DO ALMOST FLAT MANIFOLDS BOUND?

F. Thomas Farrell and Smilka Zdravkovska

0. Introduction. A closed connected Riemannian manifold M” is said to be
flat if its sectional curvatures are all zero. Since the (real) Pontrjagin classes are
computable in terms of the sectional curvatures, a flat Riemannian manifold M
has zero (real) Pontrjagin classes and hence zero Pontrjagin numbers when M is
orientable. This observation was part of the reason for the conjecture that such a
manifold is a boundary, i.e., that there exists a compact manifold W"*! such
that aW =M. (Recall that Thom had shown that a manifold bounds if and only if
all its Stiefel-Whitney numbers vanish and Wall showed an orientable manifold
is an oriented boundary if in addition all its Pontrjagin numbers vanish.) Re-
cently, Hamrick and Royster, after partial results by Marc Gordon (cf. [6], [3]),
have verified this conjecture.

In this paper, we conjecture that any almost flat manifold (whose definition is
recalled below) bounds and give some partial results on this extended conjecture.
We will rely heavily on the earlier methods of Gordon, Hamrick and Royster.
Let b( , ) be a Riemannian metric on a compact manifold M”, let d(M", b)
denote the diameter of M" with respect to b( , ) and let ¢(M", b) denote the
maximum of the absolute values of the sectional curvatures of M" relative to
b( , ). Following the terminology introduced by Gromov [5], an almost flat
structure on a closed connected smooth manifold M " is a sequence of Riemann-

ian metrics b;( , ), where i=1,2,..., such that
(0.1) (@ lim c(M",b;)=0 and
i— o0

(b) {d(M",b;):i=1,2,...} has a finite upper bound.

CONJECTURE 1. If M" supports an almost flat structure, then there exists a
compact smooth manifold W"*! such that oW"*'=M".

This conjecture is geometrically motivated by work of Gromov [5]. He showed
that if M” supports an almost flat structure then A" has a finite sheeted cover
that is a nilmanifold and consequently the Pontrjagin classes of M " vanish since
nilmanifolds are parallelizable. Recall a nilmanifold is the quotient of a (con-
nected) simply connected nilpotent Lie group by a discrete cocompact subgroup.
In fact, a second result of Gromov [4] (which uses Margulis’ lemma) suggests the
above conjecture could possibly be strengthened as follows.

CONJECTURE 2. (a) If M" is a flat Riemannian manifold, then M"=oW"*!,
where W— oW supports a complete hyperbolic structure (constant negative sec-
tional curvatures) with finite volume.
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(b) If M " supports an almost flat structure, then M"=0W "+ where W—W
supports a complete Riemannian metric with finite volume all of whose sectional
curvatures are negative.

We do not know how to approach Conjecture 2; hence the rest of this paper is
devoted to partial results about Conjecture 1.

We recall that a closed connected manifold M " is aspherical if «; (M) =0 for
all i >2. Also if T" is a finitely generated torsion-free virtually nilpotent group,
then it is a consequence of Mal’cev’s work (cf. [2: Lemma 1.2]) that there exists a
smooth aspherical manifold M" with fundamental group I'. In fact, M" can be
chosen to be an infranilmanifold, i.e., M" is a double coset space I'\L X G/G,
where L is a (connected) simply connected nilpotent Lie group, L X G is the semi-
direct product with respect to a faithful representation of a finite group G into
Aut(L) and I' is a discrete cocompact subgroup of L X G. Since any infranilman-
ifold supports an almost flat structure, the homotopy type of an aspherical man-
ifold is determined by its fundamental group, and Stiefel-Whitney classes are
homotopy type invariants, we have that Conjecture 1 is equivalent to the fol-
lowing.

CONJECTURE 1. Let M” be a closed smooth aspherical manifold such that
w1 (M) contains a nilpotent subgroup with finite index; then there exists a com-
pact smooth manifold W"* such that 9W =M.

We will prove the following partial result concerning Conjecture 1°.

THEOREM 1. Conjecture 1’ is true when w;(M") contains a nilpotent subgroup
of index 2.

Actually we prove a somewhat stronger result (cf. Proposition 1.3).

Recall that if N" is an m-sheeted cover of a closed smooth manifold M”,
where m is an odd integer, then M”" has the same Stiefel-Whitney numbers as
N"; consequently, M" bounds if and only if N"” bounds.

COROLLARY 2. Conjecture 1’ is true when w;(M) contains a nilpotent sub-
group of index either m or 2m, where m is an odd integer.

This follows from the above recollection, Theorem 1, the fact that nilmani-
folds are parallelizable and Mal’cev’s result that any torsion-free finitely gen-
erated nilpotent group is the fundamental group of a closed nilmanifold.

1. Proof of Theorem 1. First case. Assume I' is a finitely generated torsion-
free group containing a nilpotent subgroup N of finite index a power of 2 so that

(1.1) 1>N->T>G—1

is exact, and the action of G on N is effective. In this section we show, following
closely the method of Hamrick and Royster, that if the action in (1.1) of G on the
center Z(N) of N is effective then a closed K(I', 1) manifold M bounds. Thus we
will have reduced the proof of Theorem 1 to the case when G =Z, acts trivially
on Z(N), which we tackle in Section 2.
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The method for showing that M bounds consists in making an elementary
abelian 2-group act on it and analyzing the action’s fixed.point set together with
its normal bundle. Once we have the set-up to apply Hamrick and Royster’s
techniques, we freely refer to their paper [6] for the proofs.

As noted in the introduction we may assume that

(1.2) M=T\LXG/G

for some (connected) simply connected nilpotent Lie group L with discrete
cocompact subgroup N. To see this, consider a (connected) simply connected nil-
potent Lie group L containing N as a discrete cocompact subgroup. Such a group
exists by the work of Mal’cev [8]. Form the pushout diagram

N-T
(1.3) )
L->L,

and write L’ as the semidirect product L'=L X G, where G=N\I'=L\L' is a
maximal compact subgroup of L. Since I'\L”/G is a K(I',1) it is homotopy
equivalent to M ; therefore it has the same Stiefel-Whitney numbers as M and it
bounds if and only if M does.

There is a regular covering p: M — M, where M is the nilmanifold N\L,
defined by p(Nx) =TxG for x € L. The group G acts freely on M as the group of
covering transformations by

(1.4) g(Nx)=Nvyxg~!,

where v is any element of I" such that yxg '€ L.

Denote by Z(L) the center of L. It is known that Z(L) is nontrivial and that
Z(N) is a cocompact subgroup of Z(L). The latter acts by multiplication on
L, inducing an action of Z(N)\Z(L) on M. Let £ denote the subgroup of
Z(N)\Z(L) consisting of elements of order <2, and I; the subgroup of ele-
ments in L fixed under the conjugation action of G on Z. Since G is a 2-group by
assumption, L is nontrivial: the orbits of G in X consist of either one or an even
number of elements, 1€ X is the single element in its orbit, |E| is even, hence
there is at least one other element of £ fixed under G.

The action of L on M passes to an action of E; on M:

(1.5) Z(N)s(I'xG)=TsxG

for x€L and s€Z(L) such that 2s€ Z(N) (we use additive notation within
Z(L)) and Z(N)gsg "'=Z(N)s for all g€G.

Choose a representative s € Z(L) for each element of 5 and to save notation
consider s also as an element of 5. If there is no point of M fixed under Xg,
then by a theorem of Conner and Floyd (Theorem 30.1 in [1]) M bounds. So
assume there is x € L such that I'sxG=TxG for each s€Xs. Then there is an
injective homomorphism ¢: £; — G defined by ¢(s) =g if and only if sx=vyxg
for some y €T'. The last equation determines g uniquely for if yxg=1;xg, then
xg; g "' €T has finite order and since I is torsion-free g,=g.
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For each s € X, the action (1.4) on M of the subgroup {¢(s)) of G generated
by ¢(s) gives rise to an action on (NN, s)\ L, where (NN, s) is the subgroup of L
generated by NN and s. It has a fixed point, namely Nx.

We will need the following fact: If () =Z, acts on the nilmanifold N\ L and
U={f:L—>L:qf=q or qf=tq, where g: L = N\L is the projection} is the
group of liftings to L, then

(1.6) 1 >N->U—>2Z,=(t)—1

splits if and only if ¢ has a fixed point in N\ L.
In our situation, restriction of (1.1) to {(¢(s)) and projection give rise to the
following commutative diagram

1= 7 (N\L) —=>p'o(s)) = (d(s) —1
i) ! ! =
1 > ({N,s)\L) —> U —=>{(p(s)) — 1.

By the fact above, the bottom sequence splits. The top sequence corresponds
to the restriction of the cohomology class of (1.1) in H?(G; Z(N)) to a class
[ags)] EH2({D(5)); Z(N)) such that a5y becomes a boundary when mapped
to H2({P(5)>; Z({N,s))). Thus ayisy=(1+¢(s))a for some a€Z({(N,s)). Let
B(s)=2s€N=m(N\L). The above discussion implies that the cocycle o) can
be chosen to be (1+¢(s))B(s)/2.

Let W={we€Z(N): w conjugated by ¢(s) is +w for all s€ELs, Ww&2Z(N)
and [w/2]1€Z(N)\Z(L) is fixed by G}. Now Lemmas 6 and 7 from [6] read as
follows.

LEMMA 1.1. Suppose X has a fixed point on M determining an injective
homomorphism ¢: X5 — G.

(@) Let {w;:i=1,2,...,k}CW be such that {[w;/2]):i=1,2,...,k} form a
linearly independent subset in X C Z(N)\Z(L). Then some w; is fixed by every
element of ¢({[w;]:i=1,2,...,k)).

(b) For any subgroup S#{e) of ¢ there is a g € p(S\{e}) such that gw=w
Jorall we W with [w/2]€S.

The proofs from [6] can be copied verbatim, so we omit them.
Let ¢: £; — G be an arbitrary injective homomorphism, and

a1.7) Ey={x€M:xs=¢(s)x for all s€Xgs].

LEMMA 1.2. If ¢(Xs) CZ(G) and the action of G on Z(N) in (1.1) is effec-
tive, then E4 is empty.

To show that, note that by Lemma 1.1(b) there is an element ¢(s;)=g€
&(Es\[{e}) such that gw=w for all we . But since g acts nontrivially on
Z(N), the eigenspace A; corresponding to the value —1 is nontrivial. Let X5 =
fe,s1,...,5c}. Now é(s,) acts on A,. If it leaves it fixed, take A, =A;; if not, let
A, be the subspace of A4, corresponding to the eigenvalue —1 of ¢(s;), etc. The
group G acts on each A; since all ¢(s;) are central in G. Then A; determines a
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nontrivial subgroup S of L on which G acts. A counting argument again shows
that at least one nontrivial element of S is fixed by G, i.e., belongs to £5. This
element defines a w € W such that gw= —w, which contradicts the choice of g.

Finally, the passage from Lemma 1.2 to the proof of Proposition 1.3 below is
the same as the one used in [6].

PROPOSITION 1.3. If M is a closed K(I', 1) manifold, where I is as in (1.1)
and the 2-group G acts effectively on Z(N), then M bounds.

Hence, to prove Theorem 1 we may assume that the action of G on Z(N) is
not effective. In case G=Z,, this means that the action is trivial. Note that then
X =ZL. Should there be a point x €M fixed under X, the injective homomor-
phism ¢ determined by x implies that ¥;=Z,, so the center of L is one-dimen-
sional. We turn to that case in the following section.

2. Proof of Theorem 1. Final case. Our proof will be based on the following
result.

PROPOSITION 2.1. Let T be a finitely generated torsion-free group and N be a
nilpotent subgroup of index 2. Assume that the center of N, Z(N) is oo-cyclic;
Sfurthermore, assume that Z(N) is the center of I'. Then there exists a closed
smooth aspherical manifold M" and an involution T: M — M such that

(@ mM)=I;

(b) the fixed point set F of T is the disjoint union of a finite number of closed
manifolds F;, all having the same dimension n—Kk;

(c) the normal bundle v of F in M is isomorphic to the Whitney sum of the
same line bundle v with itself k times, i.e., v=0n@® - -+ ®n (k summands);

(d) the Stiefel-Whitney classes w;(F)=0 for all i >0.

We defer the proof of this proposition to the end of this section after we have
used it to complete the proof of Theorem 1. Note we may assume that the mani-
fold M" referred to in Theorem 1 is the one given by Proposition 2.1.

Let ¢: F— BO(k) be the classifying map for the normal bundle » of F in M.
By a theorem of Conner and Floyd [1], it suffices to show that [{](=the co-
bordism class of ) is the zero element in 90,_;(BO(k)). By a result of Conner
and Floyd [1], [¥]=0 if and only if all its Stiefel-Whitney numbers vanish,
i.e., for each cohomology class x € H (BO(k); Z,) and each monomial v in the
Stiefel-Whitney classes 1, w,(F),...,w,_;(F) of degree (n—k)—i, we must
show that the Kronecker product {(y*(x)Uuv, [F])=0. But by Proposition 2.1(d),
w;j(F)=0 if j>0; hence, we may assume that w=1. Also note that y*(x) is a
monomial in the Stiefel-Whitney classes of ». Let w denote the total Stiefel-
Whitney class. Since

k k .
Q.1) o) =0@®@ - ®n)=(0(M)=U+e,(n) =Y <I.>(w1(n))',
i=1

we may assume that J*(x) = (w; (7))"~*. Therefore, it suffices to show that

(2.2) L ()", [F]y=0.
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First, we.will assume that n—k is even; i.e., n—k=2j for some integer j. Since
w;(F)=0 for i>0, it is a consequence of Wu’s formula that

(2.3) (Sq'(y), [F1y=0, forall i>0, y€H*(F;Z,).
Let Sq denote Sq°®+Sq'+Sq?+ - - -; we have
2.4) Sa((w;(n))’) =Sq(w; (1))’

= [wi(n) + (@, (1))}

= (w1()! (1+ (1))’

12/ .
=(w1(n))’[ ) (i>(w1(n))’]

i=1

J [ L
= {31 (i>(w1(n))’“-

Consequently,

(2.5) S’ (w1 (0))7) = (w1 ()% = (@ (9))" %,

Formulas (2.3) (with y= (w;(7))’ and i=Jj) and (2.5) yield that assertion (2.2) is
true when n—k is even.

Hence for the rest of the argument we will assume that n—k is odd. Next
assume that k is even; i.e., k=2j for some integer j. Then

(2.60) o) =[w@®n)=[1+2w (1) + (@;(n)?) = [1+ (& (1)D)};

hence ws(») =0 if s is odd. Consequently, y*(x) has even degree but M has odd
dimension. Therefore, (y*(x), [F])=0and M bounds if either kK is even or n —k
is even.

Thus we will assume that both £ and n— k are odd. To finish the proof of Theo-
rem 1, we make use of the main result of the Kosniowski-Stong paper [7]. Refer-
ring to this result, let f(x,,...,Xx,) be the Newton polynomial xlk“l-i— <. +x,’,“1.
Since k—1<n, the Stiefel-Whitney number of M associated to f is 0. Hence,
their formula becomes

JU+o(n),...,1+w(9),0,0,...,0)
3 , [F1).
(1+wi(n))

In (2.7), the first k variables x;,...,x; have been replaced by 1+ w;(n) and
Xk4+1,---,Xn by 0. Consequently, (2.7) becomes

Q2.7) 0=

k(14w (5))*! >
2.8 ,[F])=0.
(2-8) < (14w ()" LF]
Since k is odd, we obtain
1
2.9 — [F])=0.
(2.9 <(1+w1(n))’[ ]> 0

But
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1
2.10 —_—— =l+4uw F et (@ ()" K
10 L+ (n) ) e
hence, (2.9) and (2.10) imply (2.2), showing that M bounds. This completes the

proof of Theorem 1.

PROOF OF PROPOSITION 2.1. As in Section 1, take L'=L X G and M=
I'\L’/G. The center Z(L) intersects N in Z(N), and Z(L) is isomorphic to the
additive group of real numbers. Note that G is a cyclic group of order 2; let a € G
be its generator. Conjugation by a acts trivially on Z(L), hence Z(L) is con-
tained in the center of L’ Let b€ Z(L) be an element such that b? generates
Z(N). We define T: M - M by T(I'xG) =TI'bxG. Since L is diffeomorphic to R”
(for some n), M is a closed aspherical manifold and = (M) =T". Since b is in the
center of L’, T is well defined and is clearly a smooth involution on M. Note
that F, which is the fixed point set of 7, is a closed smooth manifold. Suppose
T(I'xG)=TxG; this happens if and only if bx=+yxa for some y €T}; i.e.,

2.11) F={T'xG: b(xax~ ') €r}.

If F is empty, then Proposition 2.1'is verified. Hence we may assume that F# &.
Then there is an x €L’ such that b(xax~') €T. But {e, xax ') is another max-
imal compact subgroup of L’. Hence we may assume that G was chosen so that
ba€eTl.

Consider the closed nilmanifold M=N\L; the map p: M — M given by
p(Nx)=TxG is a 2-sheeted covering. There are involutions f, g: M — M de-
scribed by

(2.12) f(Nx)=Nxb and g(Nx)=Naxa,

and the group of four motions {id, f, g, fg] is isomorphic to the Klein 4-group.
Also, {id, fg} is the group of covering transformations for p: M — M. Let
F=the fixed point set of g; then p: F— F is a 2-sheeted covering. The line bun-
dle 5 posited in Proposition 2.1(d) will be the associated line bundle to the prin-
cipal O(1)-bundle p: F— F. The group H={id, f} acts freely on M with orbit
space M’'=M/H. Note that M’ can be viewed in another way. Namely, let
N’=NUNBDb; then N’ is a discrete torsion-free cocompact subgroup of L which
contains N as a subgroup of index 2. Then M’=N’\L and hence is a closed nil-
manifold. Note that F is left invariant by f since fg=gf. Hence F'=F/H is a
submanifold of M". In fact, F’ is diffeomorphic to F since f and fg agree on F.
Also, F’=fixed point set of #: N'’\L - N’\L, where h is described by

(2.13) h(N'x)=N'axa.
To complete the proof of Proposition 2.1, we need the following result.

LEMMA 2.2. Let K be a (connected) simply connected nilpotent Lie group
and S be a discrete cocompact torsion-free subgroup of K. Also, let a: K —> K
be an automorphism such that a*=id and o(S)=S. Consider the involution
&: S\K — S\K given by &(Sx)=Sa(x). Then
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(i) all components of the fixed point set of & have the same dimension, and
(ii) the normal bundle of the inclusion of the fixed point set of & into S\K is
trivial.

Let us complete the proof of Proposition 2.1 before proving Lemma 2.2.
Apply Lemma 2.2 in the case where K=L, S=N’and &=h. This immediately
yields part (b) of Proposition 2.1. To obtain part (d), recall that N’\L is parallel-
izable. But 7(F’) @’ is the pullback of 7(N’\L) under the inclusion map, where
v’ denotes the normal bundle and 7( ) the tangent bundles. Since both v’ and
7(N’\L) are trivial bundles and the Stiefel-Whitney classes are stable character-
istic classes, (d) follows.

To see (c), use the fact that »’is trivial to construct everywhere nonzero cross
sections X, ..., X to #=the normal bundle of F in M such that

(2.14) X;(f(Nx)) =df (X;(Nx))

for each Nx€F (and i=1,2,...,k), where df denotes the derivative of f. Then
(2.14) implies

(2.15) - X;(gf(Nx))=—d(gf)(X;(Nx))

for each Nx€Fand i=1,2,..., k. But (2.15) immediately implies (c). This com-
pletes the proof of Proposition 2.1 once we have proved Lemma 2.2 which we
now proceed to do.

Let F denote the fixed point set of &. We proceed by induction on n=dim K,
i.e., suppose Lemma 2.2 is true if dim K <#n. Let D denote the center of K and C
denote the center of S; then C=DMNS and D is isomorphic to the additive group
of the real vector space R” for some m>0. Consequently, C\D is an m-
dimensional torus denoted by 7. Consider the principal 7"-bundle

(2.16) Tm - S\K 5 S\K,

where K is the (connected) simply connected nilpotent Lie group D\K and § is
the cocompact discrete torsion-free subgroup C\S. Consider the automorphism
B: D\K — D\K defined by 8(Dx)=Da(x). Clearly, 32=id and B(C\S)=C\S.
Hence, by our inductive assumption, the fixed point set F of B: S\K—->S\K
satisfies the conclusion of Lemma 2.2.

Note that p(F)C F; we proceed to show that p(F) is the union of connected
components of F. Since p(F) is compact, it suffices to show that p(F) is open
in F.

Let xo € F and U be an open neighborhood of p(x,) in F such that the bundle
p: S\K — S\K is trivial when restricted to U. In particular, let s: U — S\K be a
cross section to p such that s(p(xy)) =Xp; then the composite &s: U—> S\K is a
second cross section such that &(s(p(xg))) =X,. Hence, there exists a continuous
function ¢: U — T" such that

2.17) a(s(y)=s(y)o(»)

for all y € U and ¢(p(x,)) =e=the identity element of the group 7. Applying &
to (2.17) yields
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(2.18) s(yy=a(s(y)) a(o(y))
for all y€ U. Combining (2.17) and (2.18) yields
(2.19) a(d(y)=o(y)~!

for all y € U. In a sufficiently small neighborhood of p(xy), s(y) has a unique
small square root; this fact and (2.19) together imply there is an open neighbor-
hood ¥V of p(x) in U and a continuous function y: V' — T"" such that

(2.20) (1) ¥(p(x)) =e,
(i) (¥(»)*=¢(») and
(i) &) =¥
for all y € V. Consider the point s(y)y¥(y) €S\K for each y € V and note that
(2.21) @) p(s(»¥)=p(s(y))=y and
(D) a(s)¥ () =a(s(y)a(d(»y)
=s(y)o(»)a(¥(y)) (by (2.17))
=s(»)d(M)¥(») ™" (by (2.20.iii))
=s(NWNY ()™ (by (2.20.iD))
=s(M)Y ().

Consequently, V'C p(F'); hence, we have shown that p(F) is a union of com-
ponents of F. In particular, p(F) is a closed manifold and each component of
p(F) has the same dimension.

Note that &: T — T™ is a group homomorphism; let A be the fixed point set
of &|T™. Then A is a compact abelian Lie subgroup of T'; consequently, all
components of A have the same dimension. But

2.22) A—-F5 p(F)

is a principal A-bundle; hence all components of F have the same dimension
which verifies part (i) of Lemma 2.2.
Consider the diagram

C

<N

(2.23) C S\K
l

Fc S\K.

«" e

Let 7 denote the normal bundle of F in S\ K. By our inductive assunption 7 is a
trivial bundle. But »=p*(¥) @, where 7, denotes the normal bundie along the
fibers, i.e., for each point Sx € F, the fiber #,(Sx) of ¥, over Sx is defined as the
following quotient vector space. Let kg, and kg, denote the kernels of
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(2.24) dp: 75:(S\K) = 7psx) (S\K) and
dp: 75 (F) = Tpsx (F), respectively.

Then »,(Sx) is the quotient vector space defined by

(2.25) 77 (SX) = kgy /Ky

It remains to show that ¥, is the trivial bundle. Let v|,..., ¢, k41,...,0, be a
basis for 7.(7"™) such that vg,,,..., v, is a basis for 7,(A4). Define k linearly
independent cross sections X, ..., X to #; by

(2.26) X (Sx)=dhg,(v;)+ké,
for each Sx € F, where hg,: T = S\K is defined by
2.27) hs(t)=Sxt, for each t€T"

and dhgy: 7.(T ™) = 75,(S\K) is the derivative of hg, at e € T"™. This completes
the proof of Lemma 2.2. O
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