THE EXTENSION OF CR FUNCTIONS
TO ONE SIDE OF A SUBMANIFOLD OF C”

Al Boggess

1. Introduction. There has been a lot of research on the problem of extending
CR functions on a submanifold of C” to CR functions on a submanifold with
one higher dimension. The most comprehensive work in this area has been done
by Hill and Taiani [2]. In that paper and later papers ([3] and [4]) by the same
authors, they show that if the Leviform of a submanifold M is nonzero, then
there is a local submanifold M of one higher dimension with boundary (M)=M
such that CR functions on M extend to CR functions on M. In their papers, the
manifold M is roughly one-third as smooth as M. In this paper, we present an
easier proof of their result with the improvement that our M is roughly one-half
as smooth as M. In the Hill and Taiani papers, the normal direction to M which
lies tangent to M lies in the image of the Leviform of M. Here, we also make the
improvement to allow this normal direction to be in the convex hull of the image
of the Leviform of M.

As in [4], we obtain M using the technique of analytic discs. However, our
approach differs in that we sweep out M with the centers of analytic discs and
then we use the CR approximation result of Baouendi and Tréves [1] to actually
obtain the CR extension. Our approach avoids the delicate problem of examin-
ing how the discs attach to the original manifold M.

The author would like to thank the referee who, among other things, simpli-
fied the proof of Lemma 4.5.

2. Statement of the result. We shall think of the Leviform of M at a point
pEM as a map from the holomorphic tangent space of M at p into the space of
vectors which are normal to M at p. If M is graphed over its tangent space at p,
then the Leviform can be identified with the restriction of the complex hessian of
the (vector valued) graphing function of M at p to the holomorphic tangent space
of M at p.

Here is the precise statement of our theorem.

THEOREM 2.1. Let M be a generic CR-submanifold of C" of class at least
CH**1 (k=1). Let pEM and v#0 a normal vector which lies in the convex hull
of the image of the Leviform of M at p. Then there is a generic submanifold M
with boundary such that

() M is of class C¥ and dimg M= (dimg M) +1,

(ii) the boundary of M is an open neighborhood of p in M,

(iii) the tangent cone of M at p is spanned by v and the tangent space of M at p,
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(iv) Given a neighborhood w3p in M, there is a neighborhood &>p relative to
M such that each CR Junction on of class C’ (j=0) extends to a CR
function on & of class C’ where j=min{j, k}.

The proof of the above theorem will also show that the interior of M is at least
of class C2*,

3. Analytic discs. An analytic disc is a holomorphic map A: D — C" (D=open
unit disc in C) which is continuous on D. Without apologies, the analytic disc
shall be identified with its image in C". The boundary of an analytic disc A is by
definition the restriction of 4 to S':=the unit circle. The boundary of A shall
also be identified with its image in C". The desired M will be swept out by the
centers of analytic discs (i.e. A(¢{=0)) with boundaries contained in M.

Let us review the construction of an analytic disc with boundary in M. Suppose
u:S'— R?is a continuous function. Then u is the boundary values of a unique
harmonic function U: D - R? (U= (Ui, ..., Uy) with each U; harmonic). The
Hilbert transform of u (denoted Tu:S'—> Rd) is the boundary values of the func-
tion V=(V;,...,Vy):D— RY where each V; is the unique harmonic conjugate of
U; with V;(0) = O Thus the function u+tTu S' — € is the boundary values of
a unique analytlc disc G=U+iV: D— C? with V({=0)=0. .

Let us assume the submanifold M of C” (in Theorem 1.1) has real codimen-
sion d > 1 (d =1 is the classical Hans Lewy extension phenomenon [5]). Sup-
pose n=d+m and that C?*" has coordinates (z,w), z=x+iy€C? we
C™. We can assume the given point p €M is the origin and that locally M=
{(x+iy,w); x=h(y,w)} where h: RYx C™ - R? is of class at least C**! with
h(0)=0 and VA(0)=0.

If v:S'>RY W:S'—>C", we define H(v, W):S' > R? by H(v, W)(e'®) =
h(v(e'®), W(e'?)).

Now suppose W: D — C™ is a given analytic disc and let y € R? be a given
vector. If v: S! - RY satisfies Bishop’s equation, i.e.

(3.1) v(e'®)=T(H(v, W))(e'®) +,
then by the above discussion on the Hilbert transform, the function
(3.2 H(v,W)(+)+iv(+):S'>C

is the boundary values of a unique analytic disc G = U+ iV:D— C? with
V(¢=0)=y. Since the boundary values of G are given by (3.2), it is clear that
Re G($)=h(Im G({), W({)) for |¢|=1. Thus the boundary of the analytic disc
A:=(G,W): D- C*"™ must lie in M.

We need the following existence and uniqueness result on the solution to
Bishop’s equation.

'THEOREM 3.3. Suppose the function h is of class C**' with h(0)=0,
Vh(0)=0. There is a neighborhood W of the origin in the space C'(S') and a
neighborhood Y C R? of the origin and a map v: U xY — C%S") of class C**
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such that for each We U, y €Y, the function v(W, y)(+) is the unique solution
to Bishop’s equation (3.1). Moreover

3.4 [v(W, »)|costy SC(W sty +( )

where |« |ck(s1y is the usual C*-norm for functions on S' and where C is a fixed
constant.

This result is contained in Theorem 5.1 in [2]. However, Theorem 5.1 in [2]
contains much more information (which is unnecessary for us) than the result
stated above. The above result can be easily shown as follows. Let W'(S') be the
first Sobolev space of functions on S' with the usual Sobolev norm |+ |y 1(s1.
Define the function F: W!(S") x W!(S') x R? > W (S') by

F(v,W,y)=v-T(H(v, W))—y.

Now, tangential derivatives to S! commute with 7. Since / is C2¥*, it is then easy
to show that F is a C** map (in the sense of Banach spaces). Note that we lose a
derivative since the domain and range of F involve first Sobolev spaces. Clearly
F(0,0,0)=0. Since VA(0) =0, the Banach space derivative dF (0, 0,0)/dv is the
identity map I: W!(S') > W'(S'). The result now follows from the implicit
function theorem. The estimate (3.4) follows from v(0, 0) =0 and Sobolev’s esti-

mate |f|c0(51) SCIflwl(Sl).

4. Construction of M. To construct M, it will be useful to arrange holo-
morphic coordinates (z=x+ iy, w) for C?x C" in a standard way so that
a*h a’h
(0)=0 1<i, j<d and —(0)=0 1<i<d, 1<j<m.
ayi ayj ay,-awj

As stated in the introduction, the Leviform at 0 can be identified with the
following map £: C” — R? given by
m aZh
L = — (0)o;
(o) MZLI 3w, 7k (0)aj o
where o= (ay, ..., a,) € C". The convex hull of the image of £ is the set of all
vectors of the form L$_;s;£(&') where e>0, 0<s, <1 with L, s,=1 and
a'eC™. Since s;L&(a')=L(Vs;a'), the hypothesis of Theorem 2.1 on the
Leviform of M at 0 means that for some vector » €RY, there exist vectors
ol,. .., a®€C™ with

e
4.1) =Y £(a')
=1
Let W: C"x Rx D — C" be defined by
4.2) Ww, t)(§) i=wH+ (o't +a23+a3 0+ - 42

where we€ C™, t €R, { €D. W is an analytic disc which also depends smoothly on
parameters w and ¢. Clearly there is an ey > 0 such that if max{|w/|, |y|, |¢|} <eo,
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then y €Y and W(w, t)(+)|s: belongs to U C C!(S!) where U and Y are as in
Theorem 3.3. Using Theorem 3.3, we obtain a solution v(y, w, ¢)(e’®) to Bishop’s
equation (3.1) which depends on the parameters y, w, ¢ in a C?* fashion. Thus for
each y,w, f, we obtain an analytic disc G:=U+iV: D — C? such that if A:=
(G, W): D— C%™ then the boundary of A is contained in M and Im G({=0) =

V({=0)=y. Since V depends on y,w, ¢ in a C?* fashion, and since
Upy,w,0)(H)=HWV(y,w,t), W(w,))(§) for |{|=1,

clearly U also depends on y, w, f in a C?* fashion.
The manifold M will be swept out by the map

Uy,w, t)(s“=0)+iy)
w

(y,w, 1) *A(}’,W,t)(ﬁ':()):(

for max{|y|, |w|, ||} <eg. Since U(y,w, t)({) is harmonic in { € D, we have

l s
U, w0 (5=0)= 5= |

U(y,w,t)(e?) do
4.3) B

2T J_

where the last equality uses the fact that the boundary of A is contained in M.
Let us Taylor expand U(y,w,t)({=0) in ¢ about ¢{=0. From (4.2), clearly
W(w, t=0)({)=w. By the uniqueness part of Theorem 3.3, clearly

V(y,w,t=0)($)=y, [{|=L

Therefore from (4.3), the constant term in the Taylor expansion (i.e.,
U(y,w,t=0)({=0)) is just A(y,w).
The coefficient of the linear term in ¢ is

_ L SW h(V(y,w, t)(e'®), W(w,t)(e®)) do

w

do

t=0

1 oh WV i
E- | 2 W) 5 (@)

1

4.4) + o S
Here and below, the parameters y,w,¢ occurring in V and W will often
be suppressed. In the above, (dh/dy)(y,w) represents the dXxd matrix
(0h;/0y;)(y,w) and (dh/0w)(y, w) represents the d X m matrix (dh;/dw;)(y, w).
Now (40 V/6t)(§‘)|,=0 is harmonic in {€D. Since V({=0)=y, V¢, clearly
(aV/at)({=0) | (=0=0. Thus, the first integral on the right side of (4.4) vanishes
by the mean value property for harmonic functions. Similarly, the second inte-
gral on the right of (4.4) vanishes because (dW/adt)(¢{) is holomorphic in { and
vanishes at {=0 (see (4.2)). Thus the linear term in ¢ vanishes. In fact, the Taylor
expansion in ¢ of U(y,w, t)({=0) contains only even powers of ¢ according to
the next lemma.

0
57 O, w, 0 (E=0)]

g o W
2R€{‘37 (r,w)- 7(6’ )}ddl-

-7

LEMMA 4.5. U(y,w, —£)({=0)Y=U(y,w, t)({=0). In particular,
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2j—1
%[U(y,w,t)@:O)] =0 for j=1,2,3,...,k
at t=0

Proof. Fix —w <0< and define Py: C%(S') - C%S') by the following. If
v: S5 R then (Pyv)({) =v(et), |¢|=1. We claim that PgoT=T-P,. This is
an easy consequence of the fact that if (U+iV)({) is holomorphic on D with
V(¢=0)=0, then (U+iV)({):=(U+iV)(e't) is holomorphic on D with
V(¢{=0)=0.

In addition, if v:S'->R? and W:S!—C", then clearly PyoH(v, W)=
H(Pyv, P, W) where H was defined in Section 3. Thus, if we apply P, to Bishop’s
equation (3.1) we obtain Pyv=T(H(Pyv, PyW))+y. We see that Pyv is the
unique solution to Bishop’s equation (3.1) with W replaced by Py W. We now let
0=x. Clearly P v(y,w,t)({)=v(y,w, £)(e'™¢). In addition, P.Ww, t)({)=
Ww,t)(—¢)=W(w, —t)({) where the last equality uses the fact that only
odd powers of { occur in the formula for W (see (4.2)). However, we note that
v(y,w, —t)({) is the unique solution to Bishop’s equation with W =
W(w, —t)(}). Therefore we obtain v(y,w,)(e'"{)=v(y,w, —t)({). Now we
easily compute

1 T . .
UG, w, =0 G=0)= 5= | h(p,w, =1)(e"), W(w, 1) (")) dg

27 J_
= Uy, w,1)(¢=0)

where the last equality uses the fact that the integrand is periodic of period 2.
This completes the lemma. a

=L 07 ho,w, (990, Ww, 1)) do

Now we coptinue the proof of Theorem 2.1. Let R*={s€R, s=>0}. Define
f:RxC"x Rt >R by

f(y,w,8)=U(y,w,Vs)({=0).

In view of Lemma 4.5 and since U is C?* in y, w, ¢, and easy argument which we
omit shows that f is. of class C* up to s=0 (f is of class C** for s>0). Now
define F: R?x C" xR+ — C4*™ py

F(y,w,5)=A(y,w,Vs)(§=0)
_ (U(y, W, \/E)(s“=0)+iy)= (f(y, w,s) +iy)

w w

and we let M={F(y,w,s); s 20 and max{|y|, |w|,Vs} <ey}. We shall show that
M satisfies (i)-(iv) in Theorem 2.1.

Since the constant term in the expansion of U(y,w, £)({=0) is A(y,w), it is
clear that the map (y, w) = F(y,w,s=0)= (h(y,w) +iy,w) for max{|y|, |w|} <
€9 parameterizes an open set in M which forms the boundary of M. Thus (ii)
holds.
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To show (i) and (iii) and that M is a manifold with boundary, we shall examine
the linear term in s of F(y=0,w=0,s), which in turn means that we must
examine the quadratic term in ¢ of U(y=0,w=0,¢)({=0). We differentiate
(4.3) twice with respect to ¢. At the beginning of this section, we arranged coordi-
nates so that

a%h a%h

3y;9y; (0= aw. oW,

-(0)=0.

In addition,

T aW; oW, .

J Re{ L(ef—* (e‘*")}dsb:o, 1<), k<m

at ot

because the integrand is the boundary values of a holomorphic function on D

which vanishes at the origin. Therefore
1 92

5 577 [U(=0,w=0,0)(¢=0)}

-7

t=0

1 ™ % 8%
=>- [z 0 2% ("”) <'¢)d¢
(L

- j k= la w;aw, Wy
T ow i
“z?g_,,"e(‘—“’ ))d¢
Since

ow
_a_t“(§)=a1§'+a2§‘3+ N

an easy computation shows that the above integral becomes Y-, L(a’)=».
Therefore

Sf(r=0,w=0,5)=U(y=0,w=0,Vs)({=0)
=vs+0(s?).

In view of the above and the fact that f(y,w,s=0)=h(y,w) with vA(0)=0,
clearly,

(dF)(y=0,w=0,s=0)=| 1T |

where dF represents the real Jacobian in y,w,s and I;=/ X/ identity matrix.
Thus (dF)(0, 0,0) has maximal rank and (i) and (iii) are also satisfied.

Finally to show (iv), we use the following CR approximation theorem of
Baouendi and Treves (cf. Theorem 2.1 in [1]).

THEOREM 4.6. Suppose M is a CR submanifold of C" of class CN (N>2).
Let peM and w3 p an open set in M. Then there exists an open set w; in M with
D € w, Cw such that each CR function of class C’ (j<N) on w can be approxi-
mated in the C’ norm on w, by a sequence of entire functions.
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The above theorem is proved for the sup norm case (j=0) in [1], but the
version stated here with derivatives is no harder to prove (cf. also [3]).

Let w30 be the given open neighborhood in (iv) in Theorem 2.1. Let w; be the
corresponding neighborhood in Theorem 4.6. From (4.2), it is clear that
[W(w, t)(*)|cisty < C(|w|+]¢|). From the estimate (3.4) we have

|U(y, w, t)(')ICO(Sl) gC(l_yl+|WI+|t|)

The function U must also satisfy the above estimate since U(y,w, t)(e'®) =
h(v(y,w, t)(e'®), W(w, t)(e'®)). Therefore, there must exist an ¢>0 such that
the boundary of the analytic disc { = A(y, w,Vs)({) lies in w; provided that
max{|y|, |w|,Vs} < e. Thus the map (y,w,s)~F(y,w,s) = A(y,w,Vs)({=0)
for max{|y|, |w|,Vs}<e, s3>0, parameterizes an open set & relative to M such
that each point in @ lies in the center of an analytic disc with boundary in w;.
Now suppose g is a CR function on w of class C/, j <2k+1. By Theorem 4.6,
there is a sequence of entire functions {G,,};n=; which converges to g in the C’
norm on w;. Let D%, |a|<Jj, be a differential operator on C" with constant co-
efficients. Since M is generic, the Cauchy Riemann equations imply that the
sequence {D"‘G,,,]wl] is uniformly convergent on w;. Since each point in GCM
lies in the image of an analytic disc with boundary in w;, the maximum principle
implies~that the sequence [G,,,]G,} converges to a function G on & in the C’ norm
where j=min{/, k}. Clearly G is CR and of class C’ and le.= g. This proves
(iv) and concludes the proof of Theorem 2.1. O

REMARK. We lose roughly one-half of the derivatives because we compose A
with Vs to get our parameterization (F) of M. We have to compose with Vs to
make sure the differential of F has maximal rank. In order to lose fewer deriva-
tives, one must construct an (apparently very different) analytic disc so that its
differential with respect to its parameter set has maximal rank.
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