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1. Introduction. A C*-algebra is said to be subhomogeneous if all its irreduc-
ible representations are on Hilbert spaces of dimension at most some positive
integer. In the proof of [5S: Theorem 3] we proved that if a C*-algebra A is infi-
nite dimensional and a C*-algebra B is not subhomogeneous, then there exists a
compact linear map of A into B which is not completely bounded and which is
not a linear combination of positive linear maps.

In this paper we show that if ¢ is a map of a C*-algebra into a nuclear C*-
algebra such that there exists a sequence of linear maps of finite rank converging
to ¢ in the completely bounded norm, then ¢ is a linear combination of compact,
completely positive maps. We also study, in the completely bounded norm, the
closure of the set of linear maps of finite rank between some C*-algebras. As an
application of a result of Smith [8: Theorem 2.8], we prove that if on the alge-
braic tensor product A (B of two C*-algebras 4 and B, the greatest cross norm
v is equivalent to the projective C*-cross norm, then either 4 or B is finite dimen-
sional.

2. Preliminaries. For C*-algebras 4 and B, let B(A, B), K(A, B) and F(A, B)
denote the set of bounded linear maps of A4 into B, the set of compact linear
maps of A into B and the set of linear maps of finite rank of A4 into B, respec-
tively.

Let ¢ be a map in B(A,B). It is possible to define associated maps
¢®id,: AQM, > BQM,, and ¢ is said to be completely positive if each ¢ ®id,,
is positive, and completely bounded if sup,||¢&®id,| <. This quantity is called
the completely bounded norm ||¢||., when it exists. If ¢ is completely positive,
l|¢llco=|l¢||- Let CB(A, B) denote the set of completely bounded maps of A into
B. For ¢ in B(A, B), if there exist completely positive maps ¢; of A into B such
that ¢ =¢,— ¢, +i(d3—¢4), then ¢ is said to have a completely positive decom-
position. If a net (¢g} in CB(A, B) converges to ¢ in the norm ||.|.,, we write
Cb-lim,g d)g = (}5

Let A, B denote the completion of the algebraic tensor product A ®B under
a norm «. In particular A ®.x B and A ®,,;, B mean the projective and injective
C*-tensor products, respectively [9: Chapter 1V, Section 4].

A C*-algebra A is said to be nuclear if for every C*-algebra B the C*-norm on
the algebraic tensor product A B is uniquely determined [2].

For the theory of C*-algebras, we refer to the book of Takesaki [9].

.

3. Nuclear range algebras. The following lemma is perhaps known. For com-
pleteness we include the proof.

Received February 25, 1983. Revision received May 31, 1983.
Michigan Math. J. 30 (1983).

213



214 TADASI HURUYA

LEMMA 1. Let { f;}7~ be a set of self-adjoint elements of A* and let {a;}}-, be
a set of self-adjoint elements of B. Put ¢(x)=Y?_| fi(x)a; for x in A. Then
there exist completely positive maps ¢, ¢~ of finite rank such that p=¢* — ¢,
lé*llev < Ziy 1 fillllaill and {|é ™ [lcv < Zizy [ filllla:]-

Proof. Let f;*, f;~ be positive linear functionals on A such that f;=f;* —f;~,
IA1=0147 1+ 14711 and let a;f,ai be positive elements of B such that a;=
ai"—a;, aifa; =0. Then |la;'|<|la;| and @7 ||<|a;|]. For x in A, we put
o1 (X)=f1(X)a, o ()=f"(X)al +fi7(X)ar, o7 (X)=fT(x)ar +f (X)a].
Then ¢;=¢;" —¢r,

1" | < max (LA [llai™ ], A Mar 1} <l Al

Similarly, o1 || <[lfilllla -

Let C*(a;) denote the C*-subalgebra generated by a;,. We have ¢; (A) S
C*(ay), ¢; (A) S C*(ay). Since C*(a,) is commutative, both ¢;” and ¢;” are com-
pletely positive [9: Chapter IV, Corollary 3.5].

We put, for xin A,

$*(x)= {31 (i () +fi7 (X)),

¢ (x)= E (it (e +fi7 (x)ai").

The above argument implies that ¢t and ¢~ are desired completely positive
maps. ' O

LEMMA 2. Let ¢ be a self-adjoint linear map of finite rank of a C*-algebra
A into a nuclear C*-algebra B. Given e¢>0 there exist completely positive
maps ¢+, ¢~ in F(A,B) such that ¢=¢"—¢~, ||¢7|<||}|lco+e€ and {¢ || <
|¢llch + e

Proof. We choose {f;}7-, in A* and {b;}/=, in B such that f*=f;, b}=0b;
(i=1,...,n)and ¢(x)= X", fi(x)b; for each x in A. Let f; denote the o-weakly
continuous extension to A** of f; and for x in A** we put ¢(x)=X7"_, fi(x)b;.
Then ¢ is a g-weakly continuous map of A** into B. Also (A®M,,)** can be
identified with A** ® M,,. Then Kaplansky’s density theorem shows that || |c, =
|¢llco- We may then assume that A has a unit.

By a result of Choi-Effros [2: Theorem 3.1], there exist a matrix algebra
M, and completely positive contractions 7:B—> M, ¢:M;— B such that
I 1 filll e 7(b;i) — b;|| <e. By Wittstock’s theorem [13: Satz 4.5] (see also [7]),
there exist completely positive maps ¢, ¢, such that 7e¢p=¢;—¢,, [¢;]<
7o lleo <llP|lcb (j=1,2). Since M is finite dimensional, both ¢, and ¢, are of
finite rank.

Let ¢'=¢p—yo7o¢p. Then ¢’ is finite dimensional. By Lemma 1, there exist
completely positive maps ¢3 and ¢, in F(A, B) such that ¢'=¢3—¢y4, | @] <
Ll I filller(b:) —bi||<e (j=3,4).
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We put ¢ =yod,+ b3, ¢ =yop,+¢4. Then ¢+ and ¢~ are completely posi-
tive maps in F(A,B) such that p=¢ " — ¢,

lo* <ol +N o3l <l bl +1 b3l <l blleo +e,

o™l <l¥edall+ldall <l b2l + sl <[ S[lct + €.

THEOREM 3. Let ¢ be a map of a C*-algebra A into a nuclear C*-algebra B. If
there exists a sequence {¢,} in F(A, B) with cb-lim, ¢, =¢, then ¢ is a linear com-
bination of cb-limit maps of sequences of completely positive maps in F(A, B).

Proof. We may assume that ¢ and all ¢,’s are self-adjoint since each com-
pletely bounded map ¢ satisfies |Re(¥)|cb <[ ¥|cb, Where Re(y) denotes the
self-adjoint part of ¢. Using the sequence {¢,}, we have, by a standard argu-
ment, a sequence {,} of self-adjoint linear maps in F(A, B) such that ||y, <
e/2" (n22) and X7 ¥,=¢ in ||.||co- Then

[¥illco <@l + 22 [¥nllew <l Dllcw + (€/2).
n=
By Lemma 2 we have completely positive maps in F(A,B) such that ;=
Ui =y, W< Vallen+ (e/2), Tl <l¥illeo+ (€/2), Y= =V, [¥a <

€/2", |¥rll<e/2" (n22). Forxin A, weput ¢t (x)= L= ¥if (X)EB, ¢~ (x)=
Y ¥, (x)EB. Then ¢=¢p* —¢~ and

e ll<l¥ill+ ;2 Val<ll¢llote (i=+,-).

Then we have, in |.||cp,

=
18

Yi =0T, §1¢;=¢—.

1

This completes the proof. O

With the same notation as in Theorem 3, we remark that the closure of
F(A,B) in the norm ||.||¢p is the span of cb-limit maps of sequences of com-
pletely positive maps of finite rank.

If we remove the condition ‘‘nuclear’’ from Theorem 3, we have the following
situation. Its proof is a slight improvement of [5: Example 12]. The author is
grateful to the referee for suggesting a simplification of the original argument.

EXAMPLE 4. Let A be the reduced group C*-algebra of the free group on two
generators and let M=Y.;_ ®A,, A,=A, the C(o)-direct sum. Then there
exists a map ¢ of A into M having the following properties:

(1) There exists a sequence of linear maps of finite rank which converges to ¢

in the norm ||.||cos

(2) There exists no bounded linear map ¢ Qmax id: A @max A = M@ max A sat-

isfying ¢ @max id(a®b)=¢(a) R b;

(3) ¢ has no completely positive decomposition.
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Proof. By De Canniére and Haagerup’s theorem [1: Corollary 3.11] we have
a sequence {¢,} in F(A,A) with ||¢,| <1 and lim, ¢,(x)=x for all x in
A. Since each ¢, is of finite rank, we can define the bounded linear map
On Omaxid: AR@max A 2 AQmax A. If {|| ¢, maxid]|} is bounded, then

limn o, ®max ld(X') =X

forall x€EAQ . A. Let p: AQpax A = AQpin A be the *-homomorphism and let
X E ker p.

If f€(AQRmaxA)*, then fo (¢, Omaxid) € A*(® A*, the algebraic tensor product,
and f(x)=l1im, fo(¢$,Omnaid)(x)=0 since g€ A*(© A* implies that g(ker p)=
{0} by the commutativity of

A*@QA* > (ARmax A)*
N Tpo*
(A ®minA)*-

Hence x=0, a contradiction. Therefore we may assume that { ¢, satisfies n3 <
|7 Rmaxid] for all n. We put =YX @® (1/n)*¢,. Since || o] < Liey (1/7)2,
(1) holds.

Suppose that there exists the bounded linear map

d) ®max id : A ®max A - M®max A *

Let ¢, be the *-homomorphism of M onto A, defined by ¢,(X;2,®x;)=x,.
Using the map ¥, ®maxid : M@pax A = A, @max 4, We have ||[(1/1)%¢, Qmaxid||=
(¥ Pmaxid ) ° (¢ Ppmax id)|| < || ¢ Rmaxid ||, so that 73 < 12| @maxid||. Hence n <
| ®maxid||, a contradiction. Consequently (2) holds.

If (3) holds, (2) holds [9: Chapter 1V, Proposition 4.23]. This is a contradic-
tion. a

THEOREM 5. For C*-algebras A and B, the following are equivalent:
(1) Either A is finite dimensional or B is subhomogeneous;

(2) B(A,B)=CB(A,B);

(3) K(A,B)SCB(A,B);

(4) K(A, B) is the span of compact, completely positive maps;

(5) K(A, B) is the closure of F(A, B) in the norm |.||cp-

Proof. It is easy to check that (2)=(3), (4)=(3) and (5)=(3) as CB(A,B) is a
Banach space in the norm ||. |, (cf. the proof of [11: Proposition 1]). The remark
in the introduction implies that (3)=(1).

By [8: THeorem 2.8] we have (2)=(1). Let y: A —> B be a bounded linear
map. If A is finite dimensional, then v is of finite rank. Hence y is completely
bounded. If B is subhomogeneous, it follows from [8: Theorem 2.10] that |||, =
|¥®id,|| where n is'the greatest number in the set of dimensions of irreducible
representations of B. Hence ¢ is completely bounded. Consequently, (1)= (2).

Suppose that (1) holds. We then show that both (4) and (5) hold. If A is finite
dimensional, then (4) and (5) are clearly true. We assume next that B is sub-
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homogeneous. Then B(A,B)=CB(A,B) by the above argument. The open
mapping theorem implies that there exists a positive real number R such that
llollcy <R|| @] for all ¢ in B(A, B). Since B has the approximation property (see,
for example, [2: Theorem 3.1}), for ¢ in K(A, B), there exists a sequence in
F(A, B) converging to ¢ in the norm ||¢||.,. Then (4) holds. Also it follows from
Theorem 3 that ¢ is a linear combination of compact, completely positive maps.
Therefore (5) holds. 0

4. Dual range algebras. A C*-algebra A is said to be dual if there exists a
*-isomorphism from A to a C*-subalgebra of the C*-algebra of compact linear
operators on some Hilbert space. We show that if ¢ is a compact, completely
positive map of a dual C*-algebra A into another C*-algebra B, there exists a
sequence in (A, B) converging to ¢ in the norm ||.||.,. Moreover if B is nuclear,
the closure of F(A, B) in ||.||cp is the span of compact, completely positive maps.

LEMMA 6. Let ¢ be a compact, completely positive map between C*-algebras
A and B and let {ug} be an approximate unit for A. Let ¢g be the map defined by
$g(x) = (ugxug) for each x in A. Then cb-limg ¢g=¢.

Proof. There exist a bounded linear map V and a representation = of A4 such
that ¢(x)=V*n(x)V for each x in A [9: Chapter IV, Theorem 3.6]. Since ¢ is
compact and w(u,)<w(u,)<I for v<p, {¢d(ug)} converges to V*V in the
operator norm. Hence {[|[(— w(ug))"?V ||} converges to 0 as [|[(I— 7 (ug))"*V|*=
|V*(I—w(ug))V||. Since (({—m(ug))'?} is bounded, {w(ug)V} converges to V
in the operator norm. We then have

|#g—dllco=[(V*T(ug) = V*)m () w(ug) V+V*r () (w(ug) V—=V)|co
<|V*r(ug) =Vl (up) VI+| V]l 7 (5) V= V|
<L2||w(ug) V=V ||V
Hence cb-limg ¢5=¢. O

PROPOSITION 7. If ¢ is a compact, completely positive map of a dual
C*-algebra A into another C*-algebra B, then there exists a sequence in F(A, B)
converging to ¢ in ||.||cp-

Proof. Since A is dual, there exists an approximate unit {ug} such that each
ug Aug is finite dimensional. Let ¢g(x) =¢(ugxug) for xin A. Then ¢y is of finite
rank. Lemma 6 implies that the desired sequence exists in F(A, B). 0O

This proposition has applications to C*-algebras considered in [4, 5].

PROPOSITION 8. Let A be the C*-algebra of all compact linear operators on
an infinite dimensional Hilbert space and let A be the C*-algebra generated by A
and the identity operator 1. If ¢ is a compact, completely positive map of
A®uin A to A, there exists a sequence in F(A @, A, A) converging to ¢ in ||.||cp-

Proof. Let f be a state on A such that f(A4)={0}. Let Ry and L, be bounded
linear maps of A®minA into A satisfying R;(a®b)=f(a)b and Li(a®Db) =
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S(b)a [10]. Then Ry and Ly are completely positive. For each x in A®in A, put
Y(xX) =x—IQ (Ry(x)) — (Lp(x)) @I € A®pin A+ C(I®I). Then |||y < 3.

Let ¢or(x) =¢(I®x) and ¢; (x) =¢d(x&®1) for each xin A. By Proposition 7,
there exists a sequence {¢,} in F(A, A) converging to ¢z | A in ||.||c,. For each
x+cl in A, put ¢, (x+cl)=¢,(x)+cod(I®I), where ¢ is a complex number.
Every ¢, is of finite rank and cb-lim, ¥, =¢r. Hence there exists a sequence in
F(A®pin A, A) converging to ¢geRsin [|.[lp.

Similarly, there exists a sequence in F(A®pi, A, A) converging to ¢reLyin

” . ”cb-

Since A® i, A is dual and the quotient algebra
[AQmin A+ CURI)]/(A®minA)=C,

there exists, by a similar argument, a sequence in F(A®,,, A, A) converging to
(¢ | AQmin A+ CUT))y in ||.{cp- 3 o

Consequently, there exists a sequence in F(A®y,, A, A) converging to ¢=
droRs+ oL+ doyin | ||cp-

PROPOSITION 9. Let A be a C*-algebra with a closed two-sided ideal J such
that A/J is finite dimensional and J is dual. If ¢ is compact, completely positive
map of A into another C*-algebra B, then there exists a sequence in F(A, B)
converging to ¢ in ||.||cp-

Proof. Let 7 be the quotient map of 4 onto A/J and choose a finite set {u;}/_,
in A such that {«w(u;)}}=, is a basis for A/J. Using the set { f;}7-, in A* such that
w(x) =Ll fi(x) w(u;) for each xin 4, we put ¥, (x) = XL/_; fi(x)u; and Y, (x) =
x—y,(x)€J for each x in A. Both ¥, and ¢, are completely bounded. Since the
restriction ¢ | J is compact, there exists, by Proposition 7, a sequence in F(A, B)
converging to ¢oy, in ||.|c,. The map ¢y, is of finite rank. Then there exists a
sequence in (A, B) converging to ¢ =gy + ¢y, in |.|cp-

S. The projective C*-tensor product. For C*-algebras 4 and B, the least cross
norm A on their algebraic tensor product A B is defined by

>\< f: xi®)’i) = SUP{

i=1

rea, gen, f=lsl=1]

_g S(x;)eg(y)

The greatest cross norm vy on A® Bis defined by y(u) =inf X7, ||x;]|||vil|, where
the inf is taken over all representations of u (see, for example, [9: Chapter 1V,
Section 2]). It is known that A < min < max <+ [9: Chapter 1V, Sections 2, 4].

We can identify (BQM,,)* with B*®@M,,. For a bounded linear map ¢ of A
into B*, we say that ¢ is completely positive if each ¢&®id,, of AQM,, into
B*®@M,, is positive.

Let B(A, B*) and B(B, A*) denote the space of bounded linear maps of A4 into
B* and the space of bounded linear maps of B into A*, respectively.

PROPOSITION 10. With the above notation, let ® denote the natural linear
map of AR, B to AQmax B. The following statements are equivalent:
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(1) @ is an isomorphism between Banach spaces A®Q., B and AQmqx By
(2) B(A,B*) is the span of completely positive maps,

(3) B(B, A*) is the span of completely positive maps,

(4) either A or B is finite dimensional.

Proof. (1) & (2), (1) # (3). The conjugate space (A&, B)* can be identified, by
a well-known process (see [6: Chapter IV, Theorem 2.3]), with B(A, B*) (or
B(B, A*)). The conjugate space (AQ@mn.xB)* can be identified, by [6: Lemma
3.2], with the span of completely positive maps of 4 into B* (or the span of com-
pletely positive maps of B into A*). The adjoint map ®* is an isomorphism
between (A®, B)* and ®*((A®maB)*). Then it is easy to check that (1) ¢ (2)
and (1) e (3).

(1) (4). Since (4)=(1) is obvious, we assume that (1) holds. Let ¢ be a
bounded linear map of A into itself. There exists the bounded linear map
$»®,idp: AR, B > AR®, B. By (1) we can define the map

¢’®max idB 1A ®maxB —>A ®max B.

For fin A* gin B* and a in A®,.,x B, we have (fQmnax &) (¢ Pmaxidp) (a) =
(fed)POmaxg(a@). An element a in A, B belongs to the kernel of the natural
map ¥: AQ®mnax B > AR, Bif and only if f&,,,xg(a) =0 for all fin A* and gin
B*. Hence if a € ker ¥, then ¢®,.x1d g(a) =0. We can then define the bounded
linear map ¢ ®idg: AQnin B = A Rupin B.

Suppose that B is not subhomogeneous. Let m be a positive integer. By [5:
Lemma 2] we have a completely positive contraction ¥ of B into the mxm
matrix algebra M,, and a sequence {¢,} of completely positive contractions of
M,, into B such that {y-¢,} converges to the identity map id,, on M,, in the
operator norm. Then lim,(id 4@ y)°(¢&Xidg)e(idy® ¢,) (@) =¢XRid,, (a) for
all @ in AQM,,. Since ||(id,®V¥)-(¢®idpg)e(id,®¢,)||<|¢®idp|, we have
|le®id,,||<||¢®idp|, so that |¢|p<||¢®idpg|. Hence every bounded linear
map of A into itself is completely bounded. Smith’s result [8: Theorem 2.8]
shows that A is subhomogeneous. Hence either A or B is subhomogeneous.

There exists, by [12: Proposition 1], the natural isomorphism between
AQRmin B and AR\ B. We also have A Qpax B=A min B. Let ) be the natural
map : AR, B> AK)B. Then ¢\ (A®,B)=AX)\B. If both A and B are in-
finite dimensional, there exist infinite locally compact Hausdorff spaces S and T
such that Cy(S)S A and Cy(T) < B. Grothendieck’s result [3: Proposition 33]
implies that ) (A&, B) 7CLA®;\ B. This is a contradiction. Hence either 4 or B is
finite dimensional.
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