq \xi_{\tau} \text{ or } \xi < 0.$$

We consider the map  $w = \exp(-\pi \cot \pi \zeta)$  and determine the inverse image of  $\mathbb{C}_{\tau}^*$  in the  $\zeta$ -plane (see (32)). Writing

(41) 
$$\zeta = \frac{1}{2\pi i} \log \left\{ \frac{(1/\pi i) \log(1/w) + 1}{(1/\pi i) \log(1/w) - 1} \right\}$$

where the logarithms are defined in (8), (9), and (10), we decompose (41) by

$$w' := \frac{1}{\pi i} \log(1/w), \quad \log(1/w) = \log(1/r) - i\phi,$$

$$\zeta' := \frac{w' + 1}{w' - 1},$$

$$\zeta := \frac{1}{2\pi i} \log \zeta', \quad \log \zeta' = \log|\zeta'| + i \arg \zeta', \quad 0 \le \arg \zeta' < 2\pi.$$



Figure 4



Now a straightforward computation gives that  $\mathbb{C}_{\tau}^*$  is mapped into the strip  $\{\zeta \mid 0 < \text{Re } \zeta < 1\}$  not containing the half-line  $\{\zeta = \xi/2(1+i\tau) \mid \xi < 0\}$ , which proves  $w(\xi) \notin \mathbb{C}_{\tau}^*$  when  $\xi < 0$ , that is, part of (40).

Next, it follows from (33) and (34) that  $K_{\tau}$ , starting with  $\xi = 0$ , leaves the unit circle in  $w(1+\tau^2) = \exp(-i\pi \tanh(\pi\tau/2))$ , and then, staying outside the unit circle, passes the real axis at  $w(\xi_{\tau}) > 1$ ,  $\xi_{\tau}$  being the unique solution of  $\phi(\xi) = -\pi$ , subject to  $1+\tau^2 < \xi \le 2(1+\tau^2)$ , which is equivalent to (35). For  $\xi \ge \xi_{\tau}$  the geometrical considerations above (see also Figure 5) imply that  $w(\xi) \notin \mathbb{C}_{\tau}^*$ , and hence (39) and (40) are true. Finally, by (33) and (34), we rewrite (38) as

$$\tau \sin \frac{\pi \xi}{1+\tau^2} < \cosh \frac{\pi \xi \tau}{1+\tau^2} - \cos \frac{\pi \xi}{1+\tau^2} + \sinh \frac{\pi \xi \tau}{1+\tau^2}$$
$$< \tau \sin \frac{\pi \xi}{1+\tau^2} + 2 \cosh \frac{\pi \xi \tau}{1+\tau^2} - 2 \cos \frac{\pi \xi}{1+\tau^2}.$$

The first inequality is true, since  $\cos(\pi \xi/(1+\tau^2)) < \cosh(\pi \xi \tau/(1+\tau^2))$ ,  $\xi > 0$ , and the second is equivalent to  $(x = \pi \xi/(1+\tau^2))$ 

$$e^{\tau x}\cos x < 1 + \tau e^{\tau x}\sin x$$
,  $0 < x < \pi$ 

which follows by considering derivatives. Now the proof of Lemma 2 is complete.  $\Box$ 

3. Main results. In this section we translate the results on the zeros of  $H_{\kappa}$  into those of  $f_{\kappa}$  via the approximation of Lemma 1. First we deal with the case of real  $\kappa > 0$  (i.e.,  $\tau = 0$ ). A. Peyerimhoff [12, Theorem 4, p. 204] proved that the zeros of  $f_{\kappa}$  in  $\mathbb{C}^*$  are all  $\leq 0$  and simple. Writing  $k < \kappa \leq k+1$ ,  $k \in \mathbb{N}_0$ , they are exactly k+1 in number; if k=2m or k=2m+1,  $m \in \mathbb{N}_0$ , then exactly m of them are located in the interval (-1,0). Moreover z=-1 is a zero if and only if  $\kappa$  is an even positive integer.

According to this result we assume the zeros  $z_{\kappa, \nu}$  of  $f_{\kappa}$ ,  $\nu = 0, ..., k$ , to be numbered such that

(42) 
$$z_{\kappa,k} < z_{\kappa,k-1} < \cdots < z_{\kappa,1} < z_{\kappa,0} = 0.$$

Further, for  $-x_2 < -x_1 < 0$  we denote by

(43) 
$$n(\kappa; x_1, x_2)$$
 the number of  $z_{\kappa, \nu}$ 's in  $[-x_2, -x_1]$ .

Then we obtain more precise information about the zeros, when  $\kappa$  becomes large, from the following.

THEOREM 1. Suppose that  $\kappa > 0$  and  $\delta \in (0, 1/3\pi]$  is fixed.

(i) If  $\kappa$  is sufficiently large, then

(44) 
$$z_{\kappa,\nu} = -\exp\left(-\pi \cot \frac{2\nu+1}{\kappa+1} \frac{\pi}{2}\right) + O(c^{\kappa}),$$

where

(45) 
$$\frac{\kappa+1}{\pi} \operatorname{arc cotan} \frac{1}{\pi\delta} < \nu < (\kappa+1) \left( 1 - \frac{1}{\pi} \operatorname{arc cotan} \frac{1}{\pi\delta} \right)$$

and  $c \in (0,1)$  depends only on  $\delta$ .

(ii) The asymptotic distribution of the zeros is given by the limit (see (43))

(46) 
$$\lim_{\kappa \to \infty} \frac{1}{k+1} n(\kappa; x_1, x_2) = \frac{1}{\pi} \operatorname{arc} \operatorname{cotan} \left( \frac{1}{\pi} \log \frac{1}{x_2} \right) - \frac{1}{\pi} \operatorname{arc} \operatorname{cotan} \left( \frac{1}{\pi} \log \frac{1}{x_1} \right).$$

*Proof.* We use the approximation of  $f_{\kappa}$  by  $H_{\kappa}$  in Lemma 1 (iii), and in view of Lemma 2 we put

(47) 
$$z_{\kappa, \nu} = -\exp(-\pi \cot x_{\kappa, \nu}), \quad x_{\kappa, \nu} := \frac{2\nu + 1}{\kappa + 1} \frac{\pi}{2} - \epsilon_{\kappa, \nu},$$

where  $\epsilon_{\kappa, \nu} \in \mathbf{R}$  and  $\nu \in \mathbf{N}$  have to be chosen suitably.

(i) In order to apply Lemma 1 (iii), we restrict  $\nu = \nu(\kappa)$  and  $\epsilon_{\kappa,\nu}$  subject to

$$(48) \pi |\cot x_{\kappa,\nu}| \le 1/\delta$$

which gives, as  $\kappa \to \infty$  (observe  $x_{\kappa, \nu} \in (0, \pi)$ ),

$$f_{\kappa}(z_{\kappa,\nu}) = \frac{\Gamma(\kappa+1)}{(\pi\cot x_{\kappa,\nu} + i\pi)^{\kappa+1}} \left\{ 1 + \left( \frac{\pi\cot x_{\kappa,\nu} + i\pi}{\pi\cot x_{\kappa,\nu} - i\pi} \right)^{\kappa+1} + O\left(\frac{1}{\delta}e^{-2\pi^{2}\delta^{2}\kappa}\right) \right\}$$

$$= \frac{2\Gamma(\kappa+1)\sin^{\kappa+1}x_{\kappa,\nu}}{\pi^{\kappa+1}} \left\{ (-1)^{\nu}\sin((\kappa+1)\epsilon_{\kappa,\nu}) + O\left(\frac{1}{\delta}e^{-2\pi^{2}\delta^{2}\kappa}\right) \right\}.$$

To ensure that  $f_{\kappa}$  changes sign at  $z_{\kappa,\nu}$  and that  $-w_{\kappa,\nu}$  (see (36)) is an approximation for  $z_{\kappa,\nu}$ , we require in addition to (48) that

(50) 
$$(\kappa+1)\epsilon_{\kappa,\nu} = o(1)$$
$$e^{-2\pi^2\delta^2\kappa} = o((\kappa+1)\epsilon_{\kappa,\nu})$$

as  $\kappa \to \infty$ . Thus we choose

$$\epsilon_{\kappa,\nu} := e^{-2\pi^2\delta^2\kappa} =: c^{\kappa}$$

in accordance with (50). Now, by (48), a straightforward computation leads from (47) to (44) and (45) is implied by (48).

(ii) Given  $-x_2 < -x_1 < 0$  we fix  $\delta \in (0, 1/3\pi]$  such that  $|\log x_i| \le 1/\delta$ , that is,  $e^{-1/\delta} \le x_1 < x_2 \le e^{1/\delta}$ . Thus we may apply (44) or (47) to those  $\nu$  with  $-x_2 \le z_{\kappa, \nu} \le -x_1$  and obtain, as  $k \to \infty$ ,

$$\frac{1}{k+1}n(\kappa; x_1, x_2) = \frac{1}{k+1} \left| \left\{ \nu \in \mathbb{N} \mid -x_2 \le z_{\kappa, \nu} \le -x_1 \right\} \right|$$

$$= \frac{1}{k+1} \left| \left\{ \nu \in \mathbb{N} \mid \frac{\kappa+1}{\pi} \left( \operatorname{arc} \operatorname{cotan} \left( \frac{1}{\pi} \log \frac{1}{x_1} \right) + \epsilon_{\kappa, \nu} \right) - \frac{1}{2} \le \nu \right\} \right|$$

$$\le \frac{\kappa+1}{\pi} \left( \operatorname{arc} \operatorname{cotan} \left( \frac{1}{\pi} \log \frac{1}{x_2} \right) + \epsilon_{\kappa, \nu} \right) - \frac{1}{2} \right\} \right|$$

$$\to \frac{1}{\pi} \operatorname{arc} \operatorname{cotan} \left( \frac{1}{\pi} \log \frac{1}{x_2} \right) - \frac{1}{\pi} \operatorname{arc} \operatorname{cotan} \left( \frac{1}{\pi} \log \frac{1}{x_1} \right).$$

REMARK. It should be mentioned that it is possible to enlarge the interval (45) for  $\nu$  by letting  $\delta = \delta_{\kappa}$  tend to zero at a certain rate. Essentially this is due to approximation (17) in Lemma 1 containing the explicit dependence of the *O*-term on  $\delta$ . However, then the geometric rate of approximation in (44) is lost.

Further investigations of  $f_{\kappa}$  gave rise to A. Peyerimhoff's conjecture that the moduli of the relative extrema are increasing and decreasing in the intervals  $(-\infty, -1)$  and (-1, 0), respectively, which was supported by some numerical calculations as well. Observing the simple recurrence relation  $f_{\kappa+1}(z) = zf_{\kappa}'(z)$  (see (1)) we show that this is true asymptotically by the following.

COROLLARY TO THEOREM 1. Suppose that  $\kappa > 0$  and  $\delta \in (0, 1/3\pi]$  is fixed. Then for sufficiently large  $\kappa$  we have

$$f_{\kappa}(z_{\kappa+1,\nu}) = 2\frac{\Gamma(\kappa+1)}{\pi^{\kappa+1}} \sin^{\kappa+1} \left( \frac{2\nu+1}{\kappa+2} \frac{\pi}{2} + O(\kappa \cdot c^{\kappa}) \right) \times \left\{ (-1)^{\nu} \sin \left( \frac{2\nu+1}{\kappa+2} \cdot \frac{\pi}{2} + O(\kappa \cdot c^{\kappa}) \right) + O(c^{\kappa}) \right\},$$

where c and v are specified as in Theorem 1.

*Proof.* As in the proof of Theorem 1, for  $\nu$  satisfying (45) we obtain from Lemma 1 (iii) and (47), as  $\kappa \to \infty$ ,

$$f_{\kappa}(z_{\kappa+1,\nu}) = \frac{\Gamma(\kappa+1)}{(\pi \cot x_{\kappa+1,\nu} + i\pi)^{\kappa+1}} \left\{ 1 + \left( \frac{\pi \cot x_{\kappa+1,\nu} + i\pi}{\pi \cot x_{\kappa+1,\nu} - i\pi} \right)^{\kappa+1} + O(c^{\kappa}) \right\},\,$$

and thus the corollary. (Observe also formula (49).)

Next, we turn to complex  $\kappa$ . In [4] it was shown that for every fixed  $\kappa \in \mathbb{C}$ ,  $f_{\kappa}$  has a finite number of zeros in  $\mathbb{C}^*$  only. For large  $\kappa$  on  $S_{\tau}$ ,  $\tau > 0$  (see (41)), we extend this result considerably by the following.

THEOREM 2. Suppose that  $\tau$ ,  $\delta > 0$  are fixed such that

(51) 
$$\sup_{z \in -K_{\tau} \cap \mathbf{C}^*} |z| < \frac{1}{2} e^{1/\delta},$$

 $\kappa+1=(\kappa_0+1)(1+i\tau)$  and  $n(\kappa_0,\tau)$  is the number of zeros of  $f_{\kappa}$  in  $\mathbb{C}^*$ .

(i) If  $\kappa_0$  is sufficiently large, then

(52) 
$$n(\kappa_0, \tau) = [((\kappa_0 + 1)\xi_\tau - 1)/2] + 1 + n_0,$$

where  $n_0 \in \{-1, 0, 1\}$  is undetermined and  $\xi_{\tau}$  is defined in (35).

(ii) If  $z_{\kappa,\nu}$  denote the zeros of  $f_{\kappa}$  in  $\mathbb{C}^* \cap \{z \mid \log(1/|z|) \leq 1/\delta\}$ , then we have

(53) 
$$z_{\kappa,\nu} = -\exp\left(-\pi \cot \frac{2\nu+1}{\kappa+1} \frac{\pi}{2}\right) + O(c^{\kappa_0})$$

as  $\kappa_0 \to \infty$ , where  $\nu = \nu_0(\kappa_0, \delta), ..., n(\kappa_0, \tau)$  ( $\nu_0$  a suitable positive integer) and  $c \in (0, 1)$  depends on  $\delta$  only.

REMARK. (i) Part (ii) states that except for a small neighborhood of the origin the zeros of  $f_{\kappa}$  can be approximated by those of  $H_{\kappa}$ ; in particular the  $z_{\kappa,\nu}$  are located on the curve  $-K_{\tau}$  (in the z-plane, see Lemma 2 and the following remark) asymptotically.

(ii) For sufficiently small  $\delta$ , from (33) we may determine  $\nu_0(\kappa_0, \delta) \approx [\kappa_0 \cdot \delta]$ , approximately.

*Proof of Theorem* 2. First we prove part (ii). Since for fixed  $\kappa$  [4, p. 375]

$$f_{\kappa}(z) \sim \frac{-1}{\Gamma(1-\kappa)} \frac{1}{(\log(-z))^{\kappa}}$$
 as  $z \to \infty$ ,  $z \in \mathbb{C}^*$ ,

we may assume without loss of generality that  $\delta$  in (51) is already chosen such that  $f_{\kappa}$  has no zero for  $|z| > e^{1/\delta}$ . Condition (51) then guarantees that  $-K_{\tau} \subset \mathbb{C}^* \cap \{z \mid |z| \le e^{1/\delta}\}$  and all zeros of  $f_{\kappa}$  in  $\mathbb{C}^*$  are already contained in  $\{z \mid |z| \le e^{1/\delta}\}$ . Then for  $|\log |z| | \le 1/\delta$  we may use the approximation (16) in Lemma 1

(16') 
$$f_{\kappa}(z) = \frac{\Gamma(\kappa+1)}{(\log(-1/z) + i\pi)^{\kappa+1}} (H_{\kappa}(-z) + O(c^{\kappa_0})).$$

The zeros of  $H_{\kappa}$  in  $\{z \mid |\log|z|| \le 1/\delta\}$  are given by

(5) 
$$\tilde{z}_{\kappa,\nu} = -\exp\left(-\pi \cot \frac{2\nu+1}{\kappa+1} \frac{\pi}{2}\right), \quad \nu_0 \leq \nu \leq N,$$

where  $\nu_0 = \nu_0(\kappa, \delta)$  is chosen suitably from N (Lemma 2). Next, we consider a fixed z with  $|\log |z|| \le 1/\delta$  and write

(54) 
$$z = -\exp\left(-\pi \cot\left(\frac{2\nu + 1}{\kappa + 1} \frac{\pi}{2} - \epsilon\right)\right)$$

where  $\epsilon = \epsilon(\nu, z)$ , and suppose that

(55) 
$$|z - \tilde{z}_{\kappa,\mu}| \ge c^{\kappa_0} \quad \text{for all } \tilde{z}_{\kappa,\mu}.$$

From (16') we obtain (compare (49))

$$f_{\kappa}(z) = \frac{\Gamma(\kappa+1)}{\pi^{\kappa+1} \left( \cot \left( \frac{2\nu+1}{\kappa+1} \frac{\pi}{2} - \epsilon \right) + i \right)^{\kappa+1}}$$

$$\times \left\{ H_{\kappa} \left( \exp \left( -\pi \cot \left( \frac{2\nu+1}{\kappa+1} \cdot \frac{\pi}{2} - \epsilon \right) \right) \right) + O(c^{\kappa_0}) \right\}$$

$$= \frac{\Gamma(\kappa+1)}{\pi^{\kappa+1}} \sin^{\kappa+1} \left( \frac{2\nu+1}{\kappa+1} \frac{\pi}{2} - \epsilon \right) i(-1)^{\nu} \cdot e^{i\epsilon(\kappa+1)} \cdot \{1 - e^{-2i\epsilon(\kappa+1)} + O(c^{\kappa_0}) \},$$

and from (5), by Cauchy's formula (see Figure 6),

$$c^{\kappa_0} \leq |z - z_{\kappa,\mu}|$$

$$= \left| \frac{1}{2\pi i} \int_{\gamma} e^{-\pi \cot \pi z} \left\{ \frac{1}{\zeta - \left(\frac{1}{2} \cdot \frac{2\nu + 1}{\kappa + 1} - \frac{\epsilon}{\pi}\right)} - \frac{1}{\zeta - \frac{1}{2} \cdot \frac{2\mu + 1}{\kappa + 1}} \right\} d\zeta \right|$$

$$\leq M(\delta, z) \left| \frac{\nu - \mu}{\kappa + 1} - \frac{\epsilon}{\pi} \right|.$$

Thus we have

(57) 
$$|\epsilon(\kappa+1) - r\pi| \ge M_1(\delta, z) |\kappa+1| e^{\kappa_0} for all r \in \mathbb{Z}.$$

Finally we conclude (observe the periodicity of the exponential) from (57) (choose r = 0) for  $-\pi/2 \le \text{Re } v \le \pi/2$ ,  $|v| \ge |\kappa + 1| c^{\kappa_0} M_1$ ,

$$|1-e^{-2iv}| = \left|\frac{1-e^{-2iv}}{v}\right| |v| \ge M_2(\delta, z) |\kappa+1| c^{\kappa_0}$$

if Im  $v \ge -M_1|\kappa+1|c^{\kappa_0}$ , and

$$|1-e^{-2iv}| \ge 1-\exp(-2M_1|\kappa+1|c^{\kappa_0}) \ge M_3(\delta,z)|\kappa+1|c^{\kappa_0}|$$

if Im  $v < -M_1|\kappa+1|c^{\kappa_0}$ . Combining these estimates together with (56) we have shown that  $f_{\kappa}(z) \neq 0$ , for z satisfying (55), provided  $\kappa_0$  is sufficiently large. Finally, applying the argument principle to (56) with  $\epsilon = c^{\kappa_0} e^{i\theta}$  ( $0 \leq \theta \leq 2\pi$ ), in (54) we



Figure 6

see that z surrounds a zero  $z_{\kappa,\nu}$  of  $f_{\kappa}$ . In a way similar to the deduction of (44) from (47) we obtain (53).

It remains to show the formula for  $n(\kappa_0, \tau_0)$  in part (i) for every  $\tau_0 > 0$ . In the following we choose  $\kappa_0$  large enough but fixed and start with the case  $\tau = 0$ . Then we know that for  $k < \kappa_0 \le k+1$ ,  $f_{\kappa}$  has exactly k+1 nonpositive zeros  $z_{\kappa, \nu}$ ,  $\nu = 0, \ldots, k = n(\kappa_0, 0) - 1$ , ordered as in (42). To  $z_{\kappa, \nu}$  we attach the corresponding zero of  $H_{\kappa}$ ,  $\tilde{z}_{\kappa, \nu}$ , for  $\nu = 0, \ldots, k$ . In the region  $R_{\delta} = \{z \mid |\log|z|| \le 1/\delta\}$  the  $\tilde{z}_{\kappa, \nu}$  are good approximations for  $z_{\kappa, \nu}$  (see (53)) for all  $\tau \in [0, \tau_0]$ . Observing that

- (i)  $z_{\kappa,\nu}$  and  $\tilde{z}_{\kappa,\nu}$  are continuous in  $\tau \ge 0$ ,
- (ii) in  $R_{\delta}$  a zero of  $f_{\kappa}$  is always accompanied by a zero of  $H_{\kappa}$  and conversely,
- (iii) the zeros of  $f_{\kappa}$  remain separated in  $R_{\delta}$  because of (53),
- (iv)  $|\tilde{z}_{\kappa,0}| \leq \cdots \leq |\tilde{z}_{\kappa,\nu_{\tau}}| \leq 1 \leq |\tilde{z}_{\kappa,\nu_{\tau}+1}|$ , with  $\nu_{\tau} := [(\kappa_0 + 1)(1 + \tau^2)]$ ,

a zero  $z_{\kappa,\nu}$  of  $f_{\kappa}$  in  $R_{\delta} \cap \{z \mid |z| \leq 1\}$  has again number  $\nu$  if the zeros of  $f_{\kappa}$  are ordered with respect to their moduli, for all  $\tau \in [0, \tau_0]$ . The zeros outside of the

unit circle can be controlled by (53) for  $\tau = \tau_0$ . Hence in order to count the number of zeros of  $f_{\kappa}$  we count the zeros of  $H_{\kappa}$ , but we have to be careful with the last one located near the cut from 1 to  $\infty$ . Thus

$$n(\kappa_0, \tau_0) = N(\kappa_0, \tau_0) + 1 + \begin{cases} 1 & \text{if } z_{\kappa, N+1} \in \mathbb{C}^* \ (\tilde{z}_{\kappa, N+1} \notin \mathbb{C}^* \text{ by definition}) \\ 0 & z_{\kappa, N+1} \notin \mathbb{C}^*, \ z_{\kappa, N} \in \mathbb{C}^* \\ -1 & z_{\kappa, N} \notin \mathbb{C}^* \end{cases}$$

provided  $\kappa_0$  is large enough. Note that the approximation in Lemma 1 also holds in a neighborhood of  $z = -w(\xi_\tau)$  on the surface of  $f_\kappa$ . Now the proof of Theorem 2 is complete.

REMARK. (i) Actually the proof of Theorem 2 shows that the zeros  $z_{\kappa,\nu}$  in (53) are simple.

(ii) A rough estimation for the "small" zeros of  $f_{\kappa}$  (for large  $\kappa$ ) is given by the first-step approximation of Graeffe's algorithm for the zeros of  $\sum_{n=1}^{m} n^{\kappa} z^{n}$ ,  $m \in \mathbb{N}$ . We obtain, for small m,

$$z_{\nu} = -\exp[-\kappa_0 \log(\nu + 1/\nu) - i\kappa_1 \log(\nu + 1/\nu)] \quad \nu = 1, ..., m-1.$$

Compare these with the approximations in [1] for the case  $x \to 0$ .

(iii) As a numerical example we consider the case  $\kappa_0 = 5$ ,  $\tau = 0$ , 0.5. Here we obtain, up to an error  $< 10^{-4}$ ,

$$ilde{z}_{\kappa,\,\nu} = (r,\phi)$$
  $z_{\kappa,\,\nu} = (r,\phi)$   $z_{\nu} = (r,\phi)$ 
 $au = 0$  0.0432,  $\pi$  0.0431,  $\pi$  0.0313,  $\pi$  0.4309,  $\pi$  0.4306,  $\pi$  0.1316,  $\pi$  2.3225,  $\pi$  2.3225,  $\pi$  23.2039,  $\pi$  .

Note that

$$f_5(z) = \left(z \frac{d}{dz}\right)^5 \frac{1}{1-z} \quad \text{and}$$

$$z_{5,1(4)} = -\frac{13 + \sqrt{105}}{2} + \sqrt{\frac{(13 + \sqrt{105})^2}{4} - 1}$$

$$z_{5,2(3)} = -\frac{13 - \sqrt{105}}{2} + \sqrt{\frac{(13 - \sqrt{105})^2}{4} - 1} .$$

$$\tau = 0.5 \quad 0.0355, 0.7880 \quad 0.0357, 0.8110 \quad 0.0313, 1.062$$

$$0.2738, 1.2728 \quad 0.2738, 1.2758 \quad 0.1316, 1.925$$

$$0.8184, 1.1652 \quad 0.8182, 1.1664$$

$$1.5558, 0.7225 \quad 1.5556, 0.7236$$

$$1.8320, 0.1244 \quad 1.8330, 0.1225$$

We see that even for small  $\kappa_0$  the approximations are rather good. The quality of approximation decreases with increasing  $\tau$ . In case  $\kappa_0 = 10$ , at least 4 relevant digits are correct in all cases above. Furthermore  $N(\kappa_0, \tau) + 1 = n(\kappa_0, \tau)$  in our example. Especially the points  $\tilde{z}_{\kappa, \nu}$  can be used as starting points for the Newton algorithm to compute the zeros of  $f_{\kappa}$ .

## REFERENCES

- 1. B. Fornberg and K. S. Kölbig, Complex zeros of the Jonquière or polylogarithm function, Math. Comp. 29 (1975), 582-599.
- 2. W. Gawronski and A. Peyerimhoff, On the zeros of power series with rational coefficients, Arch. Math. (Basel) 29 (1977), 173-186.
- 3. W. Gawronski, On the zeros of power series with rational coefficients II, Arch. Math. (Basel) 31 (1978/79), 346-355.
- 4. ——, On the zeros of power series with rational coefficients III, Arch. Math. (Basel) 32 (1979), 368-376.
- 5. W. Gawronski and U. Stadtmüller, On the zeros of power series with exponential logarithmic coefficients, Canad. Math. Bull. 24 (1981), 257-271.
- 6. W. B. Jurkat and A. Peyerimhoff, On power series with negative zeros, Tôhoku Math. J. (2) 24 (1972), 207-221.
- 7. D. F. Lawden, The function  $\sum_{1}^{\infty} n^r z^n$  and associated polynomials, Proc. Cambridge Philos. Soc. 47 (1951), 309–314.
- 8. M. Lerch, Note sur la fonction  $K(w, x, s) = \sum_{k=0}^{\infty} e^{2\pi i k x} / (w + k)^s$ , Acta Math. 11 (1887), 19-24.
- 9. E. Lindelöf, Le calcul des résidus et ses applications à la théorie des fonctions, Gauthier-Villars, Paris 1905.
- 10. W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and theorems for the special functions of mathematical physics, Springer, New York, 1966.
- 11. W. Miesner and E. Wirsing, On the zeros of  $\sum (n+1)^{\kappa} z^n$ , J. London Math. Soc. 40 (1965), 421-424.
- 12. A. Peyerimhoff, On the zeros of power series, Michigan Math. J. 13 (1966), 193–214.
- Lectures on summability, Lecture Notes in Math., 107, Springer, Berlin, New York, 1969.
- 14. G. Pólya and G. Szegö, *Aufgaben und Lehrsätze aus der Analysis* I, Springer, Berlin, 1970.
- 15. G. Sansone and J. Gerretsen, *Lectures on the theory of functions of a complex variable*, Vol. I, Noordhoff, Groningen, 1960.
- 16. U. Stadtmüller, On the zeros of power series with logarithmic coefficients, Canad. Math. Bull. 22 (1979), 221–233.
- 17. C. Truesdell, On a function which occurs in the theory of the structure of polymers, Ann. of Math. (2) 46 (1945), 144–157.
- 18. E. T. Whittaker and G. N. Watson, *A course of modern analysis*, Cambridge Univ. Press, New York, 1962.
- 19. E. Wirsing, On the monotonicity of the zeros of two power series, Michigan Math. J. 13 (1966), 215-218.

20. W. Wirtinger, *Über eine besondere Dirichletsche Reihe*, J. Reine Angew. Math. 129 (1905), 214-219.

Universität Ulm Abt. für Mathematik Oberer Eselsberg 7900 Ulm West Germany