ON THE ZEROS OF JONQUIERE’S FUNCTION WITH
A LARGE COMPLEX PARAMETER

Wolfgang Gawronski and Ulrich Stadtmiiller

1. Introduction and summary. In this paper we are dealing with Jonquiére’s
function (cf. [10, p. 33], [15, p. 364], [18, p. 280]) defined by its power series

() J2):=2n"2", k=Koti-xeC
1

for |z| <1; by analytic continuation it is seen to be holomorphic in the cut plane
) C*:={zeC|If Rez=1, then Im z #0}.

If k= k is a positive integer, then f} is connected with the geometric series by the

simple relation
d\' 1
f x(z) = <Z d—z> m

[14, p. 7, problem 46]. Moreover, Jonquiére’s function is of some significance in
various parts of mathematics and physics. For instance, it occurs in analytic
number theory [8] as a generalization of Riemann’s {-function, in summability
theory concerning equivalence problems for Césaro and certain discontinuous
Riesz means [13, ch. IV, 3], and in research on the structure of polymers [17].
Questions in Riesz summability, especially, require the number and the location
of the zeros of f, in C* when « is real. The first complete result for this case is due
to A. Peyerimhoff [12] stating that all zeros in C* are real and =0. Moreover,
they have order one and their exact numberis k+1if k<k=k+1, ke Ny, and 1
if k= 0. Different and modified proofs as well as the dependence of the zeros on
the real parameter « were given in a series of papers [2, 3, 4, 5, 6, 7, 11, 12, 16,
19]. In continuation of these investigations we ask the following questions.

(i) In case of real k, how are the zeros distributed on the negative real axis if «
becomes large?

(ii) What can be said about the zeros of f, when « is complex?

In view of the close relation of f, with Riemann’s ¢-function (observe that
f(—=1) =2 =1)¢(—«)) the second question without any restriction for
includes the problem of finding all complex zeros of ¢. Fornberg and Koélbig [1]
investigated the zeros of f,(x) in the half-plane {xeC|Rex <0}, for fixed
x € (—1,1). Their considerations are restricted to the behaviour of these zeros
when x — 0 and x — 17. The latter case is used to get a numerical approach to the
zeros of the ¢-function. We are interested in the zeros of f,(z) in the z-plane for
fixed « € C. Treating the first question above, it turns out that most of the argu-
ments used there are also valid for complex «, and that we can obtain good
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276 WOLFGANG GAWRONSKI AND ULRICH STADTMULLER

approximations for the zeros of f, in C* when |«| becomes large in the angular
region

€)) Wri={k=xo+ik | ko>0, k)| = T(ko+1)],

T =0 arbitrarily fixed. Thus we restrict « to values in W7 . We know from the
results in [4] that for fixed complex « the number of zeros of f, in C* is finite.
Now we consider « on the ray

4) S;i={k=ko+ik |xi=7(kg+1), kg >0}, 7R fixed,

and show that for sufficiently large «y the number of zeros in C* is given by
[((ko+1)&,—1)/2]+1+ ny, where nye {—1,0,1} is undetermined and £, is the
solution of a certain transcendental equation satisfying % (I+73)<g s2(1+72).
The central result says that for large || in Wy all zeros in C* are approximated
by the explicit quantities

s — ) 2v+1 7

) Zy,pi= exp( 7 cotan 1 2),

v € Ny suitably, except for “o(|x|) many” which are located in a “small” neigh-
borhood of the origin or (if 0 <k — o) are sufficiently large in modulus. The
error term in this approximation is of the form O(c*?), 0 < c <1, where the con-
stants are uniform for zeros in any compact subset in C* omitting the origin. If
is restricted to S, in (4) it follows from (5) that the zeros are asymptotically
located on the curve (Theorem 2, Lemma 1)

— exof — __7mE
6) z(&)= exp( 7 cotan 2(1+i7))’ O0<é<é, 720,

which reduces to the negative real axis when 7 = 0. For the latter case the asymp-
totic distribution function of the zeros can also be derived from (5) in explicit
form (Theorem 1).

The proofs essentially are based on the so-called Lindel6f-Wirtinger expan-
sion of f, giving a representation of the analytic extension onto C* (see Section 2).

2. Preliminary results. In this section we use an explicit formula for the
analytic extension of f, valid in C* which is suitable for discussing its zeros.
Applying residue calculus [8, 9, 20] or Poisson’s sum formula (see also [11]) we
obtain from (1) the Lindel6f-Wirtinger expansion

o 1

) J(z)=T(k+1) m}_w (2mmi+log(l/z))<*"’

giving the unique analytic extension onto C* where for the logarithm the prin-
cipal branch in C* is chosen; that is, log 1/z is real for real positive z. According
to this choice the power in (7) is defined by (1 +iv)**! = exp((x+1) log(u + iv)),
where

Re x>0,

®) log(u+iv)=%log(u2+ v?)+iarg(u+iv)
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with
rqr——arctan(v/u), u<0, vz0
/2, u=0, v>0
9) arg(u+iv) =< arctan(v/u), u>0
—7/2, u=0, v<o0
—m+arctan(v/u), u<0, v=0

~—

arctan being the principal branch, that is, —7/2 < arctan x < w/2 for real x. This
exhibits again that (7) is a single valued function in C* and f, can be extended
analytically across the cut from 1 to infinity along the positive real axis with
branch points 1 and co. For reasons of symmetry we put

(10) wi=—z=re®, log(l/w)=log(l/r)—i¢, —mw=¢p=n

and write

© 1
Jz)=T(xk+1) ,,,:2_00 ((2m+1)-7i+log(1/w))<*!

b I'(xk+1)
K+
= (og(1/w) + imyrT LT RLW)]
with
o log(1/w) +im\**!
(12) H(w):=1+ ( ) _iw>
and
= k] 1
) R, (w):=(log(l/w)+ix) m§=:l {(log(l/w)+(2m+l)7ri)"+l

1
+ (log(l/w)—(2m+1)7ri)"+1}'

Writing k+1=(xo+1)(1+i7) (see (3) and (4)), by symmetry (see (1)) we may con-
fine our investigations to the case 7 = 0. We keep 7 fixed throughout; that is, « tends
to infinity on the ray S, (see (4)). To recognize H, and R, as a principal term and
a remainder for f, in C*, respectively, we have to consider H, and R, on the Rie-
mann surface of H,(w), that is, the surface of log([log(1/w)+iw]/[log(1/w)—iw])
(see (12)). For technical reasons which will become apparent in the proof of
Lemma 1 below, we replace the w-plane with a cut from 0 to co along the nega-
tive reals (see (10)) by

. 1 1
Ck:= {w=re“” | |p| <, if r=1; flog-;<7r—¢§710g 7+27r, if r<1},
(14)

720,

that is, the cut connecting w =0 and w = —1is deformed into the exponential spiral
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(15) r=r(¢)=exp(—(r—¢)/7), ¢<m, if 7>0.
Now the key to our results is the following approximation of f, by H, in C;.

LEMMA 1. (i) Suppose that 1,6 > 0 are fixed. If x> o, k€ S,, then

I'(k+1)
(log(1/w) +ix)*+!

(16) J(z)= {H . (w)+O(c")},

where c e (0,1) depends on  and & only, when we C*N{w=re'®||log r| =1/5}.
(ii) Suppose that ¢y, 6> 0 are fixed. If 0< k— o (i.e., 7=0), then (16) holds
with ce (0,1), depending on ¢y and 6 only, when

weCiN{w=re'® |0= 17— p =27 — ¢y, |log r| =1/5}.

(iii) Suppose that $=0 (i.e., z=—w=—r) and 0<6=1/37. If 0 <k — o,
then for |log r| =1/8,

)= I'(k+1) _ 1 ar2e2
(17) S=n= o /r)m)m(HK( r)+0<6e ))

the constant involved in the O-term being independent of r and 6.

Proof. According to (11) we have to estimate R, in (13). In view of (8), (9), and
(10) we have, for we C%,

[RW)|
=3
1

log? r+(7r—-<15)2
log? r+(2m+1)7—¢)

5 exp[27-(arg(log(1/r) +((2m+ 1) — $)i)

(ko+1)/2
—arg(log(1/r)+ (7r—¢)l'))]}

(18) ? { log? r+ (7 —¢)?

+ Iog2 r +(@m+ )7+ 9)2 exp[27-(arg(log(1/r)—((2m+1)w+ ¢)i)

(ko+1)/2
—arg(log(1/r)+ (7 — d))f'))]}

L. W, v, e
= TOL OO T
1 I+1 1 [+1

with obvious notations where / is a positive integer to be chosen suitably below.
Next, we consider the function

(19) g.(x):=(+x?)exp(—27arctanx), xeR, 720,

arctan again being the principal branch as in (9). It is readily verified that g, is a
convex function with

20) the minimum at x=7 and g (r—h)y>g.(r+h) forall h>0,

where the latter statement holds for fixed 7> 0.
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(I) Suppose that » = 1. Then, by (14), we have |¢| = =. Further, by (8) and (9)
we get, for me N,

21) arg(log(1/r)+(2m+1)w —¢)i)—arg(log(l/r)+(r—¢)i)=0
and
22) arg(log(l/r)—(2m+1)w+¢)i)—arg(log(l/r)+ (v —¢)i) = —x/2

which we use to obtain

) o oo 1
) (2) 2 2 (kg +1)/2
+ =2{log"r+(n— 0
- 1?1 1?1 Hog? 7+ (m =) Igl 2mm)*o!
( ) 2/ (lo 2 2N (kg +1)/2
<2 (log"rt+(m—¢)
T Ko 472]?
Next, we infer from (18), (21), and (22) that
(24)
2’:(1)+ 2’:(2) sl{ log? r+ ( — )% Ykt D/2 log? r+ (7 —)* . (ko +1)/2
1 7 T (log?r+(3r—¢)* log? r+ (3w +¢)°

(II) Suppose now that r <1. Then, by (14), we have

(25) rlog(l/ry<w—¢ =rlog(l/r)+2x.

Next, we observe that, for meN,

1) arg(log(l/r)+(2m+1)x—o¢)i)—arg(log(l/r)+(mr—@)i) ==

and

229 arg(log(1/r)—(2m+1)w+¢)i)—arg(log(l/r)+(r —¢)i) =0,

giving (see (18) and (25))
SOy TO<LT {

I+1 1 I+

log2r+(7r-—q.‘>)2 .
log?r+(2m+1)7—¢)?

© { 10g2’,+(1r__¢))2 }(Ko—i‘l)/z

T

}(KO-FI)/Z

S llog? r+(Cm+1)7+¢)?
o 1
26 < 1 2 _ 2y 27Ty (kg + 1) /2
(26) {(log”r+(w—¢)")e™™} Elm(zlm)xoﬁ
o 1

1 2 _ 2y (kg+1)/2
+{ og r+(7l' d)) } /g-:l (2”17{"“7'/5)K0+]

2 T log? r+(r—¢)? , Yoth/?2
== (1- ) g2 ,
Ko 276 2wl—171/6)

provided / > 7/2 8. For estimating 3{ ) and 3| @, by (9), (note that log(1/r) >
0) we have, for me N,
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arg(log(1/r)+((2m+1)w—¢)i) = arctan(((2m+ )7 — ¢)/log(1/r))
arg(log(1/r)—((2m+1)w+¢)i) = —arctan(((2m+1)w + ¢)/log(1/r)).
Then from (18) and (19) we conclude, by (20) and (25), that

) @) _ T—¢ QCm+1)w—¢ \)Ho+hH/2
2 +E E{ <log(1/r>)/g’< log(1/r) >}
T—¢ 2m+ 1w+ ¢\ ot H2
+E{g7(1 gU/"))/g( log(1/r) )}
T—¢ o 20 \)ko+h/2
él{gr(log(l/r) >/ g’(log(l/n T log(1/n) )}

+ 7T—¢ ’ﬂ"—(b B 47 (kg +1)/2
{gT(log(l/r) )/g7<log(1/r) log(1/r) )}

Now, combining (23), (24), (26), and (27), we obtain, by (18),
2 N2N(kpt+1)/2 2 2 N(kg+1)/2
IR = 2L 21/ {log r+(r—o¢) } { log“r+(w—¢) }

27)

’g 47212 log?r+ (37 —¢)?
(28) 1 log? 7+ (11— )2 . (ko+1)/2
logzr+(37r+d>)2

if r=1, |¢| == and

7 log? r+ (7 — ¢)? 27T Ko+ 1)/2
276 Qwl—1/6)?

W_d) 7{'—¢ 2w (xg+1)/2
(29) +1{g7<10g(1/r) )/g’<log(1/r) * log(1/r) >}

i, T—¢ T—¢ 4z (o +1)/2
[g’(log(l/r) )/g’(log(l/r) log(1/r) )}

if r<land 7log(l/ry<w—¢ =rlog(l/r)+2x.
(i) Suppose that 7>0 and |log r|=1/8. Choosing / in (28) such that /=
[(log? r+ (37 —¢)?)/*/27]+1, a straightforward estimation leads to

(28") |R, (WY = M(8)c(r,86), k=1
for some c(7, 6) € (0, 1). Next, in (29) we obtain from (19), (20), and (25)
T—¢ 27
g’(log(l/r) ) g,() gf(” log(1/r) )

= max

T—¢ 27 N 27 ’ N 47
(log(l/r)+log(1/r)) gf<7 log(l/r)> g’(T log(l/r))

(30)
&1 }
= g (r+278)’ 4

|R (w)| = ~:2—(1—
Ko

and
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g< T—¢@ > g('r+ 27 >
(1) "\ log(1/r) <\ logt/r) ] _ g,(r+278)

T—¢ _ 47 )“ (_ 27 )=g1(7—21r6)’
g’(log(l/r) log(1/r) Er\” log(1/r)

where in addition we have used in (30) that (42> 0)

<0 T§X<X0

d
I (&) 8. (x+h)) { S0 xp<x

for some x> 7 and in (31) that g.(7+4)/g,(7—h) is a decreasing function with
respect to 2> 0. Now, using (20), a very similar estimate as above leads to

(29") |R(W)| =M(7,8)c(7,8)", K21,

completing the proof for part (i).
(i1) The estimate for » = 11is an analogue to (28) in the preceding part. For (29)
we only mention that (30) becomes

g
of =2
(30) log(1/r) Smax{——-—l———-— 1}

T—¢ 21\~ 1+(276)*’ 4
go(log(l/r) log(l/r))
and (31) has to be replaced by
T—¢
go(log(l/r)) _ log? r+ (7 —¢)?
g( 3r+¢ )‘ log?r+QBn+¢)*’
of ————2—

G31)

log(1/r)
implying part (ii).
(iii) If r=¢ =0 and |log r| =1/, then inequalities (28) and (29) coincide and
become

|R (_r)l <2_{— log2r+7r2 (K+1)/2+ log2r+7r2 (x+1)/2
« = (27l)? log?r+3x)?

Ko
Further, the choice /:= [(log? r+(37r)2)'/2/27r] +1 leads to

1( 147282 Yw+D/2 1 2 52
R(—r)= —_ =0 — —27“Kkd
(=r) 0(5{1+9w252} ) <6e )

as k — o (observe that § <1/3x). Now the proof of Lemma 1 is complete. [

REMARKS. (i) It should be emphasized that the estimates in the proof of
Lemma 1 are good enough to give explicit bounds for R, (x finite) required
for numerical calculations. But for the purpose of this paper O-estimates are
sufficient.

(ii) The restriction —x + ¢9 = ¢ = = in part (ii) of the Lemma only is caused by
extracting the factor (log(1/w)+ix)~*"'in (11). Extracting (log(l/w)—ix) *"!
would result in —7 = ¢ =7 —¢y.
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Next, we discuss the zeros of H, (see (12)), which turn out to be “good approx-
imations” for those of f, in C* (see Theorems 1 and 2).

LEMMA 2. Suppose that =0 is fixed. Then all zeros of H, in C} are located
on the curve K, with representation

Yo — oo _TE
(32) w():=r(£)e —exp( m cotan 2(1+i7)>’ O<ist
with

_ - sin(w&/(1+72))
(33) r(E)'_exp< " cosh(7r$T/(1+72))—COS(7TE/(1+72)))’

L sinh(w£7/(1472))

(34) $(&)i=—m cosh(w&r/(1+72))—cos(wt/(1+72))’
and

(3%) Erl=maX{£E(0,2(1+72)]lexp<17_r|_£:2>cos(lii2)=1}.

For fixed k+1= (ko+1)(1+i7) on S,, all zeros of H, in C*U{w=re '™ |r=1}
are given by

2v+1 2v+1 «
6 = = —7 cotan -1, =0,...,N,
(36) Wy, » w<K0+1> exp( m cota ot 2) v

where
(37) N=N(ko,7)=[((ko+1)&—1)/2].
REMARK. (i) As an immediate consequence of (35) we have

3(147Y) <t =2(147%) and §,~2(1+7%) as 70, .

ASYMPTOTIC CURVE OF THE ZEROS OF fK

T=0.1

40,

32,

24,
h

Z-PLANE

16,

" PRI . L 45 5% o, 8 75 ., B8 L 105
S0 100

Figure 1



ON THE ZEROS OF JONQUIERE’S FUNCTION 283

T= 1.0 ( OBSERVE THE CHANGE OF SCALE )

0.28 0.36

0.2

12
Iy

0.

|
o
-0.04 ] 20.04

Figure 2
T= 3.0
8
Z-PLANE
, 02 03 04 05  ©§ 07 0.8 0.8 1.
1
;.
Figure 3

(ii) It follows from (32), (33), and (34) that K is the positive real axis (in the
w-plane!) and for 7 >0, K, is a spiral with the origin as an asymptotic point
(¢ >0). Moreover we have r(£)<1if £<14+7%, r(§)>1if £>1+472 and K,
traverses the unit circle in w(1+ 72) = exp(—i= tanh(w7/2)). K, “leaves” C* at
w(¢,) e (—oo, —1) and w(&,) » —1as 7> oo and w(&,) » —oo as 7— 0. For various
values of 7 we have drawn — K, (the curve of the zeros in the z-plane!) in Figures 1,
2, and 3. ‘

Proof of Lemma 2. First we observe that all zeros of H, (on its Riemann sur-
face) are the solutions of the equation (see (12))

log(1/w)+im "“__1
(log(l/w)—ivr) -
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which clearly are given by w, ,, »€Z, in (36), and they are located on the curve
with representation w(§), £€R, in (32). All we have to show is that w(£) e C?
precisely for £e (0, E ) (see (35)). To this end we verify that

(38) Tlog—(—5<7r ¢(E)<Tlog—z§+27r, O<t<l+7?
(39) r(¢§)z1, —v=¢(¢) S —wtanh(w7/2), 1+72sE<§,
(40) w(§)e Cy, £z=§& or £<0.

We consider the map w = exp(—= cotan w {) and determine the inverse image of
C; in the {-plane (see (32)). Writing

1 o (l/m')log(l/w)-H}
27 g{(l/m’)log(l/w)—l

where the logarithms are defined in (8), (9), and (10), we decompose (41) by

41) =

w’;:ilog(l/w), log(1/w) =log(1/r)—ig,

,  w+l
=

1
§:=2—m_log $, log¢'=log|¢’|+iarg$’, O0=<arg{'<2m.

A

w-plane
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C-plane Q

1)
3
]
1]
]
)
[}
[}
]
s
'
]
| ]

) ]
[}
.
1
'
[
[}
*

.

L
[}
.

z(€)= &/(2(1+iT) ) ~ ) , Figure

Figure 5

Now a straightforward computation gives that C? is mapped into the strip
{{|0<Re {<1} not containing the half-line {{=£&/2(1+i7)|£<0}, which
proves w(§) ¢ C* when £ <0, that is, part of (40).

Next, it follows from (33) and (34) that K, starting with £ =0, leaves the unit
circle in w(1+72) = exp(—iw tanh(w7/2)), and then, staying outside the unit
circle, passes the real axis at w(¢,) >1, &, being the unique solution of ¢(§) =
—, subject to 1+72< £=2(1+72), which is equivalent to (35). For £¢= £, the
geometrical considerations above (see also Figure 5) imply that w(¢) ¢ C*, and
hence (39) and (40) are true. Finally, by (33) and (34), we rewrite (38) as

. wé wéET wé . wéT
sin —— < cosh — COS + sinh
T2 1+ 1772 1472 1472
. ™ ™ i
< 7sin —52 +2 cosh 572 —2cos :
1+7 1+7

1+72°
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The first inequality is true, since cos(w&/(1+72)) < cosh(w&r/(1+72)), £>0,
and the second is equivalent to (x = w&/(1+72%))

e*cosx<l+re™sinx, O0<x<mw

which follows by considering derivatives. Now the proof of Lemma 2 is com-
plete. (]

3. Main results. In this section we translate the results on the zeros of H, into
those of f, via the approximation of Lemma 1. First we deal with the case of real
k>0 (i.e., 7=0). A. Peyerimhoff [12, Theorem 4, p. 204] proved that the zeros
of f,in C* are all =0 and simple. Writing k< k= k+1, ke N, they are exactly
k+1 in number; if k=2m or k=2m+1, me Ny, then exactly m of them are
located in the interval (—1,0). Moreover z= —1 is a zero if and only if « is an
even positive integer.

According to this result we assume the zeros z, , of f;, »=0,..., k, to be num-
bered such that

(42) ZK’k<ZK,k_1<"'<ZK’1<ZK,0=O.
Further, for —x, < —x; <0 we denote by
43) n(k; Xy, x,) the number of z, ,’s in [—x;, —x;].

Then we obtain more precise information about the zeros, when « becomes large,
from the following.

THEOREM 1. Suppose that x>0 and 6€(0,1/3 7] is fixed.
() If « is sufficiently large, then

(44 Ze» =

2v+1
exp( m cotan — — ;) O(c"),

where

1 1 1 1
(45) arccotan — <»<(xk+1)(1——arccotan —
o T o

™

and ce (0,1) depends only on é.
(ii) The asymptotic distribution of the zeros is given by the limit (see (43))

(46) hjr; e

Proof. We use the approximation of f, by H, in Lemma 1 (iii), and in view of
Lemma 2 we put

1 1 1 1 1 1
n(k; xp, X)) = - arc cotan - log —)—C; - arc cotan g log x—l .

. 2r+1 ks
Tkl 2

“7) Z.,,= —€xp(—wcotanx, ,), X,

EK, v

where ¢, , € R and » € N have to be chosen suitably.
(1) In order to apply Lemma 1 (iii), we restrict » = »v(«) and ¢, , subject to
(48) 7|cotan x, ,| =1/

which gives, as k — o (observe x, , € (0, 7)),
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2= C'(x+1) = {H_(1rcotanx,c,y+i7r)"+‘+O(_l_e_ZWzaz,()}

(49) (wcotanx, ,+iw wcotanx, ,—imw 5
2T (x+1) si k+1 1
= (k )KSiIll X, v {(_1)!/sin((K+1)eK'p)+O(Ee—zwzazx)}.
™

To ensure that f, changes sign at z, , and that —w, , (see (36)) is an approxima-
tion for z, ,, we require in addition to (48) that

(k+1)e,, =0(1)

50
O e 2" = o((k+1)ey, )

as k — oo, Thus we choose

—27252 .

tc”

€y =€

in accordance with (50). Now, by (48), a straightforward computation leads
from (47) to (44) and (45) is implied by (48).

(ii) Given —x, < —x; <0 we fix 6 € (0,1/3«] such that |logx;| =1/6, that is,
e "% < x; < x, = e'?. Thus we may apply (44) or (47) to those » with —x, <z, , =
—x; and obtain, as k — oo,

1
n(k; X, %) =—|{reN| —x, <z, ,< —x}|

k+1 k+1
1 1 1 1
{veNl ot (arccotan(—log ———)+5K ,,>——§v
T o™ X1 ’ 2

k+1 1 1 !
= arc cotan( —log — }+¢€, , |——=
T Ly X, ' 2
1

1 1 1 1 1
— — arc cotan{ — log — )— —arc cotan{ — log — ).
T T Xy T L X1

" k+1

REMARK. It should be mentioned that it is possible to enlarge the interval (45)
for v by letting 6 = §, tend to zero at a certain rate. Essentially this is due to ap-
proximation (17) in Lemma 1 containing the explicit dependence of the O-term
on 6. However, then the geometric rate of approximation in (44) is lost.

Further investigations of f, gave rise to A. Peyerimhoff’s conjecture that the
moduli of the relative extrema are increasing and decreasing in the intervals
(—o0, —1) and (—1,0), respectively, which was supported by some numerical
calculations as well. Observing the simple recurrence relation f,,(z) =2zf/(z)
(see (1)) we show that this is true asymptotically by the following.

COROLLARY TO THEOREM 1. Suppose that k>0 and 6 €(0,1/3x] is fixed.
Then for sufficiently large x we have
'(k+1) . K+,<2v+1 T
———— sin _

.ﬁ((zx-i-],v):z 7{_,(+| ) '2"+O(K'C ))

v f2v+] W . .
x{(—l) sm( 12 > +O(k-c )>+O(c )},

where ¢ and v are specified as in Theorem 1.
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Proof. As in the proof of Theorem 1, for v satisfying (45) we obtain from
Lemma 1 (iii) and (47), as k — oo,

T(x+1) meotanx, 4 ,+im \**!
Z v == . 1+ * * +O CK ’
Je@er1,) (w cotan x4, +im)**! { (WCOtaanl,u—m ( )}

and thus the corollary. (Observe also formula (49).) O

Next, we turn to complex «. In [4] it was shown that for every fixed ke C, f,
has a finite number of zeros in C* only. For large x on S;, 7> 0 (see (41)), we
extend this result considerably by the following.

THEOREM 2. Suppose that 7,6 > 0 are fixed such that
1
(51) sup  |z] < —e"?,
ze —K,NC* 2
k+1=(xo+1)(1+i7) and n(ky, 7) is the number of zeros of f, in C*.
(i) If ko is sufficiently large, then
(52) n(KO!T)z[((K0+1)€7_1)/2]+1+n03
where nge {—1, 0,1} is undetermined and &, is defined in (35).
(ii) If z,,, denote the zeros of f, in C*N{z |log(1/|z|) =1/6}, then we have
2v+1 7

* Ko
k+1 2)+0(c )

(53) 2y p = —exp(—w cotan

as kg — o, where v =ry(kg,0), ..., n(kg, 7) (vo a suitable positive integer) and
ce(0,1) depends on 6 only.

REMARK. (i) Part (ii) states that except for a small neighborhood of the origin
the zeros of f, can be approximated by those of H,; in particular the z, , are
located on the curve —K, (in the z-plane, see Lemma 2 and the following
remark) asymptotically.

(ii) For sufficiently small 6§, from (33) we may determine »y(xg, 8) = [ko-6],
approximately.

Proof of Theorem 2. First we prove part (ii). Since for fixed « [4, p. 375]

—1 1 ,
D~ Ta—g dog(—ayr * F7% 2

we may assume without loss of generality that 6 in (51) is already chosen such
that f, has no zero for |z| > ¢!/%. Condition (51) then guarantees that —K, C
C*N{z||z] =e'?} and all zeros of f, in C* are already contained in {z | |z| = e'/?}.
Then for |log|z|| =1/6 we may use the approximation (16) in Lemma 1
T'(k+1)
(log(—1/z)+in)

The zeros of H, in {z | |log|z|| =1/8} are given by

(16) Ju(2) = T (H(=2)+0(c")).
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2v+1_7£
k+1 2

5) Ze v = —exp(—r cotan ), vo=v=N,

where vy = ro(x, 6) is chosen suitably from N (Lemma 2). Next, we consider a
fixed z with |log|z||=1/6 and write

2v+1 7
(54) z——exp(—rcotan( 1 5—&))

where e =¢(», z), and suppose that
(55) |z2—Z, /=c* forall Z,,.
From (16’) we obtain (compare (49))

C'(k+1)

et 2v+1 7 AN
w cotan ——c€ |+
k+1 2

(56) X {H,((exp(—w cotan( 2::11 % — e))) + O(c"O)K

r 1 2v+1 ; ;
=——-——(K+ ) sin"+l(—y+ 1-—-5)1’(—1)”-8”““)-{1—eﬂz'((KH)-f-O(CKO)},

et k+1 2

S(z)=

and from (5), by Cauchy’s formula (see Figure 6),

= |z2—-2,

—_ __I_S e—wcotanvrf 1 . 1 dg‘
27i Jy l 2r+1 € _1_ 2p+1
2 «k+1 T 2 k+1
v—p €
= Mo, ——.
6,2) k+1 =«
Thus we have
(57) ek + 1) —ra| = Mi(8,2) |k +1|c* for all reZ.

Finally we conclude (observe the periodicity of the exponential) from (57)
(choose r =0) for —w/2=Rev=x/2, |v|Z|x+1|c M,

’ l_e—zw

[1—e™2"| = |v] = M,(6,2) |k+1|c"

if Im v = — M|k +1]|c*°, and
|1—e™2%| 2 1—exp(—2M;|k+1|c*0) = M;(8,z) |k +1|c*o

if Im v < —M,|k+1|c*0. Combining these estimates together with (56) we have
shown that £,(z) #0, for z satisfying (55), provided «q is sufficiently large. Finally,
applying the argument principle to (56) with e =c*0%e’® (0=0=2), in (54) we
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z-plane ¢
-5
m
1 >
z(8)=£/(1+i1) 2
z(E)

Figure 6

see that z surrounds a zero z, , of f;. In a way similar to the deduction of (44)
from (47) we obtain (53).

It remains to show the formula for n(«g, 7o) in part (i) for every 7, > 0. In the
following we choose kg large enough but fixed and start with the case 7 =0. Then
we know that for k <ko=k+1, f, has exactly £+ 1 nonpositive zeros z, ,, v =
0,...,k=n(xp,0)—1, ordered as in (42). To z, , we attach the corresponding
zero of H,, Z ,, for v =0, ..., k. In the region R; =z | |log|z|| =1/8} the Z, , are
good approximations for z, , (see (53)) for all 7€ [0, 79]. Observing that

(i) z.,, and Z, , are continuous in 7 =0,

(ii) in R; a zero of f, is always accompanied by a zero of H, and conversely,

(iii) the zeros of f, remain separated in R; because of (53),

(V) |Zqol S -+ S8, | S1= 20,41, With v, = [(ko+ 1) (1+77)],

a zero z, , of f, in RsN{z||z] =1} has again number » if the zeros of f, are
ordered with respect to their moduli, for all 7€ [0, 75]. The zeros outside of the
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unit circle can be controlled by (53) for r = 79. Hence in order to count the num-
ber of zeros of f, we count the zeros of H,, but we have to be careful with the last
one located near the cut from 1 to co. Thus

1 if z, n+1€C* (2, n3+1 ¢ C* by definition)
n(Ko,To)=N(K0,T0)+l + 0 ZK,N+1¢C*, ZK,NEC*
—1 ZK'NQ C*

provided «q is large enough. Note that the approximation in Lemma 1 also
holds in a neighborhood of z= —w(£,) on the surface of f,. Now the proof of
Theorem 2 is complete. , O

REMARK. (i) Actually the proof of Theorem 2 shows that the zeros z,_, in (53)
are simple.

(ii) A rough estimation for the “small” zeros of f, (for large «) is given by the
first-step approximation of Graeffe’s algorithm for the zeros of %i'_, n*z”,
m € N. We obtain, for small m,

zZ, = —expl—«o log(v+1/v)—ik log(v+1/v)] »v=1,...,m—1.

Compare these with the approximations in [1] for the case x — 0.
(iii) As a numerical example we consider the case ko =35, 7=0, 0.5. Here we
obtain, up to an error <1074,

Zi, o =(r, o) Z,v=(r,®) z,=(r,9)

7=0 0.0432, = 0.0431, « 0.0313, =
0.4309, = 0.4306, « 0.1316, =
2.3225, w 2.3225, «
23.2039, « 23.2039, =«
Note that
dy 1
=(z—)—— and
JS5(z) (z dz) - an
13+\/10‘ \/(134—\/10 5)?
25,1(4) = — -1
13-— 105 13—+/105
25,2(3)=——“2———(+)\/( ) -1 .

7=0.5 0.0355, 0.7880 0.0357, 0.8110 0.0313, 1.062
0.2738, 1.2728 0.2738, 1.2758 0.1316, 1.925
0.8184, 1.1652 0.8182, 1.1664
1.5558, 0.7225 1.5556, 0.7236
1.8320, 0.1244 1.8330, 0.1225
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We see that even for small «, the approximations are rather good. The quality of
approximation decreases with increasing 7. In case ky =10, at least 4 relevant
digits are correct in all cases above. Furthermore N(xy, 7)+1= n(«y, 7) in our
example. Especially the points Z, , can be used as starting points for the Newton
algorithm to compute the zeros of f,.
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